

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	33MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	8KB (4K x 16)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c43-33-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.2 <u>Peripheral Interrupt Enable Register</u> (PIE)

This register contains the individual flag bits for the Peripheral interrupts.

FIGURE 5-3: PIE REGISTER (ADDRESS: 17h, BANK 1)

RBIE	0 R/W - 0 R/W TMR3IE TMR2IE TMR1IE CA2IE CA1IE TXIE R0	CIE R = Readable bit
bit7		bit0 W = Writable bit -n = Value at POR reset
bit 7:	RBIE : PORTB Interrupt on Change Enable bit 1 = Enable PORTB interrupt on change 0 = Disable PORTB interrupt on change	
bit 6:	TMR3IE : Timer3 Interrupt Enable bit 1 = Enable Timer3 interrupt 0 = Disable Timer3 interrupt	
bit 5:	TMR2IE : Timer2 Interrupt Enable bit 1 = Enable Timer2 interrupt 0 = Disable Timer2 interrupt	
bit 4:	TMR1IE : Timer1 Interrupt Enable bit 1 = Enable Timer1 interrupt 0 = Disable Timer1 interrupt	
bit 3:	CA2IE : Capture2 Interrupt Enable bit 1 = Enable Capture interrupt on RB1/CAP2 pin 0 = Disable Capture interrupt on RB1/CAP2 pin	
bit 2:	CA1IE : Capture1 Interrupt Enable bit 1 = Enable Capture interrupt on RB2/CAP1 pin 0 = Disable Capture interrupt on RB2/CAP1 pin	
bit 1:	TXIE : USART Transmit Interrupt Enable bit 1 = Enable Transmit buffer empty interrupt 0 = Disable Transmit buffer empty interrupt	
bit 0:	RCIE : USART Receive Interrupt Enable bit 1 = Enable Receive buffer full interrupt 0 = Disable Receive buffer full interrupt	

FIGURE 9-5: BLOCK DIAGRAM OF RB3 AND RB2 PORT PINS

TABLE 9-5: PORTC FUNCTIONS

Name	Bit	Buffer Type	Function
RC0/AD0	bit0	TTL	Input/Output or system bus address/data pin.
RC1/AD1	bit1	TTL	Input/Output or system bus address/data pin.
RC2/AD2	bit2	TTL	Input/Output or system bus address/data pin.
RC3/AD3	bit3	TTL	Input/Output or system bus address/data pin.
RC4/AD4	bit4	TTL	Input/Output or system bus address/data pin.
RC5/AD5	bit5	TTL	Input/Output or system bus address/data pin.
RC6/AD6	bit6	TTL	Input/Output or system bus address/data pin.
RC7/AD7	bit7	TTL	Input/Output or system bus address/data pin.

Legend: TTL = TTL input.

TABLE 9-6: REGISTERS/BITS ASSOCIATED WITH PORTC

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
11h, Bank 1	PORTC	RC7/ AD7	RC6/ AD6	RC5/ AD5	RC4/ AD4	RC3/ AD3	RC2/ AD2	RC1/ AD1	RC0/ AD0	xxxx xxxx	uuuu uuuu
10h, Bank 1	Dh, Bank 1 DDRC Data direction register for PORTC								1111 1111	1111 1111	

Legend: x = unknown, u = unchanged.

Note 1: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

11.3 Read/Write Consideration for TMR0

Although TMR0 is a 16-bit timer/counter, only 8-bits at a time can be read or written during a single instruction cycle. Care must be taken during any read or write.

11.3.1 READING 16-BIT VALUE

The problem in reading the entire 16-bit value is that after reading the low (or high) byte, its value may change from FFh to 00h.

Example 11-1 shows a 16-bit read. To ensure a proper read, interrupts must be disabled during this routine.

EXAMPLE 11-1: 16-BIT READ

MOVPF	TMROL,	TMPLO	;read low tmr0
MOVPF	TMROH,	TMPHI	;read high tmr0
MOVFP	TMPLO,	WREG	;tmplo -> wreg
CPFSLT	TMR0L		;tmr0l < wreg?
RETURN			;no then return
MOVPF	TMROL,	TMPLO	;read low tmr0
MOVPF	TMROH,	TMPHI	;read high tmr0
RETURN			;return

11.3.2 WRITING A 16-BIT VALUE TO TMR0

Since writing to either TMR0L or TMR0H will effectively inhibit increment of that half of the TMR0 in the next cycle (following write), but not inhibit increment of the other half, the user must write to TMR0L first and TMR0H next in two consecutive instructions, as shown in Example 11-2. The interrupt must be disabled. Any write to either TMR0L or TMR0H clears the prescaler.

EXAMPLE 11-2: 16-BIT WRITE

BSF CPUSTA, GLINTD ; Disable interrupt MOVFP RAM_L, TMROL ; MOVFP RAM_H, TMROH ; BCF CPUSTA, GLINTD ; Done, enable interrupt

11.4 Prescaler Assignments

Timer0 has an 8-bit prescaler. The prescaler assignment is fully under software control; i.e., it can be changed "on the fly" during program execution. When changing the prescaler assignment, clearing the prescaler is recommended before changing assignment. The value of the prescaler is "unknown," and assigning a value that is less then the present value makes it difficult to take this unknown time into account.

FIGURE 11-4: TMR0 TIMING: WRITE HIGH OR LOW BYTE

13.0 UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (USART) MODULE

The USART module is a serial I/O module. The USART can be configured as a full duplex asynchronous system that can communicate with peripheral devices such as CRT terminals and personal computers, or it can be configured as a half duplex synchronous system that can communicate with peripheral devices such as A/D or D/A integrated circuits, Serial EEPROMs etc. The USART can be configured in the following modes:

- Asynchronous (full duplex)
- Synchronous Master (half duplex)
- Synchronous Slave (half duplex)

The SPEN (RCSTA<7>) bit has to be set in order to configure RA4 and RA5 as the Serial Communication Interface.

The USART module will control the direction of the RA4/RX/DT and RA5/TX/CK pins, depending on the states of the USART configuration bits in the RCSTA and TXSTA registers. The bits that control I/O direction are:

- SPEN
- TXEN
- SREN
- CREN
- CSRC

The Transmit Status And Control Register is shown in Figure 13-1, while the Receive Status And Control Register is shown in Figure 13-2.

D 4 4 4						D (D 4 4 4			
R/W - 0 CSRC	R/W - 0 TX9	R/W - 0 TXEN	R/W - 0 SYNC	<u>U-0</u>	<u>U-0</u>	<u>R - 1</u> TRMT	R/W - x TX9D	R = Readable bit		
bit7	17.9	TALM	51110				bit0	W = Writable bit-n = Value at POR reset(x = unknown)		
bit 7: CSRC: Clock Source Select bit <u>Synchronous mode:</u> 1 = Master Mode (Clock generated internally from BRG) 0 = Slave mode (Clock from external source) <u>Asynchronous mode</u> : Don't care										
bit 6:										
bit 5:	TXEN : Tra 1 = Transr 0 = Transr SREN/CR	nit enable nit disable	d ed	in SYNC	mode					
bit 4:	SYNC: US (Synchror 1 = Synch 0 = Async	nous/Asyn Ironous m	chronous) ode							
bit 3-2:	Unimpler	nented: R	ead as '0'							
bit 1:	TRMT : Tra 1 = TSR e 0 = TSR fr	empty	ft Registe	r (TSR) Er	npty bit					
bit 0:	TX9D : 9th	bit of trar	emit data	(can be u	and to only	مطلا امملمان	nority in on	ft		

FIGURE 13-1: TXSTA REGISTER (ADDRESS: 15h, BANK 0)

© 1996 Microchip Technology Inc.

FIGURE 13-5: ASYNCHRONOUS MASTER TRANSMISSION

FIGURE 13-6: ASYNCHRONOUS MASTER TRANSMISSION (BACK TO BACK)

TABLE 13-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
13h, Bank 0	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	x00- 0000	0000 -00u
16h, Bank 0	TXREG	Serial port	transmit re	egister						xxxx xxxx	uuuu uuuu
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	—	—	TRMT	TX9D	00001x	00001u
17h, Bank 0 SPBRG Baud rate generator register								xxxx xxxx	uuuu uuuu		

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used for asynchronous transmission.

Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

Steps to follow when setting up an Asynchronous Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If interrupts are desired, then set the RCIE bit.
- 4. If 9-bit reception is desired, then set the RX9 bit.
- 5. Enable the reception by setting the CREN bit.
- 6. The RCIF bit will be set when reception completes and an interrupt will be generated if the RCIE bit was set.

- Read RCSTA to get the ninth bit (if enabled) and FERR bit to determine if any error occurred during reception.
- 8. Read RCREG for the 8-bit received data.
- 9. If an overrun error occurred, clear the error by clearing the OERR bit.
- Note: To terminate a reception, either clear the SREN and CREN bits, or the SPEN bit. This will reset the receive logic, so that it will be in the proper state when receive is re-enabled.

FIGURE 13-8: ASYNCHRONOUS RECEPTION

TABLE 13-6 :	REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
13h, Bank 0	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00u
14h, Bank 0	RCREG	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	xxxx xxxx	uuuu uuuu
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	_	—	TRMT	TX9D	00001x	00001u
17h, Bank 0	17h, Bank 0 SPBRG Baud rate generator register								xxxx xxxx	uuuu uuuu	

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used for asynchronous reception. Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

RETFIE		Return fr	Return from Interrupt						
Syntax:		[label]	RETFIE						
Operands:		None	None						
Operation:		$0 \rightarrow \text{GLIN}$	TOS \rightarrow (PC); 0 \rightarrow GLINTD; PCLATH is unchanged.						
Status Affe	ected:	GLINTD							
Encoding:		0000	0000	0000	0101				
Description	n:	and Top of PC. Interru the GLINT	Return from Interrupt. Stack is POP'ed and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by clearing the GLINTD bit. GLINTD is the global interrupt disable bit (CPUSTA<4>).						
Words:		1	1						
Cycles:		2							
Q Cycle A	ctivity:								
C	21	Q2	Q3	3	Q4				
Dec	ode	Read register T0STA	Execu	ute	NOP				
Force	d NOP	NOP	Execu	ute	NOP				
Р	nterrup C LINTD	RETFIE t = TOS = 0							

RETL	w	Return Li	teral to WRE	EG
Synta	ax:	[label]	RETLW k	
Opera	ands:	$0 \le k \le 25$	5	
Opera	ation:	•	$G; TOS \rightarrow 0$ s unchanged	
Statu	s Affected:	None		
Enco	ding:	1011	0110 kkl	kk kkkk
Desci	ription:	'k'. The proo the top of th	gram counter i le stack (the re Idress latch (F	turn address).
Word	s:	1		
Cycle	es:	2		
O Cv	cle Activity:			
Q Oy	CIE ACTIVITY.			
Q 0 y	Q1	Q2	Q3	Q4
	-	Q2 Read literal 'k'	Q3 Execute	Q4 Write to WREG
	Q1	Read		Write to
	Q1 Decode Forced NOP	Read literal 'k'	Execute	Write to WREG NOP
	Q1 Decode Forced NOP	Read literal 'k' NOP	Execute Execute BLE ; WREG co; ; offset ; WREG n; ; table c ; wREG = 0 ; Begin t;	Write to WREG NOP ntains table value ow has value
Exam	Q1 Decode Forced NOP	Read literal 'k' NOP CALL TAN CALL TAN CALL TAN : TABLE ADDWF PC RETLW ki : : RETLW ki : : RETLW ki	Execute Execute BLE ; WREG coi ; offset ; WREG n; ; table coi ; table coi ; wREG = 0 ; Begin t; ; ;	Write to WREG NOP ntains table value ow has value

RETURN Return from Subroutine								
Synt	ax:	[label]	RETUR	N				
Ope	rands:	None						
Ope	ration:	$TOS\toF$	PC;					
Stat	us Affected:	None						
Enco	oding:	0000	0000	0000	0010			
Des	cription:	Return from popped and is loaded i	d the top	of the sta	ck (TOS)			
Wor	ds:	1	1					
Cycl	es:	2						
QC	ycle Activity:							
	Q1	Q2	Q3	3	Q4			
	Decode	Read register PCL*	Execu	ute	NOP			
	Forced NOP	NOP	Execu	ute	NOP			

* Remember reading PCL causes PCLATH to be updated. This will be the high address of where the RETURN instruction is located.

Example: RETURN

After Interrupt PC = TOS

RLCF	Rotate L	eft f throug	gh Carry
Syntax:	[label]	RLCF f,d	
Operands:	0 ≤ f ≤ 25 d ∈ [0,1]	55	
Operation:	$f < n > \rightarrow c$ $f < 7 > \rightarrow c$ $C \rightarrow d < 0$;	
Status Affected:	С		
Encoding:	0001	101d :	fff ffff
Description:	one bit to Flag. If 'd'	the left throu is 0 the resu 'd' is 1 the re	er ff are rotated gh the Carry It is placed in sult is stored
Words:	1		
Cycles:	1		
Q Cycle Activity:			
Q1	Q2	Q3	Q4
Decode	Read register 'f'	Execute	Write to destination
Example:	RLCF	REG,	0
Example: Before Instru		REG,	0
			0
Before Instru REG	iction = 1110 (= 0		0
Before Instru REG C	iction = 1110 (= 0 tion = 1110 (0110	0

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 17-7: CAPTURE TIMINGS

TABLE 17-7: CAPTURE REQUIREMENTS

Parameter							
No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
50	TccL	Capture1 and Capture2 input low time	10 *	—	—	ns	
51	TccH	Capture1 and Capture2 input high time	10 *	—	_	ns	
52	TccP	Capture1 and Capture2 input period	<u>2 Tcy</u> § N	—	—	ns	N = prescale value (4 or 16)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

FIGURE 17-8: PWM TIMINGS

TABLE 17-8: PWM REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
53	TccR	PWM1 and PWM2 output rise time		10 *	35 *§	ns	
54	TccF	PWM1 and PWM2 output fall time	—	10 *	35 *§	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 17-9: USART MODULE: SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 17-9: SERIAL PORT SYNCHRONOUS TRANSMISSION REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
120	TckH2dtV	SYNC XMIT (MASTER & SLAVE) Clock high to data out valid		_	65	ns	
121	TckRF	Clock out rise time and fall time (Master Mode)	_	10	35	ns	
122	TdtRF	Data out rise time and fall time		10	35	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 17-10: USART MODULE: SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 17-10: SERIAL PORT SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
125	TdtV2ckL	SYNC RCV (MASTER & SLAVE) Data hold before CK↓ (DT hold time)	15	_	_	ns	
126	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15	—	_	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 18-2: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

FIGURE 18-3: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 18-6: TRANSCONDUCTANCE (gm) OF XT OSCILLATOR vs. VDD

Applicable Devices 42 R42 42A 43 R43 44

19.1 DC CHARACTERISTICS:

PIC17CR42/42A/43/R43/44-16 (Commercial, Industrial) PIC17CR42/42A/43/R43/44-25 (Commercial, Industrial) PIC17CR42/42A/43/R43/44-33 (Commercial, Industrial)

DC CHARACT	CDIETI		Standard Operating				s (unless otherwise stated)
	ERISTI	63				-40°C	
		i				0°C	\leq TA \leq +70°C for commercial
Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
D001	Vdd	Supply Voltage	4.5	_	6.0	V	
D002	Vdr	RAM Data Retention Voltage (Note 1)	1.5 *	_	—	V	Device in SLEEP mode
D003	VPOR	VDD start voltage to ensure internal Power-on Reset signal	_	Vss	-	V	See section on Power-on Reset for details
D004	SVDD	VDD rise rate to ensure internal Power-on Reset signal	0.060 *	_	_	mV/ms	See section on Power-on Reset for details
D010	IDD	Supply Current	-	3	6	mA	Fosc = 4 MHz (Note 4)
D011		(Note 2)	_	6	12 *	mA	Fosc = 8 MHz
D012			-	11	24 *	mA	Fosc = 16 MHz
D013			-	19	38	mA	Fosc = 25 MHz
D015			-	25	50	mA	Fosc = 33 MHz
D014			-	95	150	μA	Fosc = 32 kHz,
							WDT enabled (EC osc configuration)
D020	IPD	Power-down	_	10	40	μΑ	VDD = 5.5V, WDT enabled
D021		Current (Note 3)	-	< 1	5	μA	VDD = 5.5V, WDT disabled

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD or VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.

Current consumed from the oscillator and I/O's driving external capacitive or resistive loads needs to be considered.

For the RC oscillator, the current through the external pull-up resistor (R) can be estimated as: $VDD / (2 \bullet R)$. For capacitive loads, the current can be estimated (for an individual I/O pin) as (CL • VDD) • f

CL = Total capacitive load on the I/O pin; f = average frequency the I/O pin switches.

The capacitive currents are most significant when the device is configured for external execution (includes extended microcontroller mode).

- 3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VbD and Vss.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula IR = VDD/2Rext (mA) with Rext in kOhm.

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 19-3: CLKOUT AND I/O TIMING

TABLE 19-3:	CLKOUT AND I/O TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
10	TosH2ckL	OSC1↓ to CLKOUT	·	—	15‡	30 ‡	ns	Note 1
11	TosH2ckH	OSC1↓ to CLKOUT	\uparrow	—	15‡	30 ‡	ns	Note 1
12	TckR	CLKOUT rise time		—	5‡	15 ‡	ns	Note 1
13	TckF	CLKOUT fall time		—	5‡	15 ‡	ns	Note 1
14	TckH2ioV	CLKOUT ↑ to Port out valid			—	0.5TCY + 20 ‡	ns	Note 1
			PIC17LCR42/42A/43/ R43/44	—	—	0.5TCY + 50 ‡	ns	Note 1
15	TioV2ckH	Port in valid before CLKOUT↑	PIC17CR42/42A/43/ R43/44	0.25Tcy + 25 ‡	_	—	ns	Note 1
			PIC17LCR42/42A/43/ R43/44	0.25Tcy + 50 ‡	—		ns	Note 1
16	TckH2iol	Port in hold after CL	KOUT	0 ‡	—	—	ns	Note 1
17	TosH2ioV	OSC1↓ (Q1 cycle) t	o Port out valid	—	—	100 ‡	ns	
18	TosH2iol	OSC1↓ (Q2 cycle) t (I/O in hold time)	o Port input invalid	0‡	—		ns	
19	TioV2osH	Port input valid to OSC1↓ (I/O in setup time)		30 ‡	—		ns	
20	TioR	Port output rise time		—	10 ‡	35 ‡	ns	
21	TioF	Port output fall time		—	10 ‡	35 ‡	ns	
22	TinHL	INT pin high or low	INT pin high or low time		—	—	ns	
23	TrbHL	RB7:RB0 change IN	NT high or low time	25 *	—	—	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

Note 1: Measurements are taken in EC Mode where CLKOUT output is 4 x Tosc.

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 20-2: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

FIGURE 20-3: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

APPENDIX C: WHAT'S NEW

The structure of the document has been made consistent with other data sheets. This ensures that important topics are covered across all PIC16/17 families. Here is an overview of new features.

Added the following devices:

PIC17CR42

PIC17C42A

PIC17CR43

A 33 MHz option is now available.

APPENDIX D: WHAT'S CHANGED

To make software more portable across the different PIC16/17 families, the name of several registers and control bits have been changed. This allows control bits that have the same function, to have the same name (regardless of processor family). Care must still be taken, since they may not be at the same special function register address. The following shows the register and bit names that have been changed:

Old Name	New Name
TX8/9	TX9
RC8/9	RX9
RCD8	RX9D
TXD8	TX9D

Instruction DECFSNZ corrected to DCFSNZ

Instruction INCFSNZ corrected to INFSNZ

Enhanced discussion on PWM to include equation for determining bits of PWM resolution.

Section 13.2.2 and 13.3.2 have had the description of updating the FERR and RX9 bits enhanced.

The location of configuration bit PM2 was changed (Figure 6-1 and Figure 14-1).

Enhanced description of the operation of the INTSTA register.

Added note to discussion of interrupt operation.

Tightened electrical spec D110.

Corrected steps for setting up USART Asynchronous Reception.

E.6 **PIC16C8X Family of Devices**

÷ Note

Delay From External Clock Edge	68
Development Support	
Development Tools	
Device Drawings	
44-Lead Plastic Surface Mount (MQFP	
10x10 mm Body 1.6/0.15 mm Lead Form)	209
DIGIT BORROW	9
Digit Carry (DC)	9
Duty Cycle	75

Ε

Electrical Characteristics
PIC17C42
Absolute Maximum Ratings147
Capture Timing159
CLKOUT and I/O Timing 156
DC Characteristics149
External Clock Timing155
Memory Interface Read Timing 162
Memory Interface Write Timing
PWM Timing159
RESET, Watchdog Timer, Oscillator Start-up
Timer and Power-up Timer157
Timer0 Clock Timings158
Timer1, Timer2 and Timer3 Clock Timing 158
USART Module, Synchronous Receive160
USART Module, Synchronous Transmission 160
PIC17C43/44
Absolute Maximum Ratings175
Capture Timing188
CLKOUT and I/O Timing 185
DC Characteristics177
External Clock Timing184
Memory Interface Read Timing191
Memory Interface Write Timing
Parameter Measurement Information183
RESET, Watchdog Timer, Oscillator Start-up
Timer and Power-up Timer Timing
Timer0 Clock Timing187
Timer1, Timer2 and Timer3 Clock Timing 187
Timing Parameter Symbology182
USART Module Synchronous Receive
Timing189
USART Module Synchronous Transmission
Timing189
EPROM Memory Access Time Order Suffix
Extended Microcontroller
Extended Microcontroller Mode31
External Memory Interface
External Program Memory Waveforms

F

Family of Devices	6
PIC14000	
PIC16C5X	
PIC16CXXX	215
PIC16C6X	216
PIC16C7X	
PIC16C8X	218
PIC16C9XX	
PIC17CXX	
FERR	
FOSC0	

FOSC1	
FS0	
FS1	
FS2	
FS3	
FSR0	34, 40
FSR1	
Fuzzy Logic Dev. System (<i>fuzzy</i> TECH [®] -MP)	143, 145

G

General Format for Instructions 108
General Purpose RAM
General Purpose RAM Bank 42
General Purpose Register (GPR) 32
GLINTD 25, 37, 78, 105
GOTO
GPR (General Purpose Register) 32
Graphs
ЮН vs. VOH, VDD = 3V 170, 200
ЮН vs. VOH, VDD = 5V 171, 201
IOL vs. VOL, VDD = 3V 171, 201
IOL vs. VOL, VDD = 5V 172, 202
Maximum IDD vs. Frequency
(External Clock 125°C to -40°C) 167, 197
Maximum IPD vs. VDD Watchdog Disabled 168, 198
Maximum IPD vs. VDD Watchdog Enabled 169, 199
RC Oscillator Frequency vs.
VDD (Cext = 100 pF) 164, 194
RC Oscillator Frequency vs.
VDD (Cext = 22 pF) 164, 194
RC Oscillator Frequency vs.
VDD (Cext = 300 pF)
Transconductance of LF Oscillator vs.VDD 166, 196
Transconductance of XT Oscillator vs. VDD 166, 196
Typical IDD vs. Frequency
(External Clock 25°C)
Typical IPD vs. VDD Watchdog Disabled 25°C . 168, 198
Typical IPD vs. VDD Watchdog Enabled 25°C 169, 199
Typical RC Oscillator vs. Temperature
VTH (Input Threshold Voltage) of I/O Pins vs.
VDD
VTH (Input Threshold Voltage) of OSC1 Input
(In XT, HS, and LP Modes) vs. VDD 173, 203
VTH, VIL of MCLR, TOCKI and OSC1
(In RC Mode) vs. VDD
WDT Timer Time-Out Period vs. VDD 170, 200

Н

Hardware Multiplier	 49
i la analo manpion	

L

I/O Ports	
Bi-directional	64
I/O Ports	53
Programming Considerations	64
Read-Modify-Write Instructions	64
Successive Operations	64
INCF	123
INCFSNZ	124
INCFSZ	123
INDF0	34, 40
INDF1	34, 40

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:		Technical Publications Manager Total Pages Sent		
RE _		Reader Response		
Fro	om:	Name		
		Company		
		Address City / State / ZIP / Country		
		Telephone: () FAX: ()		
Application (optional):				
Wo	buld	you like a reply?YN		
De	vice	E: PIC17C4X Literature Number: DS30412C		
		ions:		
1.	W	hat are the best features of this document?		
2	— Ho	ow does this document meet your hardware and software development needs?		
۷.		Sw does this document meet your hardware and software development needs:		
3.	Do	o you find the organization of this data sheet easy to follow? If not, why?		
4.	4. What additions to the data sheet do you think would enhance the structure and subject?			
~				
5.	vvi	hat deletions from the data sheet could be made without affecting the overall usefulness?		
6.	ls	there any incorrect or misleading information (what and where)?		
7.	Ho	ow would you improve this document?		
8.	Ho	ow would you improve our software, systems, and silicon products?		