

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	33MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	8KB (4K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c43-33e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Overview	5
2.0	PIC17C4X Device Varieties	7
3.0	Architectural Overview	9
4.0	Reset	15
5.0	Interrupts	21
6.0	Memory Organization	29
7.0	Table Reads and Table Writes	43
8.0	Hardware Multiplier	49
9.0	I/O Ports	53
10.0	Overview of Timer Resources	65
11.0	Timer0	67
12.0	Timer1, Timer2, Timer3, PWMs and Captures	71
13.0	Universal Synchronous Asynchronous Receiver Transmitter (USART) Module	83
14.0	Special Features of the CPU	99
15.0	Instruction Set Summary	107
16.0	Development Support	143
17.0	PIC17C42 Electrical Characteristics	147
18.0	PIC17C42 DC and AC Characteristics	163
19.0	PIC17CR42/42A/43/R43/44 Electrical Characteristics	175
20.0	PIC17CR42/42A/43/R43/44 DC and AC Characteristics	193
21.0	Packaging Information	205
Appen	dix A: Modifications	211
Appen	dix B: Compatibility	211
Appen	dix C: What's New	212
Appen	dix D: What's Changed	212
Appen	dix E: PIC16/17 Microcontrollers	213
Appen	dix F: Errata for PIC17C42 Silicon	223
Index.		226
PIC17	C4X Product Identification System	237

For register and module descriptions in this data sheet, device legends show which devices apply to those sections. For example, the legend below shows that some features of only the PIC17C43, PIC17C43, PIC17C44 are described in this section.

Applicable Devices 42 R42 42A 43 R43 44

To Our Valued Customers

We constantly strive to improve the quality of all our products and documentation. We have spent an exceptional amount of time to ensure that these documents are correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error from the previous version of the PIC17C4X Data Sheet (Literature Number DS30412B), please use the reader response form in the back of this data sheet to inform us. We appreciate your assistance in making this a better document.

To assist you in the use of this document, Appendix C contains a list of new information in this data sheet, while Appendix D contains information that has changed

TABLE 1-1: PIC17CXX FAMILY OF DEVICES

Features		PIC17C42	PIC17CR42	PIC17C42A	PIC17C43	PIC17CR43	PIC17C44
Maximum Frequency of O	peration	25 MHz	33 MHz				
Operating Voltage Range		4.5 - 5.5V	2.5 - 6.0V				
Program Memory x16	(EPROM)	2K	-	2K	4K	-	8K
	(ROM)	-	2K	-	-	4K	-
Data Memory (bytes)		232	232	232	454	454	454
Hardware Multiplier (8 x 8))	-	Yes	Yes	Yes	Yes	Yes
Timer0 (16-bit + 8-bit post	scaler)	Yes	Yes	Yes	Yes	Yes	Yes
Timer1 (8-bit)		Yes	Yes	Yes	Yes	Yes	Yes
Timer2 (8-bit)		Yes	Yes	Yes	Yes	Yes	Yes
Timer3 (16-bit)		Yes	Yes Yes		Yes	Yes	Yes
Capture inputs (16-bit)		2	2 2 2 2		2	2	
PWM outputs (up to 10-bit	t)	2	2 2 2 2 2		2	2	
USART/SCI		Yes	Yes Yes Yes		Yes	Yes	
Power-on Reset		Yes	Yes	Yes	Yes	Yes	Yes
Watchdog Timer		Yes	Yes	Yes	Yes	Yes	Yes
External Interrupts		Yes	Yes	Yes	Yes	Yes	Yes
Interrupt Sources		11	11	11	11	11	11
Program Memory Code Pr	rotect	Yes	Yes	Yes	Yes	Yes	Yes
I/O Pins		33	33	33	33	33	33
I/O High Current Capabil-	Source	25 mA					
ity	Sink	25 mA ⁽¹⁾					
Package Types		40-pin DIP					
		44-pin PLCC					
		44-pin MQFP					
			44-pin IQFP				

Note 1: Pins RA2 and RA3 can sink up to 60 mA.

Name	DIP No.	PLCC No.	QFP No.	I/O/P Type	Buffer Type	Description
OSC1/CLKIN	19	21	37		ST	Oscillator input in crystal/resonator or RC oscillator mode. External clock input in external clock mode.
OSC2/CLKOUT	20	22	38	0	_	Oscillator output. Connects to crystal or resonator in crystal oscillator mode. In RC oscillator or external clock modes OSC2 pin outputs CLKOUT which has one fourth the frequency of OSC1 and denotes the instruction cycle rate.
MCLR/Vpp	32	35	7	I/P	ST	Master clear (reset) input/Programming Voltage (VPP) input. This is the active low reset input to the chip.
						PORTA is a bi-directional I/O Port except for RA0 and RA1 which are input only.
RA0/INT	26	28	44	I	ST	RA0/INT can also be selected as an external interrupt input. Interrupt can be configured to be on positive or negative edge.
RA1/T0CKI	25	27	43	I	ST	RA1/T0CKI can also be selected as an external interrupt input, and the interrupt can be configured to be on posi- tive or negative edge. RA1/T0CKI can also be selected to be the clock input to the Timer0 timer/counter.
RA2	24	26	42	I/O	ST	High voltage, high current, open drain input/output port pins.
RA3	23	25	41	I/O	ST	High voltage, high current, open drain input/output port pins.
RA4/RX/DT	22	24	40	I/O	ST	RA4/RX/DT can also be selected as the USART (SCI) Asynchronous Receive or USART (SCI) Synchronous Data.
RA5/TX/CK	21	23	39	I/O	ST	RA5/TX/CK can also be selected as the USART (SCI) Asynchronous Transmit or USART (SCI) Synchronous Clock.
						PORTB is a bi-directional I/O Port with software configurable weak pull-ups.
RB0/CAP1	11	13	29	I/O	ST	RB0/CAP1 can also be the CAP1 input pin.
RB1/CAP2	12	14	30	I/O	ST	RB1/CAP2 can also be the CAP2 input pin.
RB2/PWM1	13	15	31	I/O	ST	RB2/PWM1 can also be the PWM1 output pin.
RB3/PWM2	14	16	32	I/O	ST	RB3/PWM2 can also be the PWM2 output pin.
RB4/TCLK12	15	17	33	I/O	ST	RB4/TCLK12 can also be the external clock input to
RB5/TCLK3	16	18	34	I/O	ST	Timer1 and Timer2. RB5/TCLK3 can also be the external clock input to Timer3
RB6	17	19	35	1/0	ST	Timero.
RB7	18	20	36	1/0	ST	
						PORTC is a bi-directional I/O Port.
RC0/AD0	2	3	19	I/O	TTL	This is also the lower half of the 16-bit wide system bus
RC1/AD1	3	4	20	I/O	TTL	in microprocessor mode or extended microcontroller
RC2/AD2	4	5	21	I/O	TTL	mode. In multiplexed system bus configuration, these
RC3/AD3	5	6	22	I/O	TTL	pins are address output as well as data input or output.
RC4/AD4	6	7	23	I/O	TTL	
RC5/AD5	7	8	24	I/O	TTL	
RC6/AD6	8	9	25	I/O	TTL	
RC7/AD7	9	10	26	I/O	TTL	

TABLE 3-1:PINOUT DESCRIPTIONS

Legend: I = Input only; O = Output only; I/O = Input/Output; P = Power; — = Not Used; TTL = TTL input; ST = Schmitt Trigger input.

6.2.2.1 ALU STATUS REGISTER (ALUSTA)

The ALUSTA register contains the status bits of the Arithmetic and Logic Unit and the mode control bits for the indirect addressing register.

As with all the other registers, the ALUSTA register can be the destination for any instruction. If the ALUSTA register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Therefore, the result of an instruction with the ALUSTA register as destination may be different than intended.

For example, CLRF ALUSTA will clear the upper four bits and set the Z bit. This leaves the ALUSTA register as 0000u1uu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions be used to alter the ALUSTA register because these instructions do not affect any status bit. To see how other instructions affect the status bits, see the "Instruction Set Summary."

N	ote 1:	The C and DC bits operate as a borrow out bit in subtraction. See the SUBLW and SUBWF instructions for examples.
N	ote 2:	The overflow bit will be set if the 2's com- plement result exceeds +127 or is less than -128.

Arithmetic and Logic Unit (ALU) is capable of carrying out arithmetic or logical operations on two operands or a single operand. All single operand instructions operate either on the WREG register or a file register. For two operand instructions, one of the operands is the WREG register and the other one is either a file register or an 8-bit immediate constant.

	R/W - 1	R/W - 1	R/W - 1	R/W - x	R/W - x	R/W - x	R/W - x					
FS3 bit7	FS2	FS1	FS0	OV	Z	DC	C bit0	R = Readable bit W = Writable bit -n = Value at POR reset (x = unknown)				
bit 7-6:	bit 7-6: FS3:FS2 : FSR1 Mode Select bits 00 = Post auto-decrement FSR1 value 01 = Post auto-increment FSR1 value 1x = FSR1 value does not change											
bit 5-4:	bit 5-4: FS1:FS0 : FSR0 Mode Select bits 00 = Post auto-decrement FSR0 value 01 = Post auto-increment FSR0 value 1x = FSR0 value does not change											
bit 3:	 bit 3: OV: Overflow bit This bit is used for signed arithmetic (2's complement). It indicates an overflow of the 7-bit magnitude, which causes the sign bit (bit7) to change state. 1 = Overflow occurred for signed arithmetic, (in this arithmetic operation) 0 = No overflow occurred 											
bit 2:	Z : Zero bi 1 = The re 0 = The re	t esult of an esults of a	arithmetic n arithmet	: or logic o ic or logic	peration is operation is	zero s not zero						
bit 1:	 DC: Digit carry/borrow bit For ADDWF and ADDLW instructions. 1 = A carry-out from the 4th low order bit of the result occurred 0 = No carry-out from the 4th low order bit of the result Note: For borrow the polarity is reversed 											
bit 0:	C: carry/b For ADDW 1 = A carr Note that (RRCF, RL 0 = No ca Note: For	orrow bit F and ADD y-out from a subtrac CF) instru rry-out fro borrow th	DLW instruct in the most tion is exe ctions, this m the most e polarity i	tions. significan cuted by a bit is load t significa s reversed	t bit of the r adding the ded with eit nt bit of the d.	result occu two's com her the hig result	rred plement of h or low ord	the second operand. For rotate der bit of the source register.				

FIGURE 6-7: ALUSTA REGISTER (ADDRESS: 04h, UNBANKED)

6.3 <u>Stack Operation</u>

The PIC17C4X devices have a 16 x 16-bit wide hardware stack (Figure 6-1). The stack is not part of either the program or data memory space, and the stack pointer is neither readable nor writable. The PC is "PUSHed" onto the stack when a CALL instruction is executed or an interrupt is acknowledged. The stack is "POPed" in the event of a RETURN, RETLW, or a RETFIE instruction execution. PCLATH is not affected by a "PUSH" or a "POP" operation.

The stack operates as a circular buffer, with the stack pointer initialized to '0' after all resets. There is a stack available bit (STKAV) to allow software to ensure that the stack has not overflowed. The STKAV bit is set after a device reset. When the stack pointer equals Fh, STKAV is cleared. When the stack pointer rolls over from Fh to 0h, the STKAV bit will be held clear until a device reset.

- **Note 1:** There is not a status bit for stack underflow. The STKAV bit can be used to detect the underflow which results in the stack pointer being at the top of stack.
- Note 2: There are no instruction mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW, and RETFIE instructions, or the vectoring to an interrupt vector.
- Note 3: After a reset, if a "POP" operation occurs before a "PUSH" operation, the STKAV bit will be cleared. This will appear as if the stack is full (underflow has occurred). If a "PUSH" operation occurs next (before another "POP"), the STKAV bit will be locked clear. Only a device reset will cause this bit to set.

After the device is "PUSHed" sixteen times (without a "POP"), the seventeenth push overwrites the value from the first push. The eighteenth push overwrites the second push (and so on).

6.4 Indirect Addressing

Indirect addressing is a mode of addressing data memory where the data memory address in the instruction is not fixed. That is, the register that is to be read or written can be modified by the program. This can be useful for data tables in the data memory. Figure 6-10 shows the operation of indirect addressing. This shows the moving of the value to the data memory address specified by the value of the FSR register.

Example 6-1 shows the use of indirect addressing to clear RAM in a minimum number of instructions. A similar concept could be used to move a defined number of bytes (block) of data to the USART transmit register (TXREG). The starting address of the block of data to be transmitted could easily be modified by the program.

FIGURE 6-10: INDIRECT ADDRESSING

6.7 Program Counter Module

The Program Counter (PC) is a 16-bit register. PCL, the low byte of the PC, is mapped in the data memory. PCL is readable and writable just as is any other register. PCH is the high byte of the PC and is not directly addressable. Since PCH is not mapped in data or program memory, an 8-bit register PCLATH (PC high latch) is used as a holding latch for the high byte of the PC. PCLATH is mapped into data memory. The user can read or write PCH through PCLATH.

The 16-bit wide PC is incremented after each instruction fetch during Q1 unless:

- Modified by GOTO, CALL, LCALL, RETURN, RETLW, or RETFIE instruction
- · Modified by an interrupt response
- Due to destination write to PCL by an instruction

"Skips" are equivalent to a forced NOP cycle at the skipped address.

Figure 6-11 and Figure 6-12 show the operation of the program counter for various situations.

FIGURE 6-11: PROGRAM COUNTER OPERATION

FIGURE 6-12: PROGRAM COUNTER USING THE CALL AND GOTO INSTRUCTIONS

Using Figure 6-11, the operations of the PC and PCLATH for different instructions are as follows:

- a) <u>LCALL instructions</u>: An 8-bit destination address is provided in the instruction (opcode). PCLATH is unchanged. PCLATH → PCH Opcode<7:0> → PCL
- b) Read instructions on PCL: Any instruction that reads PCL. PCL \rightarrow data bus \rightarrow ALU or destination PCH \rightarrow PCLATH
- c) <u>Write instructions on PCL</u>: Any instruction that writes to PCL. 8-bit data \rightarrow data bus \rightarrow PCL PCLATH \rightarrow PCH
- d) <u>Read-Modify-Write instructions on PCL:</u> Any instruction that does a read-write-modify operation on PCL, such as ADDWF PCL. Read: PCL → data bus → ALU Write: 8-bit result → data bus → PCL
 - $\mathsf{PCLATH} \to \mathsf{PCH}$
- e) <u>RETURN instruction:</u> PCH \rightarrow PCLATH Stack<MRU> \rightarrow PC<15:0>

Using Figure 6-12, the operation of the PC and PCLATH for GOTO and CALL instructions is a follows:

CALL, GOTO instructions: A 13-bit destination address is provided in the instruction (opcode). Opcode<12:0> \rightarrow PC <12:0>

 $PC<15:13> \rightarrow PCLATH<7:5>$

Opcode<12:8> \rightarrow PCLATH <4:0>

The read-modify-write only affects the PCL with the result. PCH is loaded with the value in the PCLATH. For example, ADDWF PCL will result in a jump within the current page. If PC = 03F0h, WREG = 30h and PCLATH = 03h before instruction, PC = 0320h after the instruction. To accomplish a true 16-bit computed jump, the user needs to compute the 16-bit destination address, write the high byte to PCLATH and then write the low value to PCL.

The following PC related operations do not change PCLATH:

- a) LCALL, RETLW, and RETFIE instructions.
- b) Interrupt vector is forced onto the PC.
- c) Read-modify-write instructions on PCL (e.g.BSF PCL).

FIGURE 7-4: TABLRD INSTRUCTION OPERATION

TABLE 9-7: PORTD FUNCTIONS

Name	Bit	Buffer Type	Function						
RD0/AD8	bit0	TTL	Input/Output or system bus address/data pin.						
RD1/AD9	bit1	TTL	Input/Output or system bus address/data pin.						
RD2/AD10	bit2	TTL	Input/Output or system bus address/data pin.						
RD3/AD11	bit3	TTL	Input/Output or system bus address/data pin.						
RD4/AD12	bit4	TTL	Input/Output or system bus address/data pin.						
RD5/AD13	bit5	TTL	Input/Output or system bus address/data pin.						
RD6/AD14	bit6	TTL	Input/Output or system bus address/data pin.						
RD7/AD15	bit7	TTL	Input/Output or system bus address/data pin.						

Legend: TTL = TTL input.

TABLE 9-8: REGISTERS/BITS ASSOCIATED WITH PORTD

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
13h, Bank 1	PORTD	RD7/ AD15	RD6/ AD14	RD5/ AD13	RD4/ AD12	RD3/ AD11	RD2/ AD10	RD1/ AD9	RD0/ AD8	xxxx xxxx	uuuu uuuu
12h, Bank 1 DDRD Data direction register for PORTD									1111 1111	1111 1111	

Legend: x = unknown, u = unchanged.

Note 1: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

12.1.3.3.1 MAX RESOLUTION/FREQUENCY FOR EXTERNAL CLOCK INPUT

The use of an external clock for the PWM time-base (Timer1 or Timer2) limits the PWM output to a maximum resolution of 8-bits. The PWxDCL<7:6> bits must be kept cleared. Use of any other value will distort the PWM output. All resolutions are supported when internal clock mode is selected. The maximum attainable frequency is also lower. This is a result of the timing requirements of an external clock input for a timer (see the Electrical Specification section). The maximum PWM frequency, when the timers clock source is the RB4/TCLK12 pin, is shown in Table 12-3 (standard resolution mode).

12.2 <u>Timer3</u>

Timer3 is a 16-bit timer consisting of the TMR3H and TMR3L registers. TMR3H is the high byte of the timer and TMR3L is the low byte. This timer has an associated 16-bit period register (PR3H/CA1H:PR3L/CA1L). This period register can be software configured to be a second 16-bit capture register.

When the TMR3CS bit (TCON1<2>) is clear, the timer increments every instruction cycle (Fosc/4). When TMR3CS is set, the timer increments on every falling edge of the RB5/TCLK3 pin. In either mode, the TMR3ON bit must be set for the timer to increment. When TMR3ON is clear, the timer will not increment or set the TMR3IF bit.

Timer3 has two modes of operation, depending on the CA1/PR3 bit (TCON2<3>). These modes are:

- · One capture and one period register mode
- Dual capture register mode

The PIC17C4X has up to two 16-bit capture registers that capture the 16-bit value of TMR3 when events are detected on capture pins. There are two capture pins (RB0/CAP1 and RB1/CAP2), one for each capture register. The capture pins are multiplexed with PORTB pins. An event can be:

- · a rising edge
- a falling edge
- every 4th rising edge
- every 16th rising edge

Each 16-bit capture register has an interrupt flag associated with it. The flag is set when a capture is made. The capture module is truly part of the Timer3 block. Figure 12-7 and Figure 12-8 show the block diagrams for the two modes of operation.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 3	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h, Bank 3	TCON2	CA2OVF	CA10VF	PWM2ON	PWM1ON	CA1/PR3	TMR3ON	TMR2ON	TMR1ON	0000 0000	0000 0000
10h, Bank 2 TMR1 Timer1 register											uuuu uuuu
11h, Bank 2	TMR2	Timer2 reg	ister							XXXX XXXX	uuuu uuuu
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
07h, Unbanked	INTSTA	PEIF	TOCKIF	T0IF	INTF	PEIE	T0CKIE	TOIE	INTE	0000 0000	0000 0000
06h, Unbanked	CPUSTA	_	_	STKAV	GLINTD	TO	PD	_	_	11 11	11 qq
10h, Bank 3	PW1DCL	DC1	DC0	—	-	—	—	—	_	xx	uu
11h, Bank 3	PW2DCL	DC1	DC0	TM2PW2	—	_	—	—	_	xx0	uu0
12h, Bank 3	PW1DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	XXXX XXXX	uuuu uuuu
13h, Bank 3	PW2DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	XXXX XXXX	uuuu uuuu

TABLE 12-4: REGISTERS/BITS ASSOCIATED WITH PWM

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends on conditions, shaded cells are not used by PWM.

Steps to follow when setting up an Asynchronous Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If interrupts are desired, then set the RCIE bit.
- 4. If 9-bit reception is desired, then set the RX9 bit.
- 5. Enable the reception by setting the CREN bit.
- 6. The RCIF bit will be set when reception completes and an interrupt will be generated if the RCIE bit was set.

- Read RCSTA to get the ninth bit (if enabled) and FERR bit to determine if any error occurred during reception.
- 8. Read RCREG for the 8-bit received data.
- 9. If an overrun error occurred, clear the error by clearing the OERR bit.
- Note: To terminate a reception, either clear the SREN and CREN bits, or the SPEN bit. This will reset the receive logic, so that it will be in the proper state when receive is re-enabled.

FIGURE 13-8: ASYNCHRONOUS RECEPTION

TABLE 13-6:	REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
13h, Bank 0	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00u
14h, Bank 0	RCREG	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	xxxx xxxx	uuuu uuuu
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	—	_	TRMT	TX9D	00001x	00001u
17h, Bank 0 SPBRG Baud rate generator register										xxxx xxxx	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used for asynchronous reception. Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

13.3 USART Synchronous Master Mode

In Master Synchronous mode, the data is transmitted in a half-duplex manner; i.e. transmission and reception do not occur at the same time: when transmitting data, the reception is inhibited and vice versa. The synchronous mode is entered by setting the SYNC (TXSTA<4>) bit. In addition, the SPEN (RCSTA<7>) bit is set in order to configure the RA5 and RA4 I/O ports to CK (clock) and DT (data) lines respectively. The Master mode indicates that the processor transmits the master clock on the CK line. The Master mode is entered by setting the CSRC (TXSTA<7>) bit.

13.3.1 USART SYNCHRONOUS MASTER TRANSMISSION

The USART transmitter block diagram is shown in Figure 13-3. The heart of the transmitter is the transmit (serial) shift register (TSR). The shift register obtains its data from the read/write transmit buffer TXREG. TXREG is loaded with data in software. The TSR is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR is loaded with new data from TXREG (if available). Once TXREG transfers the data to the TSR (occurs in one TCY at the end of the current BRG cycle), TXREG is empty and the TXIF (PIR<1>) bit is set. This interrupt can be enabled/disabled by setting/clearing the TXIE bit (PIE<1>). TXIF will be set regardless of the state of bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into TXREG. While TXIF indicates the status of TXREG, TRMT (TXSTA<1>) shows the status of the TSR. TRMT is a read only bit which is set when the TSR is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR is empty. The TSR is not mapped in data memory, so it is not available to the user.

Transmission is enabled by setting the TXEN (TXSTA<5>) bit. The actual transmission will not occur until TXREG has been loaded with data. The first data bit will be shifted out on the next available rising edge of the clock on the RA5/TX/CK pin. Data out is stable around the falling edge of the synchronous clock (Figure 13-10). The transmission can also be started by first loading TXREG and then setting TXEN. This is advantageous when slow baud rates are selected, since BRG is kept in RESET when the TXEN, CREN, and SREN bits are clear. Setting the TXEN bit will start the BRG, creating a shift clock immediately. Normally when transmission is first started, the TSR is empty, so a transfer to TXREG will result in an immediate transfer to the TSR, resulting in an empty TXREG. Back-to-back transfers are possible.

Clearing TXEN during a transmission will cause the transmission to be aborted and will reset the transmitter. The RA4/RX/DT and RA5/TX/CK pins will revert to hi-impedance. If either CREN or SREN are set during a transmission, the transmission is aborted and the

RA4/RX/DT pin reverts to a hi-impedance state (for a reception). The RA5/TX/CK pin will remain an output if the CSRC bit is set (internal clock). The transmitter logic is not reset, although it is disconnected from the pins. In order to reset the transmitter, the user has to clear the TXEN bit. If the SREN bit is set (to interrupt an ongoing transmission and receive a single word), then after the single word is received, SREN will be cleared and the serial port will revert back to transmitting, since the TXEN bit is still set. The DT line will immediately switch from hi-impedance receive mode to transmit and start driving. To avoid this, TXEN should be cleared.

In order to select 9-bit transmission, the TX9 (TXSTA<6>) bit should be set and the ninth bit should be written to TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to TXREG. This is because a data write to TXREG can result in an immediate transfer of the data to the TSR (if the TSR is empty). If the TSR was empty and TXREG was written before writing the "new" TX9D, the "present" value of TX9D is loaded.

Steps to follow when setting up a Synchronous Master Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate (see Baud Rate Generator Section for details).
- 2. Enable the synchronous master serial port by setting the SYNC, SPEN, and CSRC bits.
- 3. Ensure that the CREN and SREN bits are clear (these bits override transmission when set).
- 4. If interrupts are desired, then set the TXIE bit (the GLINTD bit must be clear and the PEIE bit must be set).
- 5. If 9-bit transmission is desired, then set the TX9 bit.
- 6. Start transmission by loading data to the TXREG register.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded in TX9D.
- 8. Enable the transmission by setting TXEN.

Writing the transmit data to the TXREG, then enabling the transmit (setting TXEN) allows transmission to start sooner then doing these two events in the reverse order.

Note: To terminate a transmission, either clear the SPEN bit, or the TXEN bit. This will reset the transmit logic, so that it will be in the proper state when transmit is re-enabled.

14.0 SPECIAL FEATURES OF THE CPU

What sets a microcontroller apart from other processors are special circuits to deal with the needs of real time applications. The PIC17CXX family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- OSC selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- · Code protection

The PIC17CXX has a Watchdog Timer which can be shut off only through EPROM bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 96 ms (nominal) on power-up only, designed to keep the part in RESET while the power supply stabilizes. With these two timers on-chip, most applications need no external reset circuitry.

The SLEEP mode is designed to offer a very low current power-down mode. The user can wake from SLEEP through external reset, Watchdog Timer Reset or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LF crystal option saves power. Configuration bits are used to select various options. This configuration word has the format shown in Figure 14-1.

R/P - 1	U - x	U - x	<u>U-x</u>	U - x	U - x	U - x	U - x				
bit15-7							bit0				
	R/P - 1 PM1	U - x —	<u>R/P - 1</u> PM0	R/P - 1 WDTPS1	R/P - 1 WDTPS0	R/P - 1 FOSC1	R/P - 1 FOSC0	R = Readable bit P = Programmable bit			
Dil 15-7	bit0 bit0 P = Programmable bit U = Unimplemented - n = Value for Erased Device (x = unknown)										
bit 15,6,	bit 15-9. Onimplemented . Read as a 1 bit 15,6,4: PM2, PM1, PM0 , Processor Mode Select bits 111 = Microprocessor Mode 110 = Microcontroller mode 101 = Extended microcontroller mode 000 = Code protected microcontroller mode										
bit 7, 5:	Unimpler	nented: R	ead as a	'0'							
bit 3-2:	 3-2: WDTPS1:WDTPS0, WDT Postscaler Select bits 11 = WDT enabled, postscaler = 1 10 = WDT enabled, postscaler = 256 01 = WDT enabled, postscaler = 64 00 = WDT disabled, 16-bit overflow timer 										
bit 1-0:	1-0: FOSC1:FOSC0 , Oscillator Select bits 11 = EC oscillator 10 = XT oscillator 01 = RC oscillator 00 = LF oscillator										
Note 1:	Note 1: This bit does not exist on the PIC17C42. Reading this bit will return an unknown value (x).										

FIGURE 14-1: CONFIGURATION WORD

^{© 1996} Microchip Technology Inc.

14.1 Configuration Bits

The PIC17CXX has up to seven configuration locations (Table 14-1). These locations can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. Any write to a configuration location, regardless of the data, will program that configuration bit. A TABLWT instruction is required to write to program memory locations. The configuration bits can be read by using the TABLRD instructions. Reading any configuration location between FE00h and FE07h will read the low byte of the configuration word (Figure 14-1) into the TABLATL register. The TABLATH register will be FFh. Reading a configuration location between FE08h and FE0Fh will read the high byte of the configuration word into the TABLATL register. The TABLATH register will be FFh.

Addresses FE00h thorough FE0Fh are only in the program memory space for microcontroller and code protected microcontroller modes. A device programmer will be able to read the configuration word in any processor mode. See programming specifications for more detail.

TABLE 14-1: CONFIGURATION LOCATIONS

Bit	Address
FOSC0	FE00h
FOSC1	FE01h
WDTPS0	FE02h
WDTPS1	FE03h
PM0	FE04h
PM1	FE06h
PM2 ⁽¹⁾	FE0Fh ⁽¹⁾

Note 1: This location does not exist on the PIC17C42.

Note:	When programming the desired configura-				
	tion locations, they must be programmed in				
	ascending	order.	Starting	with	address
	FE00h.				

14.2 Oscillator Configurations

14.2.1 OSCILLATOR TYPES

The PIC17CXX can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1:FOSC0) to select one of these four modes:

- LF: Low Power Crystal
- XT: Crystal/Resonator
- EC: External Clock Input
- RC: Resistor/Capacitor

14.2.2 CRYSTAL OSCILLATOR / CERAMIC RESONATORS

In XT or LF modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 14-2). The PIC17CXX Oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications.

For frequencies above 20 MHz, it is common for the crystal to be an overtone mode crystal. Use of overtone mode crystals require a tank circuit to attenuate the gain at the fundamental frequency. Figure 14-3 shows an example of this.

FIGURE 14-2: CRYSTAL OR CERAMIC RESONATOR OPERATION (XT OR LF OSC CONFIGURATION)

Note 1: A series resistor may be required for AT strip cut crystals.

PIC17C4X

CPF	SLT	Compare skip if f <	f with WRE WREG	G,				
Synt	ax:	[label]	CPFSLT f					
Operands:		$0 \le f \le 25$	5					
Operation:		(f) – (WRE skip if (f) < (unsigned	(f) – (WREG), skip if (f) < (WREG) (unsigned comparison)					
State	us Affected:	None	None					
Enco	oding:	0011	0000 ff	ff ffff				
Description:		Compares location 'f' performing If the conte WREG, the discarded a instead ma tion.	Compares the contents of data memory location 'f' to the contents of WREG by performing an unsigned subtraction. If the contents of 'f' < the contents of WREG, then the fetched instruction is discarded and an NOP is executed instead making this a two-cycle instruc- tion					
Wor	ds:	1						
Cycles:		1 (2)						
QC	vcle Activity:							
	Q1	Q2	Q3	Q4				
	Decode	Read register 'f'	Execute	NOP				
lf sk	ip:							
	Q1	Q2	Q3	Q4				
	Forced NOP	NOP	Execute	NOP				
<u>Exa</u>	<u>mple</u> :	HERE NLESS LESS	CPFSLT REG : :					
	Before Instru	iction						
	PC W	= Ac = ?	ddress (HERE)				
	After Instruct If REG PC If REG PC	:ion	REG; ddress (LESS REG; ddress (NLES;) 5)				

DAW	Decimal Adjust WREG Register
Syntax:	[<i>label</i>] DAW f,s
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ s \in \left[0,1\right] \end{array}$
Operation:	If [WREG<3:0> >9] .OR. [DC = 1] then WREG<3:0> + $6 \rightarrow$ f<3:0>, s<3:0>;
	WREG<3:0> \rightarrow f<3:0>, s<3:0>;
	If [WREG<7:4> >9] .OR. [C = 1] then WREG<7:4> + 6 → f<7:4>, s<7:4>
	else WREG<7:4> \rightarrow f<7:4>, s<7:4>
Status Affected:	С
Encoding:	0010 111s ffff ffff
Description:	DAW adjusts the eight bit value in WREG resulting from the earlier addi- tion of two variables (each in packed BCD format) and produces a correct packed BCD result. s = 0: Result is placed in Data memory location 'f' and WREG.
	s = 1: Result is placed in Data
Mordo	memory location 'f'.
words:	1
O Cycle Activity:	1
Q Cycle Activity.	Q2 Q3 Q4
Decode	Read register 'f'ExecuteWrite register 'f' and other specified register
Example1:	DAW REG1, 0
Before Instruct WREG REG1 C DC	ction = 0xA5 = ?? = 0 = 0
After Instructi WREG REG1 C DC Example 2:	on = 0x05 = 0x05 = 1 = 0
Example 2.	ation
WREG REG1 C	= 0xCE = ?? = 0

0	_	0
DC	=	0
After Instruc	tion	
WREG	=	0x24
REG1	=	0x24
С	=	1
DC	=	0

PIC17C4X

Applicable Devices 42 R42 42A 43 R43 44

17.2 DC CHARACTERISTICS:

PIC17C42-16 (Commercial, Industrial) PIC17C42-25 (Commercial, Industrial)

Standard Operating Conditions (unless otherwise stated) Operating temperature

DC CHARACTERISTICS

-40°C \leq TA \leq +85°C for industrial and $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial

Operating voltage VDD range as described in Section 17.1 Parameter No. Sym Characteristic Min Typ† Max Units Conditions Input Low Voltage VIL I/O ports D030 with TTL buffer Vss 0.8 V D031 with Schmitt Trigger buffer Vss 0.2VDD V _ D032 MCLR, OSC1 (in EC and RC Vss 0.2Vdd V Note1 _ mode) D033 OSC1 (in XT, and LF mode) 0.5VDD V _ Input High Voltage Vн I/O ports V D040 2.0 with TTL buffer _ Vdd D041 with Schmitt Trigger buffer 0.8VDD Vdd V _ D042 MCLR 0.8Vdd Vdd Note1 V D043 OSC1 (XT, and LF mode) 0.5VDD V D050 Hysteresis of 0.15VDD* VHYS V _ _ Schmitt Trigger inputs Input Leakage Current (Notes 2, 3) D060 lı∟ I/O ports (except RA2, RA3) $Vss \leq VPIN \leq VDD$, ±1 μΑ I/O Pin at hi-impedance PORTB weak pull-ups disabled MCLR D061 <u>+2</u> μA VPIN = Vss or VPIN = VDD D062 **RA2, RA3** ±2 μΑ $Vss \leq VRA2$, $VRA3 \leq 12V$ D063 OSC1, TEST ±1 μΑ $Vss \le VPIN \le VDD$ MCLR D064 VMCLR = VPP = 12V 10 μA

IPURB PORTB weak pull-up current These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only t and are not tested.

200

400

μΑ

60

These parameters are for design guidance only and are not tested, nor characterized. t

Design guidance to attain the AC timing specifications. These loads are not tested. ++

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC17CXX devices be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in: PIC17CXX Programming Specifications (Literature number DS30139).

5: The MCLR/Vpp pin may be kept in this range at times other than programming, but this is not recommended.

6: For TTL buffers, the better of the two specifications may be used.

D070

(when not programming)

VPIN = Vss. $\overline{RBPU} = 0$

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 18-17: IOL vs. VOL, VDD = 5V

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 19-5: TIMER0 CLOCK TIMINGS

TABLE 19-5: TIMER0 CLOCK REQUIREMENTS

Parameter								
No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5Tcy + 20 §	-	—	ns	
			With Prescaler	10*	-	—	ns	
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5TCY + 20 §	-	—	ns	
			With Prescaler	10*	-	—	ns	
42	Tt0P	T0CKI Period	•	Greater of:	-		ns	N = prescale value
				20 ns or <u>Tcy + 40 §</u>				(1, 2, 4,, 256)
				N				

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

FIGURE 19-6: TIMER1, TIMER2, AND TIMER3 CLOCK TIMINGS

TABLE 19-6: TIMER1, TIMER2, AND TIMER3 CLOCK REQUIREMENTS

Parameter				Тур			
No.	Sym	Characteristic	Min	†	Max	Units	Conditions
45	Tt123H	TCLK12 and TCLK3 high time	0.5TCY + 20 §	—	_	ns	
46	Tt123L	TCLK12 and TCLK3 low time	0.5Tcy + 20 §	—	_	ns	
47	Tt123P	TCLK12 and TCLK3 input period	<u>Tcy + 40</u> § N	—	_	ns	N = prescale value (1, 2, 4, 8)
48	TckE2tmrI	Delay from selected External Clock Edge to Timer increment	2Tosc §		6Tosc §		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

NOTES:

APPENDIX E: PIC16/17 MICROCONTROLLERS

E.1 PIC14000 Devices

© 1996 Microchip Technology Inc.

PIC17C4X

rigaro o 12.	Program Counter using The CALL and
Figure 6-13:	BSR Operation (PIC17C43/R43/44)
Figure 7-1:	TLWT Instruction Operation43
Figure 7-2:	TABLWT Instruction Operation
Figure 7-3	TI RD Instruction Operation 44
Figure 7-4:	TABLED Instruction Operation 44
Figure 7-4.	TABLERD Instruction Operation
Figure 7-5.	
Figure 7-6:	(External Memory)
	(External Memory)47
Figure 7-7:	TABLRD Timing48
Figure 7-8:	TABLRD Timing (Consecutive TABLRD
0	Instructions) 48
Figure 9-1.	RA0 and RA1 Block Diagram 53
Figure 0.2:	PA2 and PA2 Block Diagram 54
Figure 9-2.	RAZ and RAS block biagram
Figure 9-3:	RA4 and RA5 Block Diagram
Figure 9-4:	Block Diagram of RB<7:4> and RB<1:0>
Figuro 0 5:	Block Diagram of PR2 and PR2 Port Ping. 56
Figure 9-5.	Block Diagram of RO 7.0 Bart Bias
Figure 9-6:	BIOCK Diagram of RC<7:0> Port Pins
Figure 9-7:	POR I D Block Diagram
	(in I/O Port Mode)60
Figure 9-8:	PORTE Block Diagram
	(in I/O Port Mode)
Figure 9-9:	Successive I/O Operation
Figure 11-1	T0STA Register (Address: 05h
riguio i i i.	Linbanked) 67
Figuro 11 2	Timor() Modulo Block Diagram
Figure 11-2.	TMD0 Timing with External Clash
Figure 11-3:	
	(Increment on Falling Edge)
Figure 11-4:	TMR0 Timing: Write High or Low Byte 69
Figure 11-5:	TMR0 Read/Write in Timer Mode70
Figure 12-1:	TCON1 Register (Address: 16h, Bank 3) 71
Figure 12-2:	TCON2 Register (Address: 17h, Bank 3) 72
Figure 12-3:	Timer1 and Timer2 in Two 8-bit
0	Timer/Counter Mode73
Figure 12-4	TMR1 and TMR2 in 16-bit Timer/Counter
1 iguie 12 4.	Mode 74
Figure 12-5	Mode
Figure 12-5:	Mode
Figure 12-5: Figure 12-6:	Mode
Figure 12-5: Figure 12-6: Figure 12-7:	Mode
Figure 12-5: Figure 12-6: Figure 12-7:	Mode
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8:	Mode 74 Simplified PWM Block Diagram 75 PWM Output 75 Timer3 with One Capture and One 76 Period Register Block Diagram 78 Timer3 with Two Capture Registers 78
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8:	Mode 74 Simplified PWM Block Diagram 75 PWM Output 75 Timer3 with One Capture and One 75 Period Register Block Diagram 78 Timer3 with Two Capture Registers 8 Block Diagram 79
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9:	Mode 74 Simplified PWM Block Diagram 75 PWM Output 75 Timer3 with One Capture and One 76 Period Register Block Diagram 78 Timer3 with Two Capture Registers 8 Block Diagram 79 TMR1, TMR2, and TMR3 Operation in 79
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9:	Mode 74 Simplified PWM Block Diagram 75 PWM Output 75 Timer3 with One Capture and One 76 Period Register Block Diagram 78 Timer3 with Two Capture Registers 80 Block Diagram 79 TMR1, TMR2, and TMR3 Operation in 80
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10:	Mode 74 Simplified PWM Block Diagram 75 PWM Output 75 Timer3 with One Capture and One 76 Period Register Block Diagram 78 Timer3 with Two Capture Registers 80 Block Diagram 79 TMR1, TMR2, and TMR3 Operation in 80 TMR1, TMR2, and TMR3 Operation in 80
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10:	Mode 74 Simplified PWM Block Diagram 75 PWM Output 75 Timer3 with One Capture and One 76 Period Register Block Diagram 78 Timer3 with Two Capture Registers 80 Block Diagram 79 TMR1, TMR2, and TMR3 Operation in 80 TMR1, TMR2, and TMR3 Operation in 80 TMR1, TMR2, and TMR3 Operation in 81
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 13-1:	Mode 74 Simplified PWM Block Diagram 75 PWM Output 75 Timer3 with One Capture and One 76 Period Register Block Diagram 78 Timer3 with Two Capture Registers 80 Block Diagram 79 TMR1, TMR2, and TMR3 Operation in 79 TMR1, TMR2, and TMR3 Operation in 80 TMR1, TMR2, and TMR3 Operation in 81 TXSTA Register (Address: 15h, Bank 0) 83
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 13-1: Figure 13-2:	Mode 74 Simplified PWM Block Diagram 75 PWM Output 75 Timer3 with One Capture and One 76 Period Register Block Diagram 78 Timer3 with Two Capture Registers 80 Block Diagram 79 TMR1, TMR2, and TMR3 Operation in 80 External Clock Mode 80 TMR1, TMR2, and TMR3 Operation in 81 TXSTA Register (Address: 15h, Bank 0) 83 RCSTA Register (Address: 13h, Bank 0) 84
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 13-1: Figure 13-2: Figure 13-3:	Mode 74 Simplified PWM Block Diagram 75 PWM Output 75 Timer3 with One Capture and One 76 Period Register Block Diagram 78 Timer3 with Two Capture Registers 80 Block Diagram 79 TMR1, TMR2, and TMR3 Operation in 80 TMR1, TMR2, and TMR3 Operation in 81 TXSTA Register (Address: 15h, Bank 0) 83 RCSTA Register (Address: 13h, Bank 0) 84 USART Transmit 85
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 13-1: Figure 13-2: Figure 13-2: Figure 13-4:	Mode 74 Simplified PWM Block Diagram 75 PWM Output 75 Timer3 with One Capture and One 75 Period Register Block Diagram 78 Timer3 with Two Capture Registers 80 Block Diagram 79 TMR1, TMR2, and TMR3 Operation in 80 TMR1, TMR2, and TMR3 Operation in 81 TXSTA Register (Address: 15h, Bank 0) 83 RCSTA Register (Address: 13h, Bank 0) 84 USART Transmit. 85
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 13-1: Figure 13-2: Figure 13-2: Figure 13-4: Figure 13-4: Figure 12-5:	Mode 74 Simplified PWM Block Diagram 75 PWM Output 75 Timer3 with One Capture and One 75 Period Register Block Diagram 78 Timer3 with Two Capture Registers 80 Block Diagram 79 TMR1, TMR2, and TMR3 Operation in 80 TMR1, TMR2, and TMR3 Operation in 81 TXSTA Register (Address: 15h, Bank 0) 83 RCSTA Register (Address: 13h, Bank 0) 84 USART Transmit. 85 USART Receive 80
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-9: Figure 13-1: Figure 13-2: Figure 13-3: Figure 13-4: Figure 13-5: Figure 12-2	Mode 74 Simplified PWM Block Diagram 75 PWM Output 75 Timer3 with One Capture and One 75 Period Register Block Diagram 78 Timer3 with Two Capture Registers 80 Block Diagram 79 TMR1, TMR2, and TMR3 Operation in 80 TMR1, TMR2, and TMR3 Operation in 81 TXSTA Register (Address: 15h, Bank 0) 83 RCSTA Register (Address: 13h, Bank 0) 84 USART Transmit. 85 USART Receive 85 Asynchronous Master Transmission 90
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-9: Figure 12-10: Figure 13-1: Figure 13-2: Figure 13-3: Figure 13-5: Figure 13-6:	Mode 74 Simplified PWM Block Diagram 75 PWM Output 75 Timer3 with One Capture and One 76 Period Register Block Diagram 78 Timer3 with Two Capture Registers 80 Block Diagram 79 TMR1, TMR2, and TMR3 Operation in 80 External Clock Mode 80 TMR1, TMR2, and TMR3 Operation in 81 TXSTA Register (Address: 15h, Bank 0) 83 RCSTA Register (Address: 13h, Bank 0) 84 USART Transmit 85 USART Receive 85 Asynchronous Master Transmission 90 Asynchronous Master Transmission 20
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-9: Figure 12-10: Figure 13-1: Figure 13-2: Figure 13-3: Figure 13-4: Figure 13-5: Figure 13-6:	Mode 74 Simplified PWM Block Diagram 75 PWM Output 75 Timer3 with One Capture and One 76 Period Register Block Diagram 78 Timer3 with Two Capture Registers 80 Block Diagram 79 TMR1, TMR2, and TMR3 Operation in 80 External Clock Mode 80 TMR1, TMR2, and TMR3 Operation in 81 TXSTA Register (Address: 15h, Bank 0) 83 RCSTA Register (Address: 13h, Bank 0) 84 USART Transmit 85 USART Receive 85 Asynchronous Master Transmission 90 Asynchronous Master Transmission 90
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-9: Figure 12-10: Figure 13-1: Figure 13-2: Figure 13-3: Figure 13-5: Figure 13-6: Figure 13-7:	Mode 74 Simplified PWM Block Diagram 75 PWM Output 75 Timer3 with One Capture and One 76 Period Register Block Diagram 78 Timer3 with Two Capture Registers 80 Block Diagram 79 TMR1, TMR2, and TMR3 Operation in 80 External Clock Mode 80 TMR1, TMR2, and TMR3 Operation in 81 TXSTA Register (Address: 15h, Bank 0) 83 RCSTA Register (Address: 13h, Bank 0) 84 USART Transmit 85 USART Receive 85 Asynchronous Master Transmission 90 RX Pin Sampling Scheme 91
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 13-1: Figure 13-2: Figure 13-3: Figure 13-4: Figure 13-5: Figure 13-6: Figure 13-7: Figure 13-8:	Mode 74 Simplified PWM Block Diagram 75 PWM Output 75 Timer3 with One Capture and One 76 Period Register Block Diagram 78 Timer3 with Two Capture Registers 80 Block Diagram 79 TMR1, TMR2, and TMR3 Operation in 79 TMR1, TMR2, and TMR3 Operation in 80 TXSTA Register (Address: 15h, Bank 0) 83 RCSTA Register (Address: 13h, Bank 0) 84 USART Transmit. 85 USART Receive 85 Asynchronous Master Transmission 90 RX Pin Sampling Scheme 91 Asynchronous Reception 92
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 13-1: Figure 13-2: Figure 13-3: Figure 13-4: Figure 13-5: Figure 13-6: Figure 13-7: Figure 13-8: Figure 13-9:	Mode 74 Simplified PWM Block Diagram 75 PWM Output 75 Timer3 with One Capture and One 76 Period Register Block Diagram 78 Timer3 with Two Capture Registers 80 Block Diagram 79 TMR1, TMR2, and TMR3 Operation in 79 TXR1, TMR2, and TMR3 Operation in 80 TXSTA Register (Address: 15h, Bank 0) 83 RCSTA Register (Address: 15h, Bank 0) 84 USART Transmit 85 USART Receive 85 Asynchronous Master Transmission 90 RX Pin Sampling Scheme 91 Asynchronous Reception 92 Synchronous Transmission 94
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 13-1: Figure 13-2: Figure 13-3: Figure 13-4: Figure 13-5: Figure 13-6: Figure 13-7: Figure 13-8: Figure 13-9: Figure 13-10:	Mode 74 Simplified PWM Block Diagram 75 PWM Output 75 Timer3 with One Capture and One 76 Period Register Block Diagram 78 Timer3 with Two Capture Registers 80 Block Diagram 79 TMR1, TMR2, and TMR3 Operation in 80 Timer Mode 81 TXSTA Register (Address: 15h, Bank 0) 83 RCSTA Register (Address: 13h, Bank 0) 84 USART Transmit 85 USART Receive 85 Asynchronous Master Transmission 90 RX Pin Sampling Scheme 91 Asynchronous Transmission 92 Synchronous Transmission 94
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-10: Figure 13-1: Figure 13-2: Figure 13-3: Figure 13-3: Figure 13-5: Figure 13-6: Figure 13-7: Figure 13-8: Figure 13-9: Figure 13-10:	Mode 74 Simplified PWM Block Diagram 75 PWM Output 75 Timer3 with One Capture and One 76 Period Register Block Diagram 78 Timer3 with Two Capture Registers 80 Block Diagram 79 TMR1, TMR2, and TMR3 Operation in 80 External Clock Mode 80 TXSTA Register (Address: 15h, Bank 0) 83 RCSTA Register (Address: 13h, Bank 0) 84 USART Transmit 85 Asynchronous Master Transmission 90 RX Pin Sampling Scheme 91 Asynchronous Reception 92 Synchronous Transmission 94 Synchronous Transmission 94
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-9: Figure 12-9: Figure 12-10: Figure 13-1: Figure 13-2: Figure 13-3: Figure 13-3: Figure 13-4: Figure 13-5: Figure 13-6: Figure 13-7: Figure 13-7: Figure 13-7: Figure 13-7: Figure 13-7: Figure 13-8: Figure 13-9: Figure 13-10: Figure 13-11:	Mode 74 Simplified PWM Block Diagram 75 PWM Output 75 Timer3 with One Capture and One 76 Period Register Block Diagram 78 Timer3 with Two Capture Registers 80 Block Diagram 79 TMR1, TMR2, and TMR3 Operation in 80 External Clock Mode 80 TXSTA Register (Address: 15h, Bank 0) 83 RCSTA Register (Address: 13h, Bank 0) 84 USART Transmit 85 USART Receive 85 Asynchronous Master Transmission 90 RX Pin Sampling Scheme 91 Asynchronous Transmission 94 Synchronous Transmission 94 Synchronous Reception 94 Synchronous Reception 94
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-7: Figure 12-7: Figure 12-7: Figure 12-7: Figure 12-9: Figure 12-9: Figure 12-9: Figure 13-1: Figure 13-2: Figure 13-3: Figure 13-3: Figure 13-4: Figure 13-5: Figure 13-6: Figure 13-7: Figure 13-10: Figure 13-11:	Mode 74 Simplified PWM Block Diagram 75 PWM Output 75 Timer3 with One Capture and One 76 Period Register Block Diagram 78 Timer3 with Two Capture Registers 80 Block Diagram 79 TMR1, TMR2, and TMR3 Operation in 81 External Clock Mode 80 TMR1, TMR2, and TMR3 Operation in 81 TXSTA Register (Address: 15h, Bank 0) 83 RCSTA Register (Address: 15h, Bank 0) 84 USART Transmit. 85 USART Receive 85 Asynchronous Master Transmission 90 RX Pin Sampling Scheme 91 Asynchronous Transmission 94 Synchronous Reception (Master Mode, 84 SREN) 94
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-9: Figure 12-9: Figure 12-9: Figure 12-9: Figure 13-1: Figure 13-2: Figure 13-3: Figure 13-4: Figure 13-5: Figure 13-6: Figure 13-7: Figure 13-10: Figure 13-11: Figure 14-1:	Mode 74 Simplified PWM Block Diagram 75 PWM Output 75 Timer3 with One Capture and One 76 Period Register Block Diagram 78 Timer3 with Two Capture Registers 80 Block Diagram 79 TMR1, TMR2, and TMR3 Operation in 81 External Clock Mode 81 TXSTA Register (Address: 15h, Bank 0) 83 RCSTA Register (Address: 15h, Bank 0) 84 USART Transmit 85 USART Receive 85 Asynchronous Master Transmission 90 RX Pin Sampling Scheme 91 Asynchronous Transmission 94 Synchronous Reception (Master Mode, 87 SREN) 95 Configuration Word 99
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-7: Figure 12-7: Figure 12-7: Figure 12-7: Figure 12-7: Figure 12-8: Figure 12-9: Figure 12-9: Figure 12-9: Figure 13-1: Figure 13-2: Figure 13-3: Figure 13-4: Figure 13-5: Figure 13-6: Figure 13-7: Figure 13-7: Figure 13-8: Figure 13-9: Figure 13-9: Figure 13-10: Figure 13-11: Figure 14-11: Figure 14-12:	Mode 74 Simplified PWM Block Diagram 75 PWM Output 75 Timer3 with One Capture and One 76 Period Register Block Diagram 78 Timer3 with Two Capture Registers 80 Block Diagram 79 TMR1, TMR2, and TMR3 Operation in 81 External Clock Mode 81 TXSTA Register (Address: 15h, Bank 0) 83 RCSTA Register (Address: 13h, Bank 0) 84 USART Transmit. 85 USART Receive 85 Asynchronous Master Transmission 90 Asynchronous Reception 92 Synchronous Transmission 94 Synchronous Reception (Master Mode, SREN) 95 Configuration Word 99
Figure 12-5: Figure 12-6: Figure 12-7: Figure 12-9: Figure 12-9: Figure 12-9: Figure 13-1: Figure 13-2: Figure 13-3: Figure 13-4: Figure 13-5: Figure 13-6: Figure 13-7: Figure 13-8: Figure 13-9: Figure 13-9: Figure 13-10: Figure 13-11: Figure 14-1: Figure 14-2:	Mode 74 Simplified PWM Block Diagram 75 PWM Output 75 Timer3 with One Capture and One 76 Period Register Block Diagram 78 Timer3 with Two Capture Registers 80 Block Diagram 79 TMR1, TMR2, and TMR3 Operation in 80 External Clock Mode 80 TMR1, TMR2, and TMR3 Operation in 81 TXSTA Register (Address: 15h, Bank 0) 83 RCSTA Register (Address: 13h, Bank 0) 84 USART Transmit 85 USART Receive 85 Asynchronous Master Transmission 90 RX Pin Sampling Scheme 91 Asynchronous Transmission 94 Synchronous Reception (Master Mode, 95 Configuration Word 99 Crystal or Ceramic Resonator Operation 92

Figure 14-3:	Crystal Operation, Overtone Crystals	
	(XT OSC Configuration)	101
Figure 14-4:	External Clock Input Operation	
	(EC OSC Configuration)	101
Figure 14-5:	External Parallel Resonant Crystal	
	Oscillator Circuit	102
Figure 14-6:	External Series Resonant Crystal	
	Oscillator Circuit	102
Figure 14-7:	RC Oscillator Mode	102
Figure 14-8:	Watchdog Timer Block Diagram	104
Figure 14-9:	Wake-up From Sleep Through Interrupt	105
Figure 15-1:	General Format for Instructions	108
Figure 15-2:	Q Cycle Activity	109
Figure 17-1:	Parameter Measurement Information	154
Figure 17-2:	External Clock Timing	155
Figure 17-3:	CLKOUT and I/O Timing	156
Figure 17-4:	Reset, Watchdog Timer,	
i igui e i i ii	Oscillator Start-Up Timer and	
	Power-Up Timer Timing	157
Figure 17-5	Timer() Clock Timings	158
Figure 17-6:	Timer1 Timer2 And Timer3 Clock	150
Figure 17-0.	Timinac	150
Figure 17 7	Conturo Timingo	150
Figure 17-7:		159
Figure 17-8:		159
Figure 17-9:	USART Module: Synchronous	
	Transmission (Master/Slave) Timing	160
Figure 17-10	: USART Module: Synchronous Receive	
	(Master/Slave) Timing	160
Figure 17-11	: Memory Interface Write Timing	161
Figure 17-12	: Memory Interface Read Timing	162
Figure 18-1:	Typical RC Oscillator Frequency	
	vs. Temperature	163
Figure 18-2:	Typical RC Oscillator Frequency	
-	vs. VDD	164
Figure 18-3:	Typical RC Oscillator Frequency	
0	vs. VDD	164
Figure 18-4:	Typical RC Oscillator Frequency	
0	vs. VDD	165
Figure 18-5:	Transconductance (gm) of LF Oscillator	
J	vs. Vpp	166
Figure 18-6:	Transconductance (gm) of XT Oscillator	
	vs. VD	166
Figure 18-7	Typical Jpp vs. Frequency (External	
rigulo lo l.	Clock 25°C)	167
Figure 18-8	Maximum IDD vs. Frequency (External	107
Figure 10-0.	Clock 125°C to 40°C	167
Figure 19 0:	Typical Ipp va. Vpp Watehdag	107
Figure 10-9.	Disabled 2500	400
Einung 40 40		100
Figure 18-10	Disabled	400
		168
Figure 18-11	: Typical IPD vs. VDD Watchdog	
	Enabled 25°C	169
Figure 18-12	: Maximum IPD vs. VDD Watchdog	
	Enabled	169
Figure 18-13	: WDT Timer Time-Out Period vs. VDD	170
Figure 18-14	: IOH vs. VOH, VDD = 3V	170
Figure 18-15	: IOH vs. VOH, VDD = 5V	171
Figure 18-16	: IOL vs. VOL, VDD = 3V	171
Figure 18-17	: IOL vs. VOL, VDD = 5V	172
Figure 18-18	: VTH (Input Threshold Voltage) of	
3	I/O Pins (TTL) vs. Vpp	172
Figure 18-19	VTH, VII of I/O Pins (Schmitt Trigger) VS	
. iguto 10-19	Von	173
Figure 18-20	· VTH (Input Threshold Voltage) of OSC1	115
- igure 10-20	Input (In XT and LE Modes) vs. Vpp	172
Figure 10.4	Decomptor Manuer mant Information	113
Figure 19-1:	Farameter weasurement information	103