

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

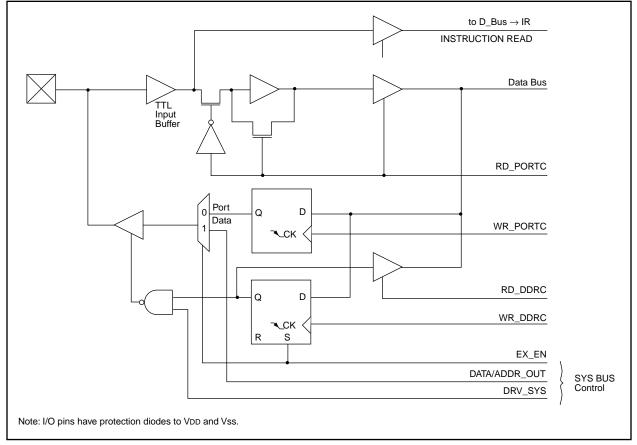
Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	33MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	8KB (4K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c43-33i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

9.3 PORTC and DDRC Registers


PORTC is an 8-bit bi-directional port. The corresponding data direction register is DDRC. A '1' in DDRC configures the corresponding port pin as an input. A '0' in the DDRC register configures the corresponding port pin as an output. Reading PORTC reads the status of the pins, whereas writing to it will write to the port latch. PORTC is multiplexed with the system bus. When operating as the system bus, PORTC is the low order byte of the address/data bus (AD7:AD0). The timing for the system bus is shown in the Electrical Characteristics section.

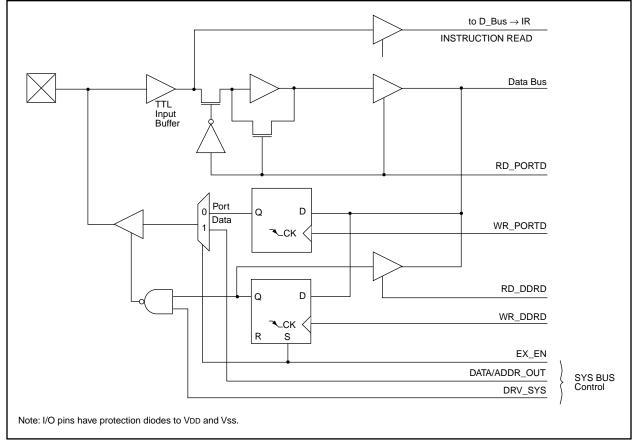
Note: This port is configured as the system bus when the device's configuration bits are selected to Microprocessor or Extended Microcontroller modes. In the two other microcontroller modes, this port is a general purpose I/O. Example 9-2 shows the instruction sequence to initialize PORTC. The Bank Select Register (BSR) must be selected to Bank 1 for the port to be initialized.

EXAMPLE 9-2: INITIALIZING PORTC

1	;	Select Bank 1
PORTC	;	Initialize PORTC data
	;	latches before setting
	;	the data direction
	;	register
0xCF	;	Value used to initialize
	;	data direction
DDRC	;	Set RC<3:0> as inputs
	;	RC<5:4> as outputs
	;	RC<7:6> as inputs
	PORTC 0xCF	PORTC ; ; ; ; ; 0xCF ; DDRC ; ;

FIGURE 9-6: BLOCK DIAGRAM OF RC<7:0> PORT PINS

9.4 PORTD and DDRD Registers


PORTD is an 8-bit bi-directional port. The corresponding data direction register is DDRD. A '1' in DDRD configures the corresponding port pin as an input. A '0' in the DDRC register configures the corresponding port pin as an output. Reading PORTD reads the status of the pins, whereas writing to it will write to the port latch. PORTD is multiplexed with the system bus. When operating as the system bus, PORTD is the high order byte of the address/data bus (AD15:AD8). The timing for the system bus is shown in the Electrical Characteristics section.

Note: This port is configured as the system bus when the device's configuration bits are selected to Microprocessor or Extended Microcontroller modes. In the two other microcontroller modes, this port is a general purpose I/O. Example 9-3 shows the instruction sequence to initialize PORTD. The Bank Select Register (BSR) must be selected to Bank 1 for the port to be initialized.

EXAMPLE 9-3: INITIALIZING PORTD

MOVLB	1	;	Select Bank 1
CLRF	PORTD	;	Initialize PORTD data
		;	latches before setting
		;	the data direction
		;	register
MOVLW	0xCF	;	Value used to initialize
		;	data direction
MOVWF	DDRD	;	Set RD<3:0> as inputs
		;	RD<5:4> as outputs
		;	RD<7:6> as inputs

11.3 Read/Write Consideration for TMR0

Although TMR0 is a 16-bit timer/counter, only 8-bits at a time can be read or written during a single instruction cycle. Care must be taken during any read or write.

11.3.1 READING 16-BIT VALUE

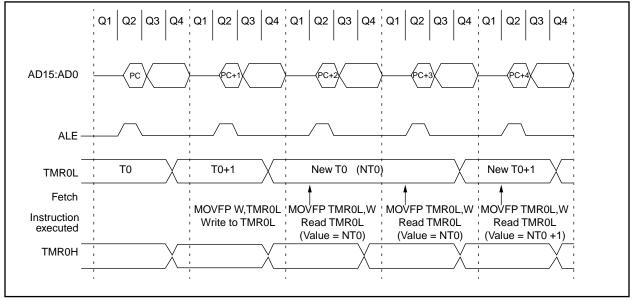
The problem in reading the entire 16-bit value is that after reading the low (or high) byte, its value may change from FFh to 00h.

Example 11-1 shows a 16-bit read. To ensure a proper read, interrupts must be disabled during this routine.

EXAMPLE 11-1: 16-BIT READ

MOVPF	TMROL,	TMPLO	;read low tmr0
MOVPF	TMROH,	TMPHI	;read high tmr0
MOVFP	TMPLO,	WREG	;tmplo -> wreg
CPFSLT	TMR0L		;tmr0l < wreg?
RETURN			;no then return
MOVPF	TMROL,	TMPLO	;read low tmr0
MOVPF	TMROH,	TMPHI	;read high tmr0
RETURN			;return

11.3.2 WRITING A 16-BIT VALUE TO TMR0


Since writing to either TMR0L or TMR0H will effectively inhibit increment of that half of the TMR0 in the next cycle (following write), but not inhibit increment of the other half, the user must write to TMR0L first and TMR0H next in two consecutive instructions, as shown in Example 11-2. The interrupt must be disabled. Any write to either TMR0L or TMR0H clears the prescaler.

EXAMPLE 11-2: 16-BIT WRITE

BSF CPUSTA, GLINTD ; Disable interrupt MOVFP RAM_L, TMROL ; MOVFP RAM_H, TMROH ; BCF CPUSTA, GLINTD ; Done, enable interrupt

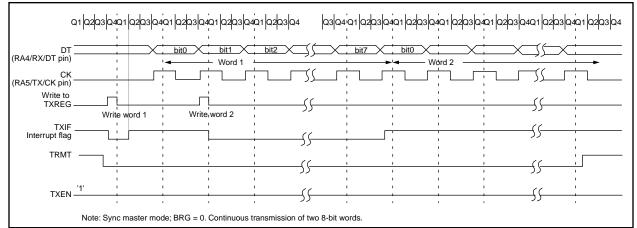
11.4 Prescaler Assignments

Timer0 has an 8-bit prescaler. The prescaler assignment is fully under software control; i.e., it can be changed "on the fly" during program execution. When changing the prescaler assignment, clearing the prescaler is recommended before changing assignment. The value of the prescaler is "unknown," and assigning a value that is less then the present value makes it difficult to take this unknown time into account.

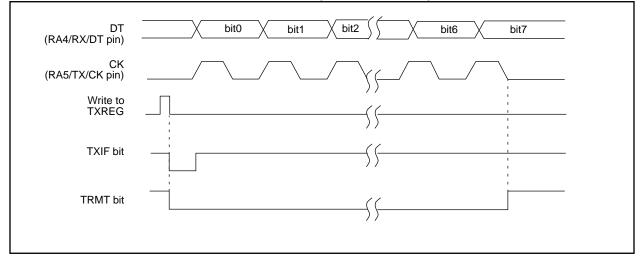
FIGURE 11-4: TMR0 TIMING: WRITE HIGH OR LOW BYTE

FIGURE 13-2: RCSTA REGISTER (ADDRESS: 13h, BANK 0)

SPEN	N.W0 R/W - 0 R/W - 0 U - 0 R - 0 R - 0 R - x RX9 SREN CREN — FERR OERR RX9D R = Readable bit
bit7	bit 0 W = Writable bit -n = Value at POR reset (x = unknown)
bit 7:	SPEN : Serial Port Enable bit 1 = Configures RA5/RX/DT and RA4/TX/CK pins as serial port pins 0 = Serial port disabled
bit 6:	RX9 : 9-bit Receive Enable bit 1 = Selects 9-bit reception 0 = Selects 8-bit reception
bit 5:	SREN: Single Receive Enable bit This bit enables the reception of a single byte. After receiving the byte, this bit is automatically cleared. Synchronous mode: 1 = Enable reception 0 = Disable reception Note: This bit is ignored in synchronous slave reception. Asynchronous mode: Don't care
bit 4:	CREN: Continuous Receive Enable bit This bit enables the continuous reception of serial data. <u>Asynchronous mode:</u> 1 = Enable reception 0 = Disables reception <u>Synchronous mode:</u> 1 = Enables continuous reception until CREN is cleared (CREN overrides SREN) 0 = Disables continuous reception
bit 3:	Unimplemented: Read as '0'
bit 2:	FERR: Framing Error bit 1 = Framing error (Updated by reading RCREG) 0 = No framing error
bit 1:	OERR: Overrun Error bit 1 = Overrun (Cleared by clearing CREN) 0 = No overrun error
bit 0:	RX9D : 9th bit of receive data (can be the software calculated parity bit)


TABLE 13-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

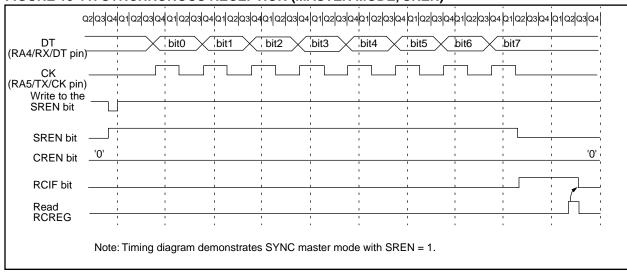
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
13h, Bank 0	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00u
16h, Bank 0	TXREG	TX7	TX6	TX5	TX4	TX3	TX2	TX1	TX0	xxxx xxxx	uuuu uuuu
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	—		TRMT	TX9D	00001x	00001u
17h, Bank 0	Bank 0 SPBRG Baud rate generator register										uuuu uuuu


Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used for synchronous master transmission.

Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

FIGURE 13-9: SYNCHRONOUS TRANSMISSION

FIGURE 13-10: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)


13.3.2 USART SYNCHRONOUS MASTER RECEPTION

Once synchronous mode is selected, reception is enabled by setting either the SREN (RCSTA<5>) bit or the CREN (RCSTA<4>) bit. Data is sampled on the RA4/RX/DT pin on the falling edge of the clock. If SREN is set, then only a single word is received. If CREN is set, the reception is continuous until CREN is reset. If both bits are set, then CREN takes precedence. After clocking the last bit, the received data in the Receive Shift Register (RSR) is transferred to RCREG (if it is empty). If the transfer is complete, the interrupt bit RCIF (PIR<0>) is set. The actual interrupt can be enabled/disabled by setting/clearing the RCIE (PIE<0>) bit. RCIF is a read only bit which is RESET by the hardware. In this case it is reset when RCREG has been read and is empty. RCREG is a double buffered register; i.e., it is a two deep FIFO. It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting into the RSR. On the clocking of the last bit of the third byte, if RCREG is still full, then the overrun error bit OERR (RCSTA<1>) is set. The word in the RSR will be lost. RCREG can be read twice to retrieve the two bytes in the FIFO. The OERR bit has to be cleared in software. This is done by clearing the CREN bit. If OERR bit is set, transfers from RSR to RCREG are inhibited, so it is essential to clear OERR bit if it is set. The 9th receive bit is buffered the same way as the receive data. Reading the RCREG register will allow the RX9D and FERR bits to be loaded with values for the next received data: therefore, it is essential for the user to read the RCSTA register before reading RCREG in order not to lose the old FERR and RX9D information.

Steps to follow when setting up a Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate. See Section 13.1 for details.
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.
- 3. If interrupts are desired, then set the RCIE bit.
- 4. If 9-bit reception is desired, then set the RX9 bit.
- 5. If a single reception is required, set bit SREN. For continuous reception set bit CREN.
- 6. The RCIF bit will be set when reception is complete and an interrupt will be generated if the RCIE bit was set.
- 7. Read RCSTA to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading RCREG.
- 9. If any error occurred, clear the error by clearing CREN.

Note: To terminate a reception, either clear the SREN and CREN bits, or the SPEN bit. This will reset the receive logic, so that it will be in the proper state when receive is re-enabled.

FIGURE 13-11: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
13h, Bank 0	RCSTA	SPEN	RX9	SREN	CREN		FERR	OERR	RX9D	0000 -00x	0000 -00u
16h, Bank 0	TXREG	TX7	TX6	TX5	TX4	TX3	TX2	TX1	TX0	xxxx xxxx	uuuu uuuu
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC		_	TRMT	TX9D	00001x	00001u
17h, Bank 0	7h, Bank 0 SPBRG Baud rate generator register										uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used for synchronous slave transmission.

Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

TABLE 13-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
13h, Bank0	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00u
14h, Bank0	RCREG	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	xxxx xxxx	uuuu uuuu
17h, Bank1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	_	-	TRMT	TX9D	00001x	00001u
17h, Bank0	SPBRG	Baud rate	generator	xxxx xxxx	uuuu uuuu						

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used for synchronous slave reception.

Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

BSF	Bit Set f								
Syntax:	[<i>label</i>] E	[<i>label</i>] BSF f,b							
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \end{array}$								
Operation:	$1 \rightarrow (f < b >$	-)							
Status Affected:	None								
Encoding:	1000	0bbb	fff	f	ffff				
Description:	Bit 'b' in re	gister 'f' is	s set.						
Words:	1								
Cycles:	1								
Q Cycle Activity:									
Q1	Q2	Q3	3	Q4					
Decode	Read register 'f'	Execu	ute		Write gister 'f'				
Example:	BSF	FLAG_RE	G, 7						
Before Instruction FLAG_REG= 0x0A After Instruction FLAG_REG= 0x8A									

BTF	SC	Bit Test, s	Bit Test, skip if Clear							
Synt	tax:	[<i>label</i>] B	[label] BTFSC f,b							
Ope	rands:	$0 \le f \le 253$ $0 \le b \le 7$	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \end{array}$							
Ope	ration:	skip if (f <t< td=""><td>o>) = 0</td><td></td><td></td></t<>	o>) = 0							
Stat	us Affected:	None								
Enc	oding:	1001	1bbb	ffff	ffff					
Des	cription:	instruction If bit 'b' is 0 fetched dui cution is dia	If bit 'b' in register 'f' is 0 then the next instruction is skipped. If bit 'b' is 0 then the next instruction fetched during the current instruction exe- cution is discarded, and a NOP is exe- cuted instead, making this a two-cycle instruction							
Wor	ds:	1								
Cycl	les:	1(2)								
QC	ycle Activity:									
	Q1	Q2	Q3		Q4					
	Decode	Read register 'f'	Execu	ite	NOP					
lf sk	ip:									
	Q1	Q2	Q3		Q4					
	Forced NOP	NOP	Execu	ite	NOP					
<u>Exa</u>	mple:	FALSE	BTFSC :	FLAG,1						
	RE)									
	After Instructi If FLAG<7 PC If FLAG<7 PC	l> = 0; = ac l> = 1;	ldress (TR							

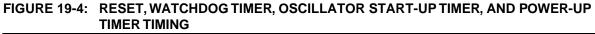
DECF	Decreme	nt f		DECFSZ	Decrement f,	skip if 0			
Syntax:	[label]	DECF f,d		Syntax:	[label] DEC	[<i>label</i>] DECFSZ f,d			
Operands:	0 ≤ f ≤ 258 d ∈ [0,1]	5		Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \ [0,1] \end{array}$				
Operation:	(f) – 1 \rightarrow (dest)		Operation:	(f) – 1 \rightarrow (dest				
Status Affected:	OV, C, DC	;, Z			skip if result =	0			
Encoding:	0000	011d ff	ff ffff	Status Affected	l: None				
Description:	Decrement	register 'f'. If '	d' is 0 the	Encoding:	0001 011	Ld fff	f ffff		
		ored in WREG		Description:	mented. If 'd' is	The contents of register 'f' are decre- mented. If 'd' is 0 the result is placed ir			
Words:	1				WREG. If 'd' is 1 back in register		t is placed		
Cycles:	1				If the result is 0,		instruction.		
Q Cycle Activity:					which is already	/ fetched,	is discarded,		
Q1	Q2	Q3	Q4		and an NOP is e ing it a two-cycle				
Decode	Read register 'f'	Execute	Write to destination	Words:	1				
Example:	DECF	CNT, 1		Cycles:	1(2)				
Before Instru		- ,		Q Cycle Activit	y:				
CNT	= 0x01			Q1	Q2	Q3	Q4		
Z	= 0			Decode		xecute	Write to		
After Instruc	tion				register 'f'		destination		
CNT	= 0x00			Example:			CNT, 1		
Z	= 1				GC CONTINUE	OTO	LOOP		
				Defers inc					
				Before Ins	liucion				

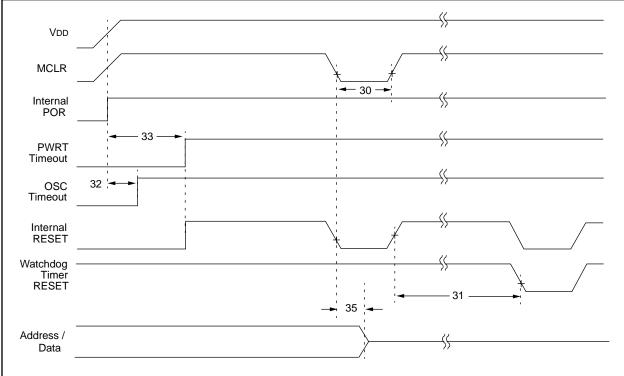
PC	=	Address (HERE)
After Instruct	ion	
CNT	=	CNT - 1
If CNT	=	0;
PC	=	Address (CONTINUE)
If CNT	≠	0;
PC	=	Address (HERE+1)

INFSNZ	Incremer	Increment f, skip if not 0					
Syntax:	[<i>label</i>] II	[<i>label</i>] INFSNZ f,d					
Operands:	0 ≤ f ≤ 25 d ∈ [0,1]	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \ [0,1] \end{array}$					
Operation:	(f) + 1 \rightarrow	(f) + 1 \rightarrow (dest), skip if not 0					
Status Affected:	None						
Encoding:	0010	010d	ffff	ffff			
Description:	mented. If WREG. If ' back in reg If the result which is all and an NO	The contents of register 'f' are incre- mented. If 'd' is 0 the result is placed in WREG. If 'd' is 1 the result is placed back in register 'f'. If the result is not 0, the next instruction, which is already fetched, is discarded, and an NOP is executed instead making it a two-cycle instruction.					
Words:	1						
Cycles:	1(2)						
Q Cycle Activity:							
Q1	Q2	Q	3	Q4			
Decode	Read register 'f'	Exect		Vrite to stination			
lf skip:							
Q1	Q2	Q	3	Q4			
Forced NOP	NOP	Exect	ute	NOP			
Example:	HERE ZERO NZERO	INFSNZ	REG, 1				
Before Instru REG	uction = REG						
After Instruc REG If REG PC If REG PC	= REG + = 1; = Addres = 0;	1 s (zero s (nzero					

Current		[lahal]				
Synt	ax:	[label]	IORLW	К		
Ope	rands:	$0 \le k \le 25$	55			
Ope	ration:	(WREG)	.OR. (k)	\rightarrow (WR	EG)	
State	us Affected:	Z				
Enco	oding:	1011	0011	kkkk	kkkk	
Description:		the eight b	The contents of WREG are OR'ed with the eight bit literal 'k'. The result is placed in WREG.			
Words:		1				
Cycl	es:	1				
QC	ycle Activity:					
	Q1	Q2	Q	3	Q4	
	Decode	Read literal 'k'	Exect	ute	Write to WREG	
Example:		IORLW	0x35			
	Before Instru WREG	iction = 0x9A				
	After Instruct WREG	tion = 0xBF				

RLNCF	Rotate Left f (no carry)	
Syntax:	[label] RLNCF f,d	
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \ [0,1] \end{array}$	
Operation:	$f < n > \rightarrow d < n+1 >;$ $f < 7 > \rightarrow d < 0 >$	
Status Affected:	None	
Encoding:	0010 001d ffff	ffff
Description:	The contents of register 'f' are re one bit to the left. If 'd' is 0 the re placed in WREG. If 'd' is 1 the re stored back in register 'f'.	esult is
Words:	1	
Cycles:	1	
Q Cycle Activity:		
Q1	Q2 Q3 Q	4
Decode	ReadExecuteWritregister 'f'destir	
Example:	RLNCF REG, 1	
Before Instru	uction	
C REG	= 0 = 1110 1011	
After Instruc C	tion	


RRCF	Rotate Right f through Carry				
Syntax:	[<i>label</i>] RRCF f,d				
Operands:	$0 \le f \le 255$ $d \in [0,1]$				
Operation:					
Status Affected	С				
Encoding:	0001 100d ffff ffff				
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in WREG. If 'd' is 1 the result is placed back in register 'f'.				
Words:	1				
Cycles:	1				
Q Cycle Activit	:				
Q1	Q2 Q3 Q4				
Decode	Read Execute Write to register 'f' destination				
Example:	RRCF REG1,0				
Before Ins	uction				
REG1 C	= 1110 0110 = 0				
After Instr REG1 WREC C	ction = 1110 0110 = 0111 0011 = 0				

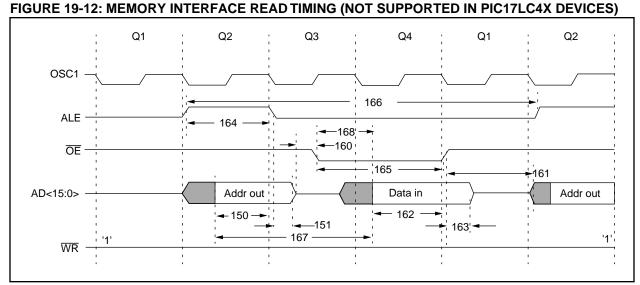

TABLRD	Table R	ead	
Example1:	TABLRD	1, 1,	REG ;
Before Instruc	ction		
REG		=	0x53
TBLATH		=	0xAA
TBLATL		=	0x55
TBLPTR		=	
MEMORY	(TBLPTR)	=	0x1234
After Instruction	on (table v	write co	mpletion)
REG		=	0xAA
TBLATH		=	0x12
TBLATL		=	0x34
TBLPTR			0xA357
MEMORY	(TBLPTR)	=	0x5678
Example2:	TABLRD	0, 0,	REG ;
Before Instruc	ction		
REG		=	0x53
TBLATH		=	0xAA
TBLATL		=	0x55
TBLPTR		=	0xA356
MEMORY	(TBLPTR)	=	0x1234
After Instruction	on (table v	write co	mpletion)
REG		=	0x55
TBLATH		=	0x12
TBLATL		=	0x34
TBLPTR		=	0xA356
MEMORY	(TBLPTR)	=	0x1234

TABLWT	Table Write
Syntax:	[label] TABLWT t,i,f
Operands:	0 ≤ f ≤ 255 i ∈ [0,1] t ∈ [0,1]
Operation:	$f \in [0, 1]$ If $f = 0$,
e per au e m	$f \rightarrow TBLATL;$
	If t = 1, f \rightarrow TBLATH;
	TBLAT \rightarrow Prog Mem (TBLPTF
	If i = 1, TBLPTR + 1 \rightarrow TBLPTR
Status Affected:	None
Encoding:	1010 11ti ffff ffff
Description:	1. Load value in 'f' into 16-bit table
	latch (TBLAT) If t = 0: load into low byte;
	If t = 1: load into high byte
	2. The contents of TBLAT is written to the program memory location
	pointed to by TBLPTR
	If TBLPTR points to external program memory location, then
	the instruction takes two-cycle
	If TBLPTR points to an internal
	EPROM location, then the instruction is terminated when
	an interrupt is received.
	LR/VPP pin must be at the programmir for successful programming of intern
If MCLR	/VPP = VDD
	gramming sequence of internal memore executed, but will not be successf
(althoug	h the internal memory location may b
disturbe	-7
	 The TBLPTR can be automati- cally incremented
	If i = 0; TBLPTR is not
	incremented
Words:	
	incremented If i = 1; TBLPTR is incremented
Cycles:	incremented If i = 1; TBLPTR is incremented 1 2 (many if write is to on-chip
Words: Cycles: Q Cycle Activity: Q1	incremented If i = 1; TBLPTR is incremented 1 2 (many if write is to on-chip EPROM program memory) Q2 Q3 Q4
Cycles: Q Cycle Activity:	incremented If i = 1; TBLPTR is incremented 1 2 (many if write is to on-chip EPROM program memory) Q2 Q3 Q4 Read Execute Write
Cycles: Q Cycle Activity: Q1	incremented If i = 1; TBLPTR is incremented 1 2 (many if write is to on-chip EPROM program memory) Q2 Q3 Q4

TABLE 17-1:CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

OSC	PIC17C42-16	PIC17C42-25
RC	VDD: 4.5V to 5.5V	VDD: 4.5V to 5.5V
	IDD: 6 mA max.	IDD: 6 mA max.
	IPD: 5 μA max. at 5.5V (WDT disabled)	IPD: 5 μA max. at 5.5V (WDT disabled)
	Freq: 4 MHz max.	Freq: 4 MHz max.
XT	VDD: 4.5V to 5.5V	VDD: 4.5V to 5.5V
	IDD: 24 mA max.	IDD: 38 mA max.
	IPD: 5 μA max. at 5.5V (WDT disabled)	IPD: 5 μA max. at 5.5V (WDT disabled)
	Freq: 16 MHz max.	Freq: 25 MHz max.
EC	VDD: 4.5V to 5.5V	VDD: 4.5V to 5.5V
	IDD: 24 mA max.	IDD: 38 mA max.
	IPD: 5 μA max. at 5.5V (WDT disabled)	IPD: 5 μA max. at 5.5V (WDT disabled)
	Freq: 16 MHz max.	Freq: 25 MHz max.
LF	VDD: 4.5V to 5.5V	VDD: 4.5V to 5.5V
	IDD: 150 μA max. at 32 kHz (WDT enabled)	IDD: 150 μA max. at 32 kHz (WDT enabled)
	IPD: 5 μA max. at 5.5V (WDT disabled)	IPD: 5 μA max. at 5.5V (WDT disabled)
	Freq: 2 MHz max.	Freq: 2 MHz max.

TABLE 19-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER REQUIREMENTS


Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)		100 *	_	_	ns	VDD = 5V
31	Twdt	Watchdog Timer Time-out Period (Prescale = 1)		5 *	12	25 *	ms	VDD = 5V
32	Tost	Oscillation Start-up Timer Period		_	1024Tosc§	_	ms	Tosc = OSC1 period
33	Tpwrt	Power-up Timer Period		40 *	96	200 *	ms	VDD = 5V
35	TmcL2adl	MCLR to System Inter- face bus (AD15:AD0>)	PIC17CR42/42A/ 43/R43/44	—	_	100 *	ns	
		invalid	PIC17LCR42/ 42A/43/R43/44	—	_	120 *	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

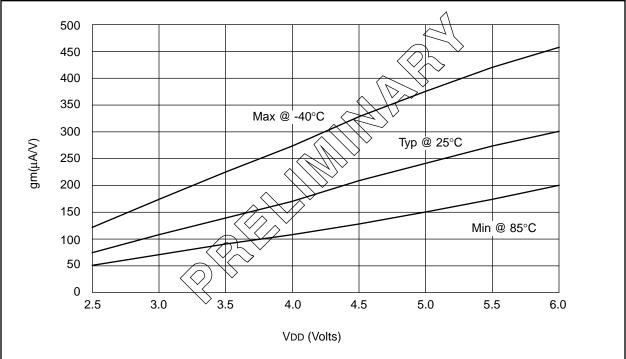
t These parameters are for design guidance only and are not tested, nor characterized.

§ This specification ensured by design.

TABLE 19-12: MEMORY INTERFACE READ REQUIREMENTS (NOT SUPPORTED IN PIC17LC4X DEVICES)

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
150	TadV2alL	AD15:AD0 (address) valid to ALE↓ (address setup time)	0.25Tcy - 10	_	_	ns	
151	TalL2adl	ALE↓ to address out invalid (address hold time)	5*		_	ns	
160	TadZ2oeL	AD15:AD0 hi-impedance to $\overline{\text{OE}}\downarrow$	0*	_	—	ns	
161	ToeH2adD	OE↑ to AD15:AD0 driven	0.25Tcy - 15	_	_	ns	
162	TadV2oeH	Data in valid before OE↑ (data setup time)	35	_	_	ns	
163	ToeH2adI	OE [↑] to data in invalid (data hold time)	0	_	_	ns	
164	TalH	ALE pulse width	—	0.25Tcy §	—	ns	
165	ToeL	OE pulse width	0.5Tcy - 35 §	_	_	ns	
166	TalH2alH	ALE↑ to ALE↑(cycle time)	—	TCY §	_	ns	
167	Tacc	Address access time	_	_	0.75Tcy - 30	ns	
168	Тое	Output enable access time (OE low to Data Valid)	_	_	0.5Tcy - 45	ns	

These parameters are characterized but not tested.


† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

*

NOTES:

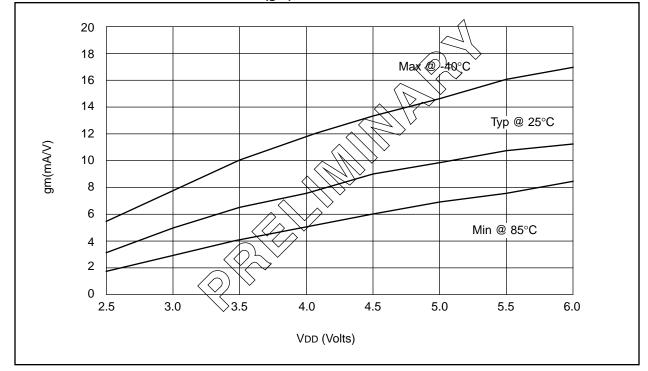


FIGURE 20-6: TRANSCONDUCTANCE (gm) OF XT OSCILLATOR vs. VDD

21.6 Package Marking Information 40-Lead PDIP/CERDIP Example PIC17C43-25I/P L006 AABBCDE 9441CCA MICROCHIP MICROCHIP \bigcirc 40 Lead CERDIP Windowed Example XXXXXXXXXXXX PIC17C44 XXXXXXXXXXXX /JW XXXXXXXXXXXX L184 AABBCDE 9444CCT 44-Lead PLCC Example \mathcal{M} \mathcal{M} MICROCHIP MICROCHIP PIC17C42 XXXXXXXXXX ○ _{XXXXXXXXX} Ο -16I/L XXXXXXXXXX L013 AABBCDE 9445CCN 44-Lead MQFP Example \mathcal{M} \mathbf{w} XXXXXXXXXX PIC17C44 -25/PT XXXXXXXXXX XXXXXXXXXXX L247 AABBCDE 9450CAT \cap \cap 44-Lead TQFP Example \$ \mathcal{Q} PIC17C44 XXXXXXXXXXX -25/TQ XXXXXXXXXX XXXXXXXXXXX L247 AABBCDE 9450CAT \cap \cap Microchip part number information Legend: MM...M XX...X Customer specific information* AA Year code (last 2 digits of calendar year) BΒ Week code (week of January 1 is week '01') С Facility code of the plant at which wafer is manufactured C = Chandler, Arizona, U.S.A., S = Tempe, Arizona, U.S.A. D Mask revision number Е Assembly code of the plant or country of origin in which part was assembled Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information. Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask rev#, and assembly code. For OTP marking beyond

code, facility code, mask rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

APPENDIX C: WHAT'S NEW

The structure of the document has been made consistent with other data sheets. This ensures that important topics are covered across all PIC16/17 families. Here is an overview of new features.

Added the following devices:

PIC17CR42

PIC17C42A

PIC17CR43

A 33 MHz option is now available.

APPENDIX D: WHAT'S CHANGED

To make software more portable across the different PIC16/17 families, the name of several registers and control bits have been changed. This allows control bits that have the same function, to have the same name (regardless of processor family). Care must still be taken, since they may not be at the same special function register address. The following shows the register and bit names that have been changed:

Old Name	New Name
TX8/9	TX9
RC8/9	RX9
RCD8	RX9D
TXD8	TX9D

Instruction DECFSNZ corrected to DCFSNZ

Instruction INCFSNZ corrected to INFSNZ

Enhanced discussion on PWM to include equation for determining bits of PWM resolution.

Section 13.2.2 and 13.3.2 have had the description of updating the FERR and RX9 bits enhanced.

The location of configuration bit PM2 was changed (Figure 6-1 and Figure 14-1).

Enhanced description of the operation of the INTSTA register.

Added note to discussion of interrupt operation.

Tightened electrical spec D110.

Corrected steps for setting up USART Asynchronous Reception.

Indirect Addressing	
Indirect Addressing	
Registers40	
Initialization Conditions For Special Function Registers 19	
Initializing PORTB	
Initializing PORTC	
Initializing PORTD60	
Initializing PORTE	
Instruction Flow/Pipelining14 Instruction Set	
ADDLW	
ADDWF	
ADDWFC113	
ANDLW113	
ANDWF	
BCF	
BSF	
BTFSS	
BTG	
CALL	
CLRF 117	
CLRWDT	
COMF	
CPFSEQ	
CPFSGT	
DAW	
DECF	
DECFSNZ 122	
DECFSZ 121	
GOTO	
INCF	
INCESZ	
IORLW	
IORWF 125	
LCALL	
MOVFP	
MOVLB	
MOVLR	
MOVER	
MOVWF	
MULLW129	
MULWF	
NEGW	
NOP	
RETLW	
RETURN	
RLCF 132	
RLNCF	
RRCF	
RRNCF	
SETF	
SUBLW	
SUBWF	
SUBWFB 136	
SWAPF	
TABLRD	
TABLWT	
TLWT	

TSTFSZ	140
XORLW	141
XORWF	141
Instruction Set Summary	107
NT Pin	26
NTE	22
NTEDG	38, 67
Interrupt on Change Feature	55
Interrupt Status Register (INTSTA)	
Interrupts	
Context Saving	27
Flag bits	
TMR1IE	21
TMR1IF	21
TMR2IE	21
TMR2IF	21
TMR3IE	21
TMR3IF	21
Interrupts	21
Logic	21
Operation	
Peripheral Interrupt Enable	
Peripheral Interrupt Request	24
PWM	76
Status Register	22
Table Write Interaction	
Timing	26
Vectors	
Peripheral Interrupt	26
RA0/INT Interrupt	26
T0CKI Interrupt	26
TMR0 Interrupt	26
Vectors/Priorities	25
Wake-up from SLEEP	105
NTF	22
NTSTA	34
NTSTA Register	22
ORLW	124
ORWF	

L

LCALL	
Long Writes	

Μ

Memory	
External Interface	31
External Memory Waveforms	31
Memory Map (Different Modes)	30
Mode Memory Access	30
Organization	29
Program Memory	29
Program Memory Map	29
Microcontroller	29
Microprocessor	29
Minimizing Current Consumption	106
MOVFP	126
MOVLB	126
MOVLR	127
MOVLW	127
MOVPF	128
MOVWF	128
MPASM Assembler	143, 144