
Microchip Technology - PIC17C43T-16/PQ Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor PIC

Core Size 8-Bit

Speed 16MHz

Connectivity UART/USART

Peripherals POR, PWM, WDT

Number of I/O 33

Program Memory Size 8KB (4K x 16)

Program Memory Type OTP

EEPROM Size -

RAM Size 454 x 8

Voltage - Supply (Vcc/Vdd) 4.5V ~ 6V

Data Converters -

Oscillator Type External

Operating Temperature 0°C ~ 70°C (TA)

Mounting Type Surface Mount

Package / Case 44-QFP

Supplier Device Package 44-MQFP (10x10)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic17c43t-16-pq

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic17c43t-16-pq-4425328
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC17C4X

DS30412C-page 14



 1996 Microchip Technology Inc.

3.1 Clocking Scheme/Instruction Cycle

The clock input (from OSC1) is internally divided by
four to generate four non-overlapping quadrature
clocks, namely Q1, Q2, Q3, and Q4. Internally, the pro-
gram counter (PC) is incremented every Q1, and the
instruction is fetched from the program memory and
latched into the instruction register in Q4. The instruc-
tion is decoded and executed during the following Q1
through Q4. The clocks and instruction execution flow
are shown in Figure 3-3.

3.2 Instruction Flow/Pipelining

An “Instruction Cycle” consists of four Q cycles (Q1,
Q2, Q3, and Q4). The instruction fetch and execute are
pipelined such that fetch takes one instruction cycle
while decode and execute takes another instruction
cycle. However, due to the pipelining, each instruction
effectively executes in one cycle. If an instruction
causes the program counter to change (e.g.

GOTO

) then
two cycles are required to complete the instruction
(Example 3-2).

A fetch cycle begins with the program counter incre-
menting in Q1.

In the execution cycle, the fetched instruction is latched
into the “Instruction Register (IR)” in cycle Q1. This
instruction is then decoded and executed during the
Q2, Q3, and Q4 cycles. Data memory is read during Q2
(operand read) and written during Q4 (destination
write).

FIGURE 3-3: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-2: INSTRUCTION PIPELINE FLOW

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

OSC1

Q1

Q2

Q3

Q4

PC

OSC2/CLKOUT
(RC mode)

PC PC+1 PC+2

Fetch INST (PC)
Execute INST (PC-1) Fetch INST (PC+1)

Execute INST (PC) Fetch INST (PC+2)
Execute INST (PC+1)

Internal
phase
clock

All instructions are single cycle, except for any program branches. These take two cycles since the fetch
instruction is “flushed” from the pipeline while the new instruction is being fetched and then executed.

Tcy0 Tcy1 Tcy2 Tcy3 Tcy4 Tcy5

1. MOVLW 55h Fetch 1 Execute 1

2. MOVWF PORTB Fetch 2 Execute 2

3. CALL SUB_1 Fetch 3 Execute 3

4. BSF PORTA, BIT3 (Forced NOP) Fetch 4 Flush

5. Instruction @ address SUB_1 Fetch SUB_1 Execute SUB_1

PIC17C4X

DS30412C-page 40  1996 Microchip Technology Inc.

6.4.1 INDIRECT ADDRESSING REGISTERS

The PIC17C4X has four registers for indirect address-
ing. These registers are:

• INDF0 and FSR0
• INDF1 and FSR1

Registers INDF0 and INDF1 are not physically imple-
mented. Reading or writing to these registers activates
indirect addressing, with the value in the correspond-
ing FSR register being the address of the data. The
FSR is an 8-bit register and allows addressing any-
where in the 256-byte data memory address range.
For banked memory, the bank of memory accessed is
specified by the value in the BSR.

If file INDF0 (or INDF1) itself is read indirectly via an
FSR, all '0's are read (Zero bit is set). Similarly, if
INDF0 (or INDF1) is written to indirectly, the operation
will be equivalent to a NOP, and the status bits are not
affected.

6.4.2 INDIRECT ADDRESSING OPERATION

The indirect addressing capability has been enhanced
over that of the PIC16CXX family. There are two con-
trol bits associated with each FSR register. These two
bits configure the FSR register to:

• Auto-decrement the value (address) in the FSR
after an indirect access

• Auto-increment the value (address) in the FSR
after an indirect access

• No change to the value (address) in the FSR after
an indirect access

These control bits are located in the ALUSTA register.
The FSR1 register is controlled by the FS3:FS2 bits
and FSR0 is controlled by the FS1:FS0 bits.

When using the auto-increment or auto-decrement
features, the effect on the FSR is not reflected in the
ALUSTA register. For example, if the indirect address
causes the FSR to equal '0', the Z bit will not be set.

If the FSR register contains a value of 0h, an indirect
read will read 0h (Zero bit is set) while an indirect write
will be equivalent to a NOP (status bits are not
affected).

Indirect addressing allows single cycle data transfers
within the entire data space. This is possible with the
use of the MOVPF and MOVFP instructions, where either
'p' or 'f' is specified as INDF0 (or INDF1).

If the source or destination of the indirect address is in
banked memory, the location accessed will be deter-
mined by the value in the BSR.

A simple program to clear RAM from 20h - FFh is
shown in Example 6-1.

EXAMPLE 6-1: INDIRECT ADDRESSING

 MOVLW 0x20 ;
 MOVWF FSR0 ; FSR0 = 20h
 BCF ALUSTA, FS1 ; Increment FSR
 BSF ALUSTA, FS0 ; after access
 BCF ALUSTA, C ; C = 0
 MOVLW END_RAM + 1 ;
LP CLRF INDF0 ; Addr(FSR) = 0
 CPFSEQ FSR0 ; FSR0 = END_RAM+1?
 GOTO LP ; NO, clear next
 : ; YES, All RAM is
 : ; cleared

6.5 Table Pointer (TBLPTRL and
TBLPTRH)

File registers TBLPTRL and TBLPTRH form a 16-bit
pointer to address the 64K program memory space.
The table pointer is used by instructions TABLWT and
TABLRD.

The TABLRD and the TABLWT instructions allow trans-
fer of data between program and data space. The table
pointer serves as the 16-bit address of the data word
within the program memory. For a more complete
description of these registers and the operation of Table
Reads and Table Writes, see Section 7.0.

6.6 Table Latch (TBLATH, TBLATL)

The table latch (TBLAT) is a 16-bit register, with
TBLATH and TBLATL referring to the high and low
bytes of the register. It is not mapped into data or pro-
gram memory. The table latch is used as a temporary
holding latch during data transfer between program and
data memory (see descriptions of instructions TABLRD,
TABLWT, TLRD and TLWT). For a more complete
description of these registers and the operation of Table
Reads and Table Writes, see Section 7.0.

 1996 Microchip Technology Inc. DS30412C-page 41

PIC17C4X

6.7 Program Counter Module

The Program Counter (PC) is a 16-bit register. PCL, the
low byte of the PC, is mapped in the data memory. PCL
is readable and writable just as is any other register.
PCH is the high byte of the PC and is not directly
addressable. Since PCH is not mapped in data or pro-
gram memory, an 8-bit register PCLATH (PC high latch)
is used as a holding latch for the high byte of the PC.
PCLATH is mapped into data memory. The user can
read or write PCH through PCLATH.

The 16-bit wide PC is incremented after each instruc-
tion fetch during Q1 unless:

• Modified by GOTO, CALL, LCALL, RETURN, RETLW,
or RETFIE instruction

• Modified by an interrupt response
• Due to destination write to PCL by an instruction

“Skips” are equivalent to a forced NOP cycle at the
skipped address.

Figure 6-11 and Figure 6-12 show the operation of the
program counter for various situations.

FIGURE 6-11: PROGRAM COUNTER
OPERATION

FIGURE 6-12: PROGRAM COUNTER USING
THE CALL AND GOTO
INSTRUCTIONS

Internal data bus <8>

PCLATH 8

8

8

PCH PCL

8

15 0

7 5 4 0

12 8 7 0

8 7

Last write
to PCLATH

PCLATH

Opcode

5

3

8

PCH PCL

1315

Using Figure 6-11, the operations of the PC and
PCLATH for different instructions are as follows:

a) LCALL instructions:
An 8-bit destination address is provided in the
instruction (opcode). PCLATH is unchanged.
PCLATH → PCH
Opcode<7:0> → PCL

b) Read instructions on PCL:
Any instruction that reads PCL.
PCL → data bus → ALU or destination
PCH → PCLATH

c) Write instructions on PCL:
Any instruction that writes to PCL.
8-bit data → data bus → PCL
PCLATH → PCH

d) Read-Modify-Write instructions on PCL:
Any instruction that does a read-write-modify
operation on PCL, such as ADDWF PCL.
Read: PCL → data bus → ALU
Write: 8-bit result → data bus → PCL

PCLATH → PCH
e) RETURN instruction:

PCH → PCLATH
Stack<MRU> → PC<15:0>

Using Figure 6-12, the operation of the PC and
PCLATH for GOTO and CALL instructions is a follows:

CALL, GOTO instructions:
A 13-bit destination address is provided in the
instruction (opcode).
Opcode<12:0> → PC <12:0>
PC<15:13> → PCLATH<7:5>
Opcode<12:8> → PCLATH <4:0>

The read-modify-write only affects the PCL with the
result. PCH is loaded with the value in the PCLATH.
For example, ADDWF PCL will result in a jump within the
current page. If PC = 03F0h, WREG = 30h and
PCLATH = 03h before instruction, PC = 0320h after the
instruction. To accomplish a true 16-bit computed jump,
the user needs to compute the 16-bit destination
address, write the high byte to PCLATH and then write
the low value to PCL.

The following PC related operations do not change
PCLATH:

a) LCALL, RETLW, and RETFIE instructions.
b) Interrupt vector is forced onto the PC.
c) Read-modify-write instructions on PCL (e.g. BSF

PCL).



 1996 Microchip Technology Inc. DS30412C-page 65

PIC17C4X

10.0 OVERVIEW OF TIMER
RESOURCES

The PIC17C4X has four timer modules. Each module
can generate an interrupt to indicate that an event has
occurred. These timers are called:

• Timer0 - 16-bit timer with programmable 8-bit
prescaler

• Timer1 - 8-bit timer
• Timer2 - 8-bit timer
• Timer3 - 16-bit timer

For enhanced time-base functionality, two input Cap-
tures and two Pulse Width Modulation (PWM) outputs
are possible. The PWMs use the TMR1 and TMR2
resources and the input Captures use the TMR3
resource.

10.1 Timer0 Overview

The Timer0 module is a simple 16-bit overflow counter.
The clock source can be either the internal system
clock (Fosc/4) or an external clock.

The Timer0 module also has a programmable pres-
caler option. The PS3:PS0 bits (T0STA<4:1>) deter-
mine the prescaler value. TMR0 can increment at the
following rates: 1:1, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64,
1:128, 1:256.

When TImer0’s clock source is an external clock, the
Timer0 module can be selected to increment on either
the rising or falling edge.

Synchronization of the external clock occurs after the
prescaler. When the prescaler is used, the external
clock frequency may be higher then the device’s fre-
quency. The maximum frequency is 50 MHz, given the
high and low time requirements of the clock.

10.2 Timer1 Overview

The TImer0 module is an 8-bit timer/counter with an 8-
bit period register (PR1). When the TMR1 value rolls
over from the period match value to 0h, the TMR1IF
flag is set, and an interrupt will be generated when
enabled. In counter mode, the clock comes from the
RB4/TCLK12 pin, which can also be selected to be the
clock for the Timer2 module.

TMR1 can be concatenated to TMR2 to form a 16-bit
timer. The TMR1 register is the LSB and TMR2 is the
MSB. When in the 16-bit timer mode, there is a corre-
sponding 16-bit period register (PR2:PR1). When the
TMR2:TMR1 value rolls over from the period match
value to 0h, the TMR1IF flag is set, and an interrupt
will be generated when enabled.

10.3 Timer2 Overview

The TMR2 module is an 8-bit timer/counter with an 8-
bit period register (PR2). When the TMR2 value rolls
over from the period match value to 0h, the TMR2IF
flag is set, and an interrupt will be generated when
enabled. In counter mode, the clock comes from the
RB4/TCLK12 pin, which can also be selected to be the
clock for the TMR1 module.

TMR1 can be concatenated to TMR2 to form a 16-bit
timer. The TMR2 register is the MSB and TMR1 is the
LSB. When in the 16-bit timer mode, there is a corre-
sponding 16-bit period register (PR2:PR1). When the
TMR2:TMR1 value rolls over from the period match
value to 0h, the TMR1IF flag is set, and an interrupt
will be generated when enabled.

10.4 Timer3 Overview

The TImer3 module is a 16-bit timer/counter with a 16-
bit period register. When the TMR3H:TMR3L value
rolls over to 0h, the TMR3IF bit is set and an interrupt
will be generated when enabled. In counter mode, the
clock comes from the RB5/TCLK3 pin.

When operating in the dual capture mode, the period
registers become the second 16-bit capture register.

10.5 Role of the Timer/Counters

The timer modules are general purpose, but have ded-
icated resources associated with them. TImer1 and
Timer2 are the time-bases for the two Pulse Width
Modulation (PWM) outputs, while Timer3 is the time-
base for the two input captures.

This document was created with FrameMaker 4 0 4

PIC17C4X

DS30412C-page 68



 1996 Microchip Technology Inc.

11.1 Timer0 Operation

When the T0CS (T0STA<5>) bit is set, TMR0 incre-
ments on the internal clock. When T0CS is clear, TMR0
increments on the external clock (RA1/T0CKI pin). The
external clock edge can be configured in software.
When the T0SE (T0STA<6>) bit is set, the timer will
increment on the rising edge of the RA1/T0CKI pin.
When T0SE is clear, the timer will increment on the fall-
ing edge of the RA1/T0CKI pin. The prescaler can be
programmed to introduce a prescale of 1:1 to 1:256.
The timer increments from 0000h to FFFFh and rolls
over to 0000h. On overflow, the TMR0 Interrupt Flag bit
(T0IF) is set. The TMR0 interrupt can be masked by
clearing the corresponding TMR0 Interrupt Enable bit
(T0IE). The TMR0 Interrupt Flag bit (T0IF) is automati-
cally cleared when vectoring to the TMR0 interrupt vec-
tor.

11.2 Using Timer0 with External Clock

When the external clock input is used for Timer0, it is
synchronized with the internal phase clocks.
Figure 11-3 shows the synchronization of the external
clock. This synchronization is done after the prescaler.
The output of the prescaler (PSOUT) is sampled twice
in every instruction cycle to detect a rising or a falling
edge. The timing requirements for the external clock
are detailed in the electrical specification section for the
desired device.

11.2.1 DELAY FROM EXTERNAL CLOCK EDGE

Since the prescaler output is synchronized with the
internal clocks, there is a small delay from the time the
external clock edge occurs to the time TMR0 is actually
incremented. Figure 11-3 shows that this delay is
between 3T

OSC

 and 7T

OSC

. Thus, for example, mea-
suring the interval between two edges (e.g. period) will
be accurate within

±

4T

OSC

 (

±

121 ns @ 33 MHz).

FIGURE 11-2: TIMER0 MODULE BLOCK DIAGRAM

FIGURE 11-3: TMR0 TIMING WITH EXTERNAL CLOCK (INCREMENT ON FALLING EDGE)

RA1/T0CKI Synchronization
Prescaler
(8 stage
async ripple
counter)

T0SE
(T0STA<6>)

Fosc/4

T0CS
(T0STA<5>)

PS3:PS0
(T0STA<4:1>)

Q2 Q4

0

1
TMR0H<8> TMR0L<8>

Interrupt on overflow
sets T0IF

(INTSTA<5>)

4

PSOUT

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

Prescaler
output

(PSOUT)

Sampled
Prescaler

output

Increment
TMR0

TMR0 T0 T0 + 1 T0 + 2

(note 3)

(note 2)

Note 1: The delay from the T0CKI edge to the TMR0 increment is 3Tosc to 7Tosc.
 2: ↑ = PSOUT is sampled here.
3: The PSOUT high time is too short and is missed by the sampling circuit.

(note 1)

PIC17C4X

DS30412C-page 70



 1996 Microchip Technology Inc.

FIGURE 11-5: TMR0 READ/WRITE IN TIMER MODE

TABLE 11-1: REGISTERS/BITS ASSOCIATED WITH TIMER0

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Value on
Power-on

Reset

Value on all
other resets

(Note1)

05h, Unbanked T0STA INTEDG T0SE T0CS PS3 PS2 PS1 PS0 —

0000 000- 0000 000-

06h, Unbanked CPUSTA — — STKAV GLINTD TO PD — —

--11 11-- --11 qq--

07h, Unbanked INTSTA PEIF T0CKIF T0IF INTF PEIE T0CKIE T0IE INTE

0000 0000 0000 0000

0Bh, Unbanked TMR0L TMR0 register; low byte

xxxx xxxx uuuu uuuu

0Ch, Unbanked TMR0H TMR0 register; high byte

xxxx xxxx uuuu uuuu

Legend:

x

 = unknown,

u

 = unchanged,

-

 = unimplemented read as a '0',

q

 - value depends on condition, Shaded cells are not used by Timer0.
Note 1: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

Instruction
executed

MOVFP
DATAL,TMR0L
Write TMR0L

MOVFP
DATAH,TMR0H
Write TMR0H

MOVPF
TMR0L,W

Read TMR0L

MOVPF
TMR0L,W

Read TMR0L

MOVPF
TMR0L,W

Read TMR0L

Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4

AD15:AD0

ALE

WR_TRM0L

WR_TMR0H

RD_TMR0L

TMR0H

TMR0L

12 12 13 AB

FE FF 56 57 58

In this example, old TMR0 value is 12FEh, new value of AB56h is written.

Instruction
fetched

MOVFP
DATAL,TMR0L
Write TMR0L

MOVFP
DATAH,TMR0H
Write TMR0H

MOVPF
TMR0L,W

Read TMR0L

MOVPF
TMR0L,W

Read TMR0L

MOVPF
TMR0L,W

Read TMR0L

MOVPF
TMR0L,W

Read TMR0L

Previously
Fetched
Instruction

PIC17C4X

DS30412C-page 84



 1996 Microchip Technology Inc.

FIGURE 13-2: RCSTA REGISTER (ADDRESS: 13h, BANK 0)

R/W - 0 R/W - 0 R/W - 0 R/W - 0 U - 0 R - 0 R - 0 R - x
SPEN RX9 SREN CREN — FERR OERR RX9D

R = Readable bit
W = Writable bit
-n = Value at POR reset
 (x = unknown)

bit7 bit 0

bit 7:

SPEN

: Serial Port Enable bit
1 = Configures RA5/RX/DT and RA4/TX/CK pins as serial port pins
0 = Serial port disabled

bit 6:

RX9

: 9-bit Receive Enable bit
1 = Selects 9-bit reception
0 = Selects 8-bit reception

bit 5:

SREN

: Single Receive Enable bit
This bit enables the reception of a single byte. After receiving the byte, this bit is automatically cleared.
Synchronous mode:
1 = Enable reception
0 = Disable reception
Note: This bit is ignored in synchronous slave reception.
Asynchronous mode:
Don’t care

bit 4:

CREN

: Continuous Receive Enable bit
This bit enables the continuous reception of serial data.
Asynchronous mode:
1 = Enable reception
0 = Disables reception
Synchronous mode:
1 = Enables continuous reception until CREN is cleared (CREN overrides SREN)
0 = Disables continuous reception

bit 3:

Unimplemented

: Read as '0'

bit 2:

FERR

: Framing Error bit
1 = Framing error (Updated by reading RCREG)
0 = No framing error

bit 1:

OERR

: Overrun Error bit
1 = Overrun (Cleared by clearing CREN)
0 = No overrun error

bit 0:

RX9D

: 9th bit of receive data (can be the software calculated parity bit)

 1996 Microchip Technology Inc. DS30412C-page 97

PIC17C4X

13.4 USART Synchronous Slave Mode

The synchronous slave mode differs from the master
mode in the fact that the shift clock is supplied exter-
nally at the RA5/TX/CK pin (instead of being supplied
internally in the master mode). This allows the device
to transfer or receive data in the SLEEP mode. The
slave mode is entered by clearing the
CSRC (TXSTA<7>) bit.

13.4.1 USART SYNCHRONOUS SLAVE
TRANSMIT

The operation of the sync master and slave modes are
identical except in the case of the SLEEP mode.

If two words are written to TXREG and then the SLEEP
instruction executes, the following will occur. The first
word will immediately transfer to the TSR and will trans-
mit as the shift clock is supplied. The second word will
remain in TXREG. TXIF will not be set. When the first
word has been shifted out of TSR, TXREG will transfer
the second word to the TSR and the TXIF flag will now
be set. If TXIE is enabled, the interrupt will wake the
chip from SLEEP and if the global interrupt is enabled,
then the program will branch to interrupt vector
(0020h).

Steps to follow when setting up a Synchronous Slave
Transmission:

1. Enable the synchronous slave serial port by set-
ting the SYNC and SPEN bits and clearing the
CSRC bit.

2. Clear the CREN bit.
3. If interrupts are desired, then set the TXIE bit.
4. If 9-bit transmission is desired, then set the TX9

bit.
5. Start transmission by loading data to TXREG.
6. If 9-bit transmission is selected, the ninth bit

should be loaded in TX9D.
7. Enable the transmission by setting TXEN.

Writing the transmit data to the TXREG, then enabling
the transmit (setting TXEN) allows transmission to start
sooner then doing these two events in the reverse
order.

Note: To terminate a transmission, either clear
the SPEN bit, or the TXEN bit. This will
reset the transmit logic, so that it will be in
the proper state when transmit is
re-enabled.

13.4.2 USART SYNCHRONOUS SLAVE
RECEPTION

Operation of the synchronous master and slave modes
are identical except in the case of the SLEEP mode.
Also, SREN is a don't care in slave mode.

If receive is enabled (CREN) prior to the SLEEP instruc-
tion, then a word may be received during SLEEP. On
completely receiving the word, the RSR will transfer the
data to RCREG (setting RCIF) and if the RCIE bit is set,
the interrupt generated will wake the chip from SLEEP.
If the global interrupt is enabled, the program will
branch to the interrupt vector (0020h).

Steps to follow when setting up a Synchronous Slave
Reception:

1. Enable the synchronous master serial port by
setting the SYNC and SPEN bits and clearing
the CSRC bit.

2. If interrupts are desired, then set the RCIE bit.
3. If 9-bit reception is desired, then set the RX9 bit.
4. To enable reception, set the CREN bit.
5. The RCIF bit will be set when reception is com-

plete and an interrupt will be generated if the
RCIE bit was set.

6. Read RCSTA to get the ninth bit (if enabled) and
determine if any error occurred during reception.

7. Read the 8-bit received data by reading
RCREG.

8. If any error occurred, clear the error by clearing
the CREN bit.

Note: To abort reception, either clear the SPEN
bit, the SREN bit (when in single receive
mode), or the CREN bit (when in continu-
ous receive mode). This will reset the
receive logic, so that it will be in the proper
state when receive is re-enabled.

PIC17C4X

DS30412C-page 110



 1996 Microchip Technology Inc.

TABLE 15-2: PIC17CXX INSTRUCTION SET

Mnemonic,
Operands

Description Cycles 16-bit Opcode Status
Affected

Notes

MSb LSb

BYTE-ORIENTED FILE REGISTER OPERATIONS

ADDWF f,d

ADD WREG to f 1

0000 111d ffff ffff

OV,C,DC,Z

ADDWFC f,d

ADD WREG and Carry bit to f 1

0001 000d ffff ffff

OV,C,DC,Z

ANDWF f,d

AND WREG with f 1

0000 101d ffff ffff

Z

CLRF f,s

Clear f, or Clear f and Clear WREG 1

0010 100s ffff ffff

None 3

COMF f,d

Complement f 1

0001 001d ffff ffff

Z

CPFSEQ f

Compare f with WREG, skip if f = WREG 1 (2)

0011 0001 ffff ffff

None 6,8

CPFSGT f

Compare f with WREG, skip if f > WREG 1 (2)

0011 0010 ffff ffff

None 2,6,8

CPFSLT f

Compare f with WREG, skip if f < WREG 1 (2)

0011 0000 ffff ffff

None 2,6,8

DAW f,s

Decimal Adjust WREG Register 1

0010 111s ffff ffff

C 3

DECF f,d

Decrement f 1

0000 011d ffff ffff

OV,C,DC,Z

DECFSZ f,d

Decrement f, skip if 0 1 (2)

0001 011d ffff ffff

None 6,8

DCFSNZ f,d

Decrement f, skip if not 0 1 (2)

0010 011d ffff ffff

None 6,8

INCF f,d

Increment f 1

0001 010d ffff ffff

OV,C,DC,Z

INCFSZ f,d

Increment f, skip if 0 1 (2)

0001 111d ffff ffff

None 6,8

INFSNZ f,d

Increment f, skip if not 0 1 (2)

0010 010d ffff ffff

None 6,8

IORWF f,d

Inclusive OR WREG with f 1

0000 100d ffff ffff

Z

MOVFP f,p

Move f to p 1

011p pppp ffff ffff

None

MOVPF p,f

Move p to f 1

010p pppp ffff ffff Z

MOVWF f Move WREG to f 1 0000 0001 ffff ffff None

MULWF f Multiply WREG with f 1 0011 0100 ffff ffff None 9

NEGW f,s Negate WREG 1 0010 110s ffff ffff OV,C,DC,Z 1,3

NOP — No Operation 1 0000 0000 0000 0000 None

RLCF f,d Rotate left f through Carry 1 0001 101d ffff ffff C

RLNCF f,d Rotate left f (no carry) 1 0010 001d ffff ffff None

RRCF f,d Rotate right f through Carry 1 0001 100d ffff ffff C

RRNCF f,d Rotate right f (no carry) 1 0010 000d ffff ffff None

SETF f,s Set f 1 0010 101s ffff ffff None 3

SUBWF f,d Subtract WREG from f 1 0000 010d ffff ffff OV,C,DC,Z 1

SUBWFB f,d Subtract WREG from f with Borrow 1 0000 001d ffff ffff OV,C,DC,Z 1

SWAPF f,d Swap f 1 0001 110d ffff ffff None

TABLRD t,i,f Table Read 2 (3) 1010 10ti ffff ffff None 7

Legend: Refer to Table 15-1 for opcode field descriptions.
Note 1: 2’s Complement method.

2: Unsigned arithmetic.
3: If s = '1', only the file is affected: If s = '0', both the WREG register and the file are affected; If only the Working

register (WREG) is required to be affected, then f = WREG must be specified.
4: During an LCALL, the contents of PCLATH are loaded into the MSB of the PC and kkkk kkkk is loaded into

the LSB of the PC (PCL)
5: Multiple cycle instruction for EPROM programming when table pointer selects internal EPROM. The instruc-

tion is terminated by an interrupt event. When writing to external program memory, it is a two-cycle instruc-
tion.

6: Two-cycle instruction when condition is true, else single cycle instruction.
7: Two-cycle instruction except for TABLRD to PCL (program counter low byte) in which case it takes 3 cycles.
8: A “skip” means that instruction fetched during execution of current instruction is not executed, instead an

NOP is executed.
9: These instructions are not available on the PIC17C42.

PIC17C4X

DS30412C-page 114  1996 Microchip Technology Inc.

ANDWF AND WREG with f

Syntax: [label] ANDWF f,d

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]

Operation: (WREG) .AND. (f) → (dest)

Status Affected: Z

Encoding: 0000 101d ffff ffff

Description: The contents of WREG are AND’ed with
register 'f'. If 'd' is 0 the result is stored
in WREG. If 'd' is 1 the result is stored
back in register 'f'.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register 'f'

Execute Write to
destination

Example: ANDWF REG, 1

Before Instruction
 WREG = 0x17
REG = 0xC2

After Instruction
WREG = 0x17
REG = 0x02

BCF Bit Clear f

Syntax: [label] BCF f,b

Operands: 0 ≤ f ≤ 255
0 ≤ b ≤ 7

Operation: 0 → (f)

Status Affected: None

Encoding: 1000 1bbb ffff ffff

Description: Bit 'b' in register 'f' is cleared.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register 'f'

Execute Write
register 'f'

Example: BCF FLAG_REG, 7

Before Instruction
FLAG_REG = 0xC7

After Instruction
FLAG_REG = 0x47

PIC17C4X

DS30412C-page 118  1996 Microchip Technology Inc.

CLRWDT Clear Watchdog Timer

Syntax: [label] CLRWDT

Operands: None

Operation: 00h → WDT
0 → WDT postscaler,
1 → TO
1 → PD

Status Affected: TO, PD

Encoding: 0000 0000 0000 0100

Description: CLRWDT instruction resets the watchdog
timer. It also resets the prescaler of the
WDT. Status bits TO and PD are set.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register
ALUSTA

Execute NOP

Example: CLRWDT

Before Instruction
WDT counter = ?

After Instruction
WDT counter = 0x00
WDT Postscaler = 0
TO = 1
PD = 1

COMF Complement f

Syntax: [label] COMF f,d

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]

Operation: → (dest)

Status Affected: Z

Encoding: 0001 001d ffff ffff

Description: The contents of register 'f' are comple-
mented. If 'd' is 0 the result is stored in
WREG. If 'd' is 1 the result is stored
back in register 'f'.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register 'f'

Execute Write
register 'f'

Example: COMF REG1,0

Before Instruction
REG1 = 0x13

After Instruction
REG1 = 0x13
WREG = 0xEC

(f)

 1996 Microchip Technology Inc. DS30412C-page 125

PIC17C4X

IORWF Inclusive OR WREG with f

Syntax: [label] IORWF f,d

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]

Operation: (WREG) .OR. (f) → (dest)

Status Affected: Z

Encoding: 0000 100d ffff ffff

Description: Inclusive OR WREG with register 'f'. If
'd' is 0 the result is placed in WREG. If
'd' is 1 the result is placed back in regis-
ter 'f'.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register 'f'

Execute Write to
destination

Example: IORWF RESULT, 0

Before Instruction
RESULT = 0x13
WREG = 0x91

After Instruction
RESULT = 0x13
WREG = 0x93

LCALL Long Call

Syntax: [label] LCALL k

Operands: 0 ≤ k ≤ 255

Operation: PC + 1 → TOS;
k → PCL, (PCLATH) → PCH

Status Affected: None

Encoding: 1011 0111 kkkk kkkk

Description: LCALL allows an unconditional subrou-
tine call to anywhere within the 64k pro-
gram memory space.

First, the return address (PC + 1) is
pushed onto the stack. A 16-bit desti-
nation address is then loaded into the
program counter. The lower 8-bits of
the destination address is embedded in
the instruction. The upper 8-bits of PC
is loaded from PC high holding latch,
PCLATH.

Words: 1

Cycles: 2

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
literal 'k'

Execute Write
register PCL

Forced NOP NOP Execute NOP

Example: MOVLW HIGH(SUBROUTINE)
MOVPF WREG, PCLATH
LCALL LOW(SUBROUTINE)

Before Instruction
SUBROUTINE = 16-bit Address
PC = ?

After Instruction
PC = Address (SUBROUTINE)

PIC17C4X

DS30412C-page 134  1996 Microchip Technology Inc.

RRNCF Rotate Right f (no carry)

Syntax: [label] RRNCF f,d

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]

Operation: f<n> → d<n-1>;
f<0> → d<7>

Status Affected: None

Encoding: 0010 000d ffff ffff

Description: The contents of register 'f' are rotated
one bit to the right. If 'd' is 0 the result is
placed in WREG. If 'd' is 1 the result is
placed back in register 'f'.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register 'f'

Execute Write to
destination

Example 1: RRNCF REG, 1

Before Instruction
WREG = ?
REG = 1101 0111

After Instruction
WREG = 0
REG = 1110 1011

Example 2: RRNCF REG, 0

Before Instruction
WREG = ?
REG = 1101 0111

After Instruction
WREG = 1110 1011
REG = 1101 0111

register f

SETF Set f

Syntax: [label] SETF f,s

Operands: 0 ≤ f ≤ 255
s ∈ [0,1]

Operation: FFh → f;
FFh → d

Status Affected: None

Encoding: 0010 101s ffff ffff

Description: If 's' is 0, both the data memory location
'f' and WREG are set to FFh. If 's' is 1
only the data memory location 'f' is set
to FFh.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register 'f'

Execute Write
register 'f'
and other
specified
register

Example1: SETF REG, 0

Before Instruction
REG = 0xDA
WREG = 0x05

After Instruction
REG = 0xFF
WREG = 0xFF

Example2: SETF REG, 1

Before Instruction
REG = 0xDA
WREG = 0x05

After Instruction
REG = 0xFF
WREG = 0x05

PIC17C4X

DS30412C-page 140  1996 Microchip Technology Inc.

TLWT Table Latch Write

Syntax: [label] TLWT t,f

Operands: 0 ≤ f ≤ 255
t ∈ [0,1]

Operation: If t = 0,
f → TBLATL;

If t = 1,
f → TBLATH

Status Affected: None

Encoding: 1010 01tx ffff ffff

Description: Data from file register 'f' is written into
the 16-bit table latch (TBLAT).

If t = 1; high byte is written

If t = 0; low byte is written

This instruction is used in conjunction
with TABLWT to transfer data from data
memory to program memory.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register 'f'

Execute Write
register

TBLATH or
TBLATL

Example: TLWT t, RAM

Before Instruction
t = 0
RAM = 0xB7
TBLAT = 0x0000 (TBLATH = 0x00)
 (TBLATL = 0x00)

After Instruction
RAM = 0xB7
TBLAT = 0x00B7 (TBLATH = 0x00)
 (TBLATL = 0xB7)

Before Instruction
t = 1
RAM = 0xB7
TBLAT = 0x0000 (TBLATH = 0x00)
 (TBLATL = 0x00)

After Instruction
RAM = 0xB7
TBLAT = 0xB700 (TBLATH = 0xB7)
 (TBLATL = 0x00)

TSTFSZ Test f, skip if 0

Syntax: [label] TSTFSZ f

Operands: 0 ≤ f ≤ 255

Operation: skip if f = 0

Status Affected: None

Encoding: 0011 0011 ffff ffff

Description: If 'f' = 0, the next instruction, fetched
during the current instruction execution,
is discarded and an NOP is executed
making this a two-cycle instruction.

Words: 1

Cycles: 1 (2)

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register 'f'

Execute NOP

If skip:
Q1 Q2 Q3 Q4

Forced NOP NOP Execute NOP

Example: HERE TSTFSZ CNT
NZERO :
ZERO :

Before Instruction
PC = Address(HERE)

After Instruction
If CNT = 0x00,

PC = Address (ZERO)
If CNT ≠ 0x00,

PC = Address (NZERO)

 1996 Microchip Technology Inc. DS30412C-page 141

PIC17C4X

XORLW
Exclusive OR Literal with
WREG

Syntax: [label] XORLW k

Operands: 0 ≤ k ≤ 255

Operation: (WREG) .XOR. k → (WREG)

Status Affected: Z

Encoding: 1011 0100 kkkk kkkk

Description: The contents of WREG are XOR’ed
with the 8-bit literal 'k'. The result is
placed in WREG.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
literal 'k'

Execute Write to
WREG

Example: XORLW 0xAF

Before Instruction
WREG = 0xB5

After Instruction
WREG = 0x1A

XORWF Exclusive OR WREG with f

Syntax: [label] XORWF f,d

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]

Operation: (WREG) .XOR. (f) → (dest)

Status Affected: Z

Encoding: 0000 110d ffff ffff

Description: Exclusive OR the contents of WREG
with register 'f'. If 'd' is 0 the result is
stored in WREG. If 'd' is 1 the result is
stored back in the register 'f'.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register 'f'

Execute Write to
destination

Example: XORWF REG, 1

Before Instruction
REG = 0xAF
WREG = 0xB5

After Instruction
REG = 0x1A
WREG = 0xB5

PIC17C4X

DS30412C-page 144



 1996 Microchip Technology Inc.

16.6 PICDEM-1 Low-Cost PIC16/17
Demonstration Board

The PICDEM-1 is a simple board which demonstrates
the capabilities of several of Microchip’s microcontrol-
lers. The microcontrollers supported are: PIC16C5X
(PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X,
PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and
PIC17C44. All necessary hardware and software is
included to run basic demo programs. The users can
program the sample microcontrollers provided with
the PICDEM-1 board, on a PRO MATE II or
PICSTART-16B programmer, and easily test firm-
ware. The user can also connect the PICDEM-1
board to the PICMASTER emulator and download
the firmware to the emulator for testing. Additional pro-
totype area is available for the user to build some addi-
tional hardware and connect it to the microcontroller
socket(s). Some of the features include an RS-232
interface, a potentiometer for simulated analog input,
push-button switches and eight LEDs connected to
PORTB.

16.7 PICDEM-2 Low-Cost PIC16CXX
Demonstration Board

The PICDEM-2 is a simple demonstration board that
supports the PIC16C62, PIC16C64, PIC16C65,
PIC16C73 and PIC16C74 microcontrollers. All the
necessary hardware and software is included to
run the basic demonstration programs. The user
can program the sample microcontrollers provided
with the PICDEM-2 board, on a PRO MATE II pro-
grammer or PICSTART-16C, and easily test firmware.
The PICMASTER emulator may also be used with the
PICDEM-2 board to test firmware. Additional prototype
area has been provided to the user for adding addi-
tional hardware and connecting it to the microcontroller
socket(s). Some of the features include a RS-232 inter-
face, push-button switches, a potentiometer for simu-
lated analog input, a Serial EEPROM to demonstrate
usage of the I

2

C bus and separate headers for connec-
tion to an LCD module and a keypad.

16.8 PICDEM-3 Low-Cost PIC16CXXX
Demonstration Board

The PICDEM-3 is a simple demonstration board that
supports the PIC16C923 and PIC16C924 in the PLCC
package. It will also support future 44-pin PLCC
microcontrollers with a LCD Module. All the neces-
sary hardware and software is included to run the
basic demonstration programs. The user can pro-
gram the sample microcontrollers provided with
the PICDEM-3 board, on a PRO MATE II program-
mer or PICSTART Plus with an adapter socket, and
easily test firmware. The PICMASTER emulator may
also be used with the PICDEM-3 board to test firm-
ware. Additional prototype area has been provided to
the user for adding hardware and connecting it to the
microcontroller socket(s). Some of the features

include an RS-232 interface, push-button switches, a
potentiometer for simulated analog input, a thermistor
and separate headers for connection to an external
LCD module and a keypad. Also provided on the
PICDEM-3 board is an LCD panel, with 4 commons
and 12 segments, that is capable of displaying time,
temperature and day of the week. The PICDEM-3 pro-
vides an additional RS-232 interface and Windows 3.1
software for showing the demultiplexed LCD signals on
a PC. A simple serial interface allows the user to con-
struct a hardware demultiplexer for the LCD signals.
PICDEM-3 will be available in the 3rd quarter of 1996.

16.9 MPLAB Integrated Development
Environment Software

The MPLAB IDE Software brings an ease of software
development previously unseen in the 8-bit microcon-
troller market. MPLAB is a windows based application
which contains:

• A full featured editor
• Three operating modes

- editor
- emulator
- simulator

• A project manager
• Customizable tool bar and key mapping
• A status bar with project information
• Extensive on-line help

MPLAB allows you to:

• Edit your source files (either assembly or ‘C’)
• One touch assemble (or compile) and download

to PIC16/17 tools (automatically updates all
project information)

• Debug using:
- source files
- absolute listing file

• Transfer data dynamically via DDE (soon to be
replaced by OLE)

• Run up to four emulators on the same PC

The ability to use MPLAB with Microchip’s simulator
allows a consistent platform and the ability to easily
switch from the low cost simulator to the full featured
emulator with minimal retraining due to development
tools.

16.10 Assembler (MPASM)

The MPASM Universal Macro Assembler is a PC-
hosted symbolic assembler. It supports all microcon-
troller series including the PIC12C5XX, PIC14000,
PIC16C5X, PIC16CXXX, and PIC17CXX families.

MPASM offers full featured Macro capabilities, condi-
tional assembly, and several source and listing formats.
It generates various object code formats to support
Microchip's development tools as well as third party
programmers.

PIC17C4X

DS30412C-page 186  1996 Microchip Technology Inc.

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 19-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, AND POWER-UP
TIMER TIMING

TABLE 19-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER REQUIREMENTS

Parameter
No. Sym Characteristic Min Typ† Max Units Conditions

30 TmcL MCLR Pulse Width (low) 100 * — — ns VDD = 5V

31 Twdt Watchdog Timer Time-out Period
(Prescale = 1)

5 * 12 25 * ms VDD = 5V

32 Tost Oscillation Start-up Timer Period — 1024TOSC§ — ms TOSC = OSC1 period

33 Tpwrt Power-up Timer Period 40 * 96 200 * ms VDD = 5V

35 TmcL2adI MCLR to System Inter-
face bus (AD15:AD0>)
invalid

PIC17CR42/42A/
43/R43/44

— — 100 * ns

PIC17LCR42/
42A/43/R43/44

— — 120 * ns

* These parameters are characterized but not tested.
† Data in “Typ” column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not

tested.
‡ These parameters are for design guidance only and are not tested, nor characterized.
§ This specification ensured by design.

VDD

MCLR

Internal
POR

PWRT
Timeout

OSC
Timeout

Internal
RESET

Watchdog
Timer

RESET

33

32

30

31

Address /
Data

35

PIC17C4X

DS30412C-page 192  1996 Microchip Technology Inc.

NOTES:

PIC17C4X

DS30412C-page 198



 1996 Microchip Technology Inc.

Applicable Devices

42 R42 42A 43 R43 44

FIGURE 20-9: TYPICAL I

PD

 vs. V

DD

 WATCHDOG DISABLED 25

°

C

FIGURE 20-10: MAXIMUM I

PD

 vs. V

DD

 WATCHDOG DISABLED

12

10

8

6

4

4.0 4.5 5.0 5.5 6.0

IP
D

(n
A

)

VDD (Volts)

2

0
6.5 7.0

600
500
400
300
200

4.0 4.5 5.0 5.5 6.0

IP
D

(n
A

)

VDD (Volts)

100
0

6.5 7.0

1300
1200
1100
1000
900
800
700

1900
1800
1700
1600
1500
1400

Temp. = 85°C

Temp. = 70°C

Temp. = 0°C

Temp. = -40°C

PIC17C4X

DS30412C-page 220



 1996 Microchip Technology Inc.

E.8 PIC17CXX Family of Devices

P
IC

17
C

42
25

2K
—

23
2

T
M

R
0,

T
M

R
1,

T
M

R
2,

T
M

R
3

2
2

Y
es

—
Y

es
11

33
4.

5-
5.

5
55

40
-p

in
 D

IP
;

44
-p

in
 P

LC
C

, M
Q

F
P

P
IC

17
C

42
A

25
2K

—
23

2
T

M
R

0,
T

M
R

1,
T

M
R

2,
T

M
R

3
2

2
Y

es
Y

es
Y

es
11

33
2.

5-
6.

0
58

40
-p

in
 D

IP
;

44
-p

in
 P

LC
C

, T
Q

F
P

, M
Q

F
P

P
IC

17
C

R
42

25
—

2K
23

2
T

M
R

0,
T

M
R

1,
T

M
R

2,
T

M
R

3
2

2
Y

es
Y

es
Y

es
11

33
2.

5-
6.

0
58

40
-p

in
 D

IP
;

44
-p

in
 P

LC
C

, T
Q

F
P

, M
Q

F
P

P
IC

17
C

43
25

4K
—

45
4

T
M

R
0,

T
M

R
1,

T
M

R
2,

T
M

R
3

2
2

Y
es

Y
es

Y
es

11
33

2.
5-

6.
0

58
40

-p
in

 D
IP

;
44

-p
in

 P
LC

C
, T

Q
F

P
, M

Q
F

P

P
IC

17
C

R
43

25
—

4K
45

4
T

M
R

0,
T

M
R

1,
T

M
R

2,
T

M
R

3
2

2
Y

es
Y

es
Y

es
11

33
2.

5-
6.

0
58

40
-p

in
 D

IP
;

44
-p

in
 P

LC
C

, T
Q

F
P

, M
Q

F
P

P
IC

17
C

44
25

8K
45

4
T

M
R

0,
T

M
R

1,
T

M
R

2,
T

M
R

3
2

2
Y

es
Y

es
Y

es
11

33
2.

5-
6.

0
58

40
-p

in
 D

IP
;

44
-p

in
 P

LC
C

, T
Q

F
P

, M
Q

F
P

A
ll

P
IC

16
/1

7
Fa

m
ily

 d
ev

ic
es

 h
av

e
P

ow
er

-o
n

R
es

et
, s

el
ec

ta
bl

e
W

at
ch

do
g

T
im

er
, s

el
ec

ta
bl

e
co

de
 p

ro
te

ct
 a

nd
 h

ig
h

I/O
 c

ur
re

nt
 c

ap
ab

ili
ty

.

Max
im

um
 F

re
qu

en
cy

 of
 O

pe
ra

tio
n (

MHz)

EPROM

RAM D
ata

 M
em

or
y (

by
tes

)

Tim
er

 M
od

ule
(s) Cap

tur
es

Ser
ial

 P
or

t(s
) (

USART) Exte
rn

al
Int

er
ru

pts

Int
er

ru
pt

Sou
rce

s

I/O
 P

ins
Volt

ag
e R

an
ge

 (V
olt

s)

Num
be

r o
f In

str
uc

tio
ns

Pac
ka

ge
s

C
lo

ck
M

em
or

y
P

er
ip

he
ra

ls
F

ea
tu

re
s

PW
Ms

Har
dw

ar
e M

ult
ipl

y

Pro
gr

am
 M

em
or

y (
W

or
ds

)

ROM

