

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	8KB (4K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c43t-16-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Overview	5
2.0	PIC17C4X Device Varieties	7
3.0	Architectural Overview	9
4.0	Reset	15
5.0	Interrupts	21
6.0	Memory Organization	29
7.0	Table Reads and Table Writes	43
8.0	Hardware Multiplier	49
9.0	I/O Ports	53
10.0	Overview of Timer Resources	
11.0	Timer0	
12.0	Timer1, Timer2, Timer3, PWMs and Captures	
13.0	Universal Synchronous Asynchronous Receiver Transmitter (USART) Module	83
14.0	Special Features of the CPU	99
15.0	Instruction Set Summary	107
16.0	Development Support	143
17.0	PIC17C42 Electrical Characteristics	
18.0	PIC17C42 DC and AC Characteristics	
19.0	PIC17CR42/42A/43/R43/44 Electrical Characteristics	175
20.0	PIC17CR42/42A/43/R43/44 DC and AC Characteristics	
21.0	Packaging Information	205
	dix A: Modifications	
	dix B: Compatibility	
Appen	dix C: What's New	212
Appen	dix D: What's Changed	212
	dix E: PIC16/17 Microcontrollers	
	dix F: Errata for PIC17C42 Silicon	
PIC17	C4X Product Identification System	237

For register and module descriptions in this data sheet, device legends show which devices apply to those sections. For example, the legend below shows that some features of only the PIC17C43, PIC17C43, PIC17C44 are described in this section.

Applicable Devices 42 R42 42A 43 R43 44

To Our Valued Customers

We constantly strive to improve the quality of all our products and documentation. We have spent an exceptional amount of time to ensure that these documents are correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error from the previous version of the PIC17C4X Data Sheet (Literature Number DS30412B), please use the reader response form in the back of this data sheet to inform us. We appreciate your assistance in making this a better document.

To assist you in the use of this document, Appendix C contains a list of new information in this data sheet, while Appendix D contains information that has changed

TABLE 6-1: MODE MEMORY ACCESS

Operating Mode	Internal Program Memory	Configuration Bits, Test Memory, Boot ROM
Microprocessor	No Access	No Access
Microcontroller	Access	Access
Extended Microcontroller	Access	No Access
Protected Microcontroller	Access	Access

The PIC17C4X can operate in modes where the program memory is off-chip. They are the microprocessor and extended microcontroller modes. The microprocessor mode is the default for an unprogrammed device.

Regardless of the processor mode, data memory is always on-chip.

FIGURE 6-2: MEMORY MAP IN DIFFERENT MODES

6.3 <u>Stack Operation</u>

The PIC17C4X devices have a 16 x 16-bit wide hardware stack (Figure 6-1). The stack is not part of either the program or data memory space, and the stack pointer is neither readable nor writable. The PC is "PUSHed" onto the stack when a CALL instruction is executed or an interrupt is acknowledged. The stack is "POPed" in the event of a RETURN, RETLW, or a RETFIE instruction execution. PCLATH is not affected by a "PUSH" or a "POP" operation.

The stack operates as a circular buffer, with the stack pointer initialized to '0' after all resets. There is a stack available bit (STKAV) to allow software to ensure that the stack has not overflowed. The STKAV bit is set after a device reset. When the stack pointer equals Fh, STKAV is cleared. When the stack pointer rolls over from Fh to 0h, the STKAV bit will be held clear until a device reset.

- **Note 1:** There is not a status bit for stack underflow. The STKAV bit can be used to detect the underflow which results in the stack pointer being at the top of stack.
- Note 2: There are no instruction mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW, and RETFIE instructions, or the vectoring to an interrupt vector.
- Note 3: After a reset, if a "POP" operation occurs before a "PUSH" operation, the STKAV bit will be cleared. This will appear as if the stack is full (underflow has occurred). If a "PUSH" operation occurs next (before another "POP"), the STKAV bit will be locked clear. Only a device reset will cause this bit to set.

After the device is "PUSHed" sixteen times (without a "POP"), the seventeenth push overwrites the value from the first push. The eighteenth push overwrites the second push (and so on).

6.4 Indirect Addressing

Indirect addressing is a mode of addressing data memory where the data memory address in the instruction is not fixed. That is, the register that is to be read or written can be modified by the program. This can be useful for data tables in the data memory. Figure 6-10 shows the operation of indirect addressing. This shows the moving of the value to the data memory address specified by the value of the FSR register.

Example 6-1 shows the use of indirect addressing to clear RAM in a minimum number of instructions. A similar concept could be used to move a defined number of bytes (block) of data to the USART transmit register (TXREG). The starting address of the block of data to be transmitted could easily be modified by the program.

FIGURE 6-10: INDIRECT ADDRESSING

FIGURE 12-2: TCON2 REGISTER (ADDRESS: 17h, BANK 3)

R - 0	R - 0 R/W - 0
	F CA10VF PWM20N PWM10N CA1/PR3 TMR30N TMR20N TMR10N R = Readable bit
bit7	bit0 W = Writable bit
	-n = Value at POR reset
bit 7:	 CA2OVF: Capture2 Overflow Status bit This bit indicates that the capture value had not been read from the capture register pair (CA2H:CA2L) before the next capture event occurred. The capture register retains the oldest unread capture value (last capture before overflow). Subsequent capture events will not update the capture register with the Timer3 value until the capture register has been read (both bytes). 1 = Overflow occurred on Capture2 register 0 = No overflow occurred on Capture2 register
bit 6:	CA1OVF : Capture1 Overflow Status bit This bit indicates that the capture value had not been read from the capture register pair (PR3H/CA2H:PR3L/CA2L) before the next capture event occurred. The capture register retains the old- est unread capture value (last capture before overflow). Subsequent capture events will not update the capture register with the TMR3 value until the capture register has been read (both bytes). 1 = Overflow occurred on Capture1 register 0 = No overflow occurred on Capture1 register
bit 5:	PWM2ON : PWM2 On bit 1 = PWM2 is enabled (The RB3/PWM2 pin ignores the state of the DDRB<3> bit) 0 = PWM2 is disabled (The RB3/PWM2 pin uses the state of the DDRB<3> bit for data direction)
bit 4:	PWM1ON : PWM1 On bit 1 = PWM1 is enabled (The RB2/PWM1 pin ignores the state of the DDRB<2> bit) 0 = PWM1 is disabled (The RB2/PWM1 pin uses the state of the DDRB<2> bit for data direction)
bit 3:	CA1/PR3 : CA1/PR3 Register Mode Select bit 1 = Enables Capture1 (PR3H/CA1H:PR3L/CA1L is the Capture1 register. Timer3 runs without a period register) 0 = Enables the Period register (PR3H/CA1H:PR3L/CA1L is the Period register for Timer3)
bit 2:	TMR3ON: Timer3 On bit 1 = Starts Timer3 0 = Stops Timer3
bit 1:	TMR2ON : Timer2 On bit This bit controls the incrementing of the Timer2 register. When Timer2:Timer1 form the 16-bit timer (T16 is set), TMR2ON must be set. This allows the MSB of the timer to increment. 1 = Starts Timer2 (Must be enabled if the T16 bit (TCON1<3>) is set) 0 = Stops Timer2
bit 0:	TMR1ON: Timer1 On bit <u>When T16 is set (in 16-bit Timer Mode)</u> 1 = Starts 16-bit Timer2:Timer1 0 = Stops 16-bit Timer2:Timer1
	<u>When T16 is clear (in 8-bit Timer Mode)</u> 1 = Starts 8-bit Timer1 0 = Stops 8-bit Timer1
	•

14.2.4 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with series resonance, or one with parallel resonance.

Figure 14-5 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometer biases the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 14-5: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

Figure 14-6 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 14-6: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

14.2.5 RC OSCILLATOR

For timing insensitive applications, the RC device option offers additional cost savings. RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 14-6 shows how the R/C combination is connected to the PIC17CXX. For Rext values below 2.2 kQ, the oscillator operation may become unstable, or stop completely. For very high Rext values (e.g. 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend to keep Rext between 3 $k\Omega$ and 100 $k\Omega$.

Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With little or no external capacitance, oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

See Section 18.0 for RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

See Section 18.0 for variation of oscillator frequency due to VDD for given Rext/Cext values as well as frequency variation due to operating temperature for given R, C, and VDD values.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin, and can be used for test purposes or to synchronize other logic (see Figure 3-2 for waveform).

FIGURE 14-7: RC OSCILLATOR MODE

15.0 INSTRUCTION SET SUMMARY

The PIC17CXX instruction set consists of 58 instructions. Each instruction is a 16-bit word divided into an OPCODE and one or more operands. The opcode specifies the instruction type, while the operand(s) further specify the operation of the instruction. The PIC17CXX instruction set can be grouped into three types:

- byte-oriented
- bit-oriented
- literal and control operations.

These formats are shown in Figure 15-1.

Table 15-1 shows the field descriptions for the opcodes. These descriptions are useful for understanding the opcodes in Table 15-2 and in each specific instruction descriptions.

byte-oriented instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator specifies which file register is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' = '0', the result is placed in the WREG register. If 'd' = '1', the result is placed in the file register specified by the instruction.

bit-oriented instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

literal and control operations, 'k' represents an 8- or 11-bit constant or literal value.

The instruction set is highly orthogonal and is grouped into:

- · byte-oriented operations
- bit-oriented operations
- · literal and control operations

All instructions are executed within one single instruction cycle, unless:

- a conditional test is true
- the program counter is changed as a result of an instruction
- a table read or a table write instruction is executed (in this case, the execution takes two instruction cycles with the second cycle executed as a NOP)

One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 25 MHz, the normal instruction execution time is 160 ns. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time is 320 ns.

TABLE 15-1: OPCODE FIELD DESCRIPTIONS

DESCRIPTIONS
Description
Register file address (00h to FFh)
Peripheral register file address (00h to 1Fh)
Table pointer control $i = 0'$ (do not change) i = '1' (increment after instruction execution)
Table byte select t = '0' (perform operation on lower
byte) t = '1' (perform operation on upper byte literal field, constant data)
Working register (accumulator)
Bit address within an 8-bit file register
Literal field, constant data or label
Don't care location (= '0' or '1') The assembler will generate code with $x = '0'$. It is the recommended form of use for compatibility with all Microchip software tools.
Destination select 0 = store result in WREG 1 = store result in file register f Default is d = '1'
Unused, encoded as '0'
Destination select 0 = store result in file register f and in the WREG 1 = store result in file register f Default is s = '1'
Label name
ALU status bits Carry, Digit Carry, Zero, Overflow
Global Interrupt Disable bit (CPUSTA<4>)
Global Interrupt Disable bit (CPUSTA<4>) Table Pointer (16-bit)
Table Pointer (16-bit) Table Latch (16-bit) consists of high byte (TBLATH)
Table Pointer (16-bit) Table Latch (16-bit) consists of high byte (TBLATH) and low byte (TBLATL)
Table Pointer (16-bit)Table Latch (16-bit) consists of high byte (TBLATH)and low byte (TBLATL)Table Latch low byte
Table Pointer (16-bit)Table Latch (16-bit) consists of high byte (TBLATH)and low byte (TBLATL)Table Latch low byteTable Latch high byte
Table Pointer (16-bit) Table Latch (16-bit) consists of high byte (TBLATH) and low byte (TBLATL) Table Latch low byte Table Latch high byte Top of Stack
Table Pointer (16-bit) Table Latch (16-bit) consists of high byte (TBLATH) and low byte (TBLATL) Table Latch low byte Table Latch high byte Top of Stack Program Counter
Table Pointer (16-bit) Table Latch (16-bit) consists of high byte (TBLATH) and low byte (TBLATL) Table Latch low byte Table Latch high byte Top of Stack Program Counter Bank Select Register
Table Pointer (16-bit)Table Latch (16-bit) consists of high byte (TBLATH)and low byte (TBLATL)Table Latch low byteTable Latch high byteTop of StackProgram CounterBank Select RegisterWatchdog Timer Counter
Table Pointer (16-bit)Table Latch (16-bit) consists of high byte (TBLATH) and low byte (TBLATL)Table Latch low byteTable Latch high byteTop of StackProgram CounterBank Select RegisterWatchdog Timer CounterTime-out bit
Table Pointer (16-bit)Table Latch (16-bit) consists of high byte (TBLATH) and low byte (TBLATL)Table Latch low byteTable Latch high byteTop of StackProgram CounterBank Select RegisterWatchdog Timer CounterTime-out bitPower-down bitDestination either the WREG register or the speci-
Table Pointer (16-bit)Table Latch (16-bit) consists of high byte (TBLATH) and low byte (TBLATL)Table Latch low byteTable Latch high byteTop of StackProgram CounterBank Select RegisterWatchdog Timer CounterTime-out bitPower-down bitDestination either the WREG register or the specified register file location
Table Pointer (16-bit)Table Latch (16-bit) consists of high byte (TBLATH)and low byte (TBLATL)Table Latch low byteTable Latch high byteTop of StackProgram CounterBank Select RegisterWatchdog Timer CounterTime-out bitPower-down bitDestination either the WREG register or the specified register file locationOptions
Table Pointer (16-bit)Table Latch (16-bit) consists of high byte (TBLATH) and low byte (TBLATL)Table Latch low byteTable Latch high byteTop of StackProgram CounterBank Select RegisterWatchdog Timer CounterTime-out bitPower-down bitDestination either the WREG register or the specified register file locationOptionsContents
Table Pointer (16-bit) Table Latch (16-bit) consists of high byte (TBLATH) and low byte (TBLATL) Table Latch low byte Table Latch high byte Top of Stack Program Counter Bank Select Register Watchdog Timer Counter Time-out bit Power-down bit Destination either the WREG register or the speci- fied register file location Options Contents Assigned to

Table 15-2 lists the instructions recognized by the MPASM assembler.

Note 1:	Any unused opcode is Reserved. Use of						
	any reserved opcode may cause unex-						
	pected operation.						

Note 2: The shaded instructions are not available in the PIC17C42

All instruction examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

To represent a binary number:

0000 0100b

where b signifies a binary string.

FIGURE 15-1: GENERAL FORMAT FOR INSTRUCTIONS

15.1 <u>Special Function Registers as</u> <u>Source/Destination</u>

The PIC17C4X's orthogonal instruction set allows read and write of all file registers, including special function registers. There are some special situations the user should be aware of:

15.1.1 ALUSTA AS DESTINATION

If an instruction writes to ALUSTA, the Z, C, DC and OV bits may be set or cleared as a result of the instruction and overwrite the original data bits written. For example, executing CLRF ALUSTA will clear register ALUSTA, and then set the Z bit leaving 0000 0100b in the register.

15.1.2 PCL AS SOURCE OR DESTINATION

Read, write or read-modify-write on PCL may have the following results:

Read PC:	$\text{PCH} \rightarrow \text{PCLATH}; \text{PCL} \rightarrow \text{dest}$
Write PCL:	PCLATH \rightarrow PCH; 8-bit destination value \rightarrow PCL
Read-Modify-Write:	$PCL \rightarrow ALU$ operand $PCLATH \rightarrow PCH$; 8-bit result $\rightarrow PCL$

Where PCH = program counter high byte (not an addressable register), PCLATH = Program counter high holding latch, dest = destination, WREG or f.

15.1.3 BIT MANIPULATION

All bit manipulation instructions are done by first reading the entire register, operating on the selected bit and writing the result back (read-modify-write). The user should keep this in mind when operating on special function registers, such as ports.

Mnemonic,		Description		16-bit Opcode			e	Status	Notes
Operands				MSb			LSb	Affected	
TABLWT	t,i,f	Table Write	2	1010	11ti	ffff	ffff	None	5
TLRD	t,f	Table Latch Read	1	1010	00tx	ffff	ffff	None	
TLWT	t,f	Table Latch Write	1	1010	01tx	ffff	ffff	None	
TSTFSZ	f	Test f, skip if 0	1 (2)	0011	0011	ffff	ffff	None	6,8
XORWF	f,d	Exclusive OR WREG with f	1	0000	110d	ffff	ffff	Z	
BIT-ORIENT	ED FIL	E REGISTER OPERATIONS	1						
BCF	f,b	Bit Clear f	1	1000	1bbb	ffff	ffff	None	
BSF	f,b	Bit Set f	1	1000	0bbb	ffff	ffff	None	
BTFSC	f,b	Bit test, skip if clear	1 (2)	1001	1bbb	ffff	ffff	None	6,8
BTFSS	f,b	Bit test, skip if set	1 (2)	1001	0bbb	ffff	ffff	None	6,8
BTG	f,b	Bit Toggle f	1	0011	1bbb	ffff	ffff	None	
LITERAL AN	ID CO	NTROL OPERATIONS							
ADDLW	k	ADD literal to WREG	1	1011	0001	kkkk	kkkk	OV,C,DC,Z	
ANDLW	k	AND literal with WREG	1	1011	0101	kkkk	kkkk	Z	
CALL	k	Subroutine Call	2	111k	kkkk	kkkk	kkkk	None	7
CLRWDT	_	Clear Watchdog Timer	1	0000	0000	0000	0100	TO,PD	
GOTO	k	Unconditional Branch	2	110k	kkkk	kkkk	kkkk	None	7
IORLW	k	Inclusive OR literal with WREG	1	1011	0011	kkkk	kkkk	Z	
LCALL	k	Long Call	2	1011	0111	kkkk	kkkk	None	4,7
MOVLB	k	Move literal to low nibble in BSR	1	1011	1000	uuuu	kkkk	None	
MOVLR	k	Move literal to high nibble in BSR	1	1011	101x	kkkk	uuuu	None	9
MOVLW	k	Move literal to WREG	1	1011	0000	kkkk	kkkk	None	
MULLW	k	Multiply literal with WREG	1	1011	1100	kkkk	kkkk	None	9
RETFIE	_	Return from interrupt (and enable interrupts)	2	0000	0000	0000	0101	GLINTD	7
RETLW	k	Return literal to WREG	2	1011	0110	kkkk	kkkk	None	7
RETURN	_	Return from subroutine	2	0000	0000	0000	0010	None	7
SLEEP	_	Enter SLEEP Mode	1	0000	0000	0000	0011	TO, PD	
SUBLW	k	Subtract WREG from literal	1	1011	0010	kkkk	kkkk	OV,C,DC,Z	
XORLW	k	Exclusive OR literal with WREG	1	1011	0100	kkkk	kkkk	Z	

TABLE 15-2: PIC17CXX INSTRUCTION SET (Cont.'d)

Legend: Refer to Table 15-1 for opcode field descriptions.

Note 1: 2's Complement method.

- 2: Unsigned arithmetic.
- 3: If s = '1', only the file is affected: If s = '0', both the WREG register and the file are affected; If only the Working register (WREG) is required to be affected, then f = WREG must be specified.
- 4: During an LCALL, the contents of PCLATH are loaded into the MSB of the PC and kkkk kkkk is loaded into the LSB of the PC (PCL)
- Multiple cycle instruction for EPROM programming when table pointer selects internal EPROM. The instruction is terminated by an interrupt event. When writing to external program memory, it is a two-cycle instruction.
- 6: Two-cycle instruction when condition is true, else single cycle instruction.
- 7: Two-cycle instruction except for TABLRD to PCL (program counter low byte) in which case it takes 3 cycles.
- 8: A "skip" means that instruction fetched during execution of current instruction is not executed, instead an NOP is executed.
- 9: These instructions are not available on the PIC17C42.

CLRWDT	Clear Wa	tchdog	Timer			
Syntax:	[label]	[label] CLRWDT				
Operands:	None	None				
Operation:						
Status Affected:	TO, PD					
Encoding:	0000	0000	0000	0100		
Description:	CLRWDT instruction resets the watchdo timer. It also resets the prescaler of th WDT. Status bits TO and PD are set.			caler of the		
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3		Q4		
Q1 Decode	Q2 Read register ALUSTA	Q3 Execu		Q4 NOP		
	Read register					
Decode	Read register ALUSTA CLRWDT					

COMF	Complem	nent f				
Syntax:	[label] (COMF	f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \ [0,1] \end{array}$	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \ [0,1] \end{array}$				
Operation:	$(\overline{f}) \rightarrow (d$	lest)				
Status Affected:	Z					
Encoding:	0001	001d	ffff	ffff		
Description:	mented. If ' WREG. If 'd	The contents of register 'f' are comple- mented. If 'd' is 0 the result is stored in WREG. If 'd' is 1 the result is stored back in register 'f'.				
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3		Q4		
Decode	Read register 'f'	Execu		Write gister 'f'		
Example:	COMF	REG	1,0			
Before Instru REG1	uction = 0x13					
After Instruc REG1 WREG	= 0x13					

SWAPF	Swap f					
Syntax:	[label]	SWAPF	f,d			
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \ [0,1] \end{array}$	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \ [0,1] \end{array}$				
Operation:		$f < 3:0 > \rightarrow dest < 7:4 >;$ $f < 7:4 > \rightarrow dest < 3:0 >$				
Status Affected:	None					
Encoding:	0001	110d	ffff	ffff		
Description:	Description: The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0 the result is placed in WREG. If 'd' is 1 the result is placed in register 'f'.					
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q	3	Q4		
Decode	Read register 'f'	Exect		Vrite to stination		
Example:	SWAPF I	REG,	0			
Before Instruction REG = 0x53						
After Instruction REG = 0x35						

TABLRD	Table Rea	d			
Syntax:	[label] TABLRD t,i,f				
Operands:	$0 \le f \le 255$ $i \in [0,1]$ $t \in [0,1]$				
Operation:	If t = 1, TBLATH \rightarrow f; If t = 0, TBLATL \rightarrow f; Prog Mem (TBLPTR) \rightarrow TBLAT; If i = 1, TBLPTR + 1 \rightarrow TBLPTR				
Status Affected:	None				
Encoding:	1010	10ti ff	ff ffff		
Description:	 A byte of the table latch (TBLAT) is moved to register file 'f'. If t = 0: the high byte is moved; If t = 1: the low byte is moved 				
	 Then the contents of the program memory location pointed to by the 16-bit Table Pointer (TBLPTR) is loaded into the 16-bit Table Latch (TBLAT). If i = 1: TBLPTR is incremented; If i = 0: TBLPTR is not incremented 				
Words:	1				
Cycles:	2 (3 cycle	if f = PCL)			
Q Cycle Activity:					
Q1	Q2	Q3	Q4		
Decode	Read register TBLATH or TBLATL	Execute	Write register 'f'		

16.6 <u>PICDEM-1 Low-Cost PIC16/17</u> <u>Demonstration Board</u>

The PICDEM-1 is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The users can program the sample microcontrollers provided with the PICDEM-1 board, on a PRO MATE II or PICSTART-16B programmer, and easily test firmware. The user can also connect the PICDEM-1 board to the PICMASTER emulator and download the firmware to the emulator for testing. Additional prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push-button switches and eight LEDs connected to PORTB.

16.7 <u>PICDEM-2 Low-Cost PIC16CXX</u> Demonstration Board

The PICDEM-2 is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-2 board, on a PRO MATE II programmer or PICSTART-16C, and easily test firmware. The PICMASTER emulator may also be used with the PICDEM-2 board to test firmware. Additional prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push-button switches, a potentiometer for simulated analog input, a Serial EEPROM to demonstrate usage of the I²C bus and separate headers for connection to an LCD module and a keypad.

16.8 <u>PICDEM-3 Low-Cost PIC16CXXX</u> Demonstration Board

The PICDEM-3 is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with a LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-3 board, on a PRO MATE II programmer or PICSTART Plus with an adapter socket, and easily test firmware. The PICMASTER emulator may also be used with the PICDEM-3 board to test firmware. Additional prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include an RS-232 interface, push-button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM-3 board is an LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM-3 provides an additional RS-232 interface and Windows 3.1 software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals. PICDEM-3 will be available in the 3rd quarter of 1996.

16.9 <u>MPLAB Integrated Development</u> <u>Environment Software</u>

The MPLAB IDE Software brings an ease of software development previously unseen in the 8-bit microcontroller market. MPLAB is a windows based application which contains:

- · A full featured editor
- Three operating modes
 - editor
 - emulator
 - simulator
- A project manager
- Customizable tool bar and key mapping
- A status bar with project information
- Extensive on-line help

MPLAB allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC16/17 tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
- Transfer data dynamically via DDE (soon to be replaced by OLE)
- Run up to four emulators on the same PC

The ability to use MPLAB with Microchip's simulator allows a consistent platform and the ability to easily switch from the low cost simulator to the full featured emulator with minimal retraining due to development tools.

16.10 Assembler (MPASM)

The MPASM Universal Macro Assembler is a PChosted symbolic assembler. It supports all microcontroller series including the PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX, and PIC17CXX families.

MPASM offers full featured Macro capabilities, conditional assembly, and several source and listing formats. It generates various object code formats to support Microchip's development tools as well as third party programmers.

Applicable Devices 42 R42 42A 43 R43 44

17.4 <u>Timing Diagrams and Specifications</u>

TABLE 17-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency (Note 1)	DC DC		16 25	MHz MHz	EC osc mode - PIC17C42-16 - PIC17C42-25
		Oscillator Frequency (Note 1)	DC 1 1 DC		4 16 25 2	MHz MHz MHz MHz	RC osc mode XT osc mode - PIC17C42-16 - PIC17C42-25 LF osc mode
1	Tosc	External CLKIN Period (Note 1)	62.5 40		_	ns ns	EC osc mode - PIC17C42-16 - PIC17C42-25
		Oscillator Period (Note 1)	250 62.5 40 500		 1,000 1,000 	ns ns ns ns	RC osc mode XT osc mode - PIC17C42-16 - PIC17C42-25 LF osc mode
2	Тсү	Instruction Cycle Time (Note 1)	160	4/Fosc	DC	ns	
3	TosL, TosH	Clock in (OSC1) High or Low Time	10‡	_	—	ns	EC oscillator
4	TosR, TosF	Clock in (OSC1) Rise or Fall Time	—	—	5‡	ns	EC oscillator

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

Note 1: Instruction cycle period (Tcγ) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 18-2: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

FIGURE 18-3: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 18-9: TYPICAL IPD vs. VDD WATCHDOG DISABLED 25°C

FIGURE 18-10: MAXIMUM IPD vs. VDD WATCHDOG DISABLED

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 18-12: MAXIMUM IPD vs. VDD WATCHDOG ENABLED

Applicable Devices 42 R42 42A 43 R43 44

19.0 PIC17CR42/42A/43/R43/44 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

5	
Ambient temperature under bias	55 to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0.6V to +14V
Voltage on RA2 and RA3 with respect to Vss	0.6V to +14V
Voltage on all other pins with respect to Vss	0.6V to VDD + 0.6V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin(s) - total	250 mA
Maximum current into VDD pin(s) - total	200 mA
Input clamp current, IiK (VI < 0 or VI > VDD)	±20 mA
Output clamp current, loк (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin (except RA2 and RA3)	35 mA
Maximum output current sunk by RA2 or RA3 pins	
Maximum output current sourced by any I/O pin	20 mA
Maximum current sunk by PORTA and PORTB (combined)	150 mA
Maximum current sourced by PORTA and PORTB (combined)	100 mA
Maximum current sunk by PORTC, PORTD and PORTE (combined)	150 mA
Maximum current sourced by PORTC, PORTD and PORTE (combined)	100 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD-V	'OH) x IOH} + Σ (VOL x IOL)

Note 2: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Applicable Devices 42 R42 42A 43 R43 44

TABLE 19-1:CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC17LCR42-08 PIC17LC42A-08 PIC17LC43-08 PIC17LCR43-08 PIC17LCR43-08 PIC17LC44-08	PIC17CR42-16 PIC17C42A-16 PIC17C43-16 PIC17CR43-16 PIC17CR43-16	PIC17CR42-25 PIC17C42A-25 PIC17C43-25 PIC17CR43-25 PIC17CR43-25	PIC17CR42-33 PIC17C42A-33 PIC17C43-33 PIC17CR43-33 PIC17CR43-33	JW Devices (Ceramic Windowed Devices)
RC	VDD: 2.5V to 6.0V IDD: 6 mA max.	VDD: 4.5V to 6.0V IDD: 6 mA max. IPD: 5 u A max at 5.5V	VDD: 4.5V to 6.0V DD: 6 mA max. PD' 5 ii A max at 5.5V	VDD: 4.5V to 6.0V IDD: 6 mA max. IDD: 5 IIA max at 5.5V	VDD: 4.5V to 6.0V IDD: 6 mA max. IDD: 5 i.A max at 5.5V
	WDT disabled Freq: 4 MHz max.		÷÷		÷
XT	VDD: 2.5V to 6.0V IDD: 12 mA max. IPD: 5 μA max. WDT disabled Fred: 8 MH7 max	VDD: 4.5V to 6.0V IDD: 24 mA max. IPD: 5 μA max. at 5.5V WDT disabled Fred: 16 MHz max	VDD: 4.5V to 6.0V IDD: 38 mA max. IPD: 5 μA max. at 5.5V WDT disabled Free: 25 MHz max	VDD: 4.5V to 6.0V IDD: 38 mA max. IPD: 5 µA max. at 5.5V WDT disabled Fren: 33 MH7 max	VDD: 4.5V to 6.0V IDD: 38 mA max. IPD: 5 μA max. at 5.5V WDT disabled Freer: 33 MH7 max
С Ш	-	VDD: 4.5V to 6.0V IDD: 24 mA max. IPD: 5 μA max. at 5.5V WDT disabled Freq: 16 MHz Max	VDD: 4.5V to 6.0V IDD: 38 mA max. IPD: 5 μA max. at 5.5V WDT disabled Freq: 25 MHz max.	VDD: 4.5V to 6.0V IDD: 38 mA max. IPD: 5 µA max. at 5.5V WDT disabled Freq: 33 MHz max.	VDD: 4.5V to 6.0V IDD: 38 mA max. IPD: 5 μA max. at 5.5V WDT disabled Freq: 33 MHz max.
5	VDD: 2.5V to 6.0V IDD: 150 μA max. at 32 kHz IPD: 5 μA max. at 5.5V WDT disabled Freq: 2 MHz max.	VDD: 4.5V to 6.0V Iz IDD: 95 μA typ. at 32 kHz IPD: < 1 μA typ. at 5.5V	VDD: 4.5V to 6.0V IDD: 95 μA typ. at 32 kHz IPD: <1 μA typ. at 5.5V WDT disabled Freq: 2 MHz max.	VDD: 4.5V to 6.0V IDD: 95 μA typ. at 32 kHz IPD: <1 μA typ. at 5.5V WDT disabled Freq: 2 MHz max.	VpD: 2.5V to 6.0V IDD: 150 μA max. at 32 kHz IPD: 5 μA max. at 5.5V WDT disabled Freq: 2 MHz max.
The st	The shaded sections indicate oscillator selections which are te select the device type that ensures the specifications required	The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user elect the device type that ensures the specifications required	for functionality, but not for M	N/MAX specifications. It is re-	commended that the user

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 20-13: WDT TIMER TIME-OUT PERIOD vs. VDD

FIGURE 20-14: IOH vs. VOH, VDD = 3V

Indirect Addressing	
Indirect Addressing	
Registers	
Initialization Conditions For Special Function Registers 19	
Initializing PORTB	
Initializing PORTC	
Initializing PORTD60	
Initializing PORTE	
Instruction Flow/Pipelining14 Instruction Set	
ADDLW	
ADDWF	
ADDWFC 113	
ANDLW113	
ANDWF	
BCF	
BSF	
BTFSS	
BTG	
CALL	
CLRF 117	
CLRWDT	
COMF	
CPFSEQ	
CPFSGT	
DAW	
DECF	
DECFSNZ 122	
DECFSZ 121	
GOTO	
INCF	
INCEST	
IORLW	
IORWF	
LCALL 125	
MOVFP	
MOVLB	
MOVLR	
MOVEW	
MOVWF	
MULLW	
MULWF 129	
NEGW	
NOP	
RETFIE	
RETURN	
RLCF	
RLNCF	
RRCF	
RRNCF	
SETF	
SLEEP	
SUBLW	
SUBWF	
SWAPF	
TABLRD137, 138	
TABLWT	
TLRD	
TLWT140	

TSTFSZ	140
XORLW	141
XORWF	141
Instruction Set Summary	107
NT Pin	26
NTE	22
NTEDG	38, 67
Interrupt on Change Feature	55
Interrupt Status Register (INTSTA)	
Interrupts	
Context Saving	27
Flag bits	
TMR1IE	21
TMR1IF	21
TMR2IE	21
TMR2IF	21
TMR3IE	21
TMR3IF	21
Interrupts	21
Logic	21
Operation	
Peripheral Interrupt Enable	
Peripheral Interrupt Request	24
PWM	76
Status Register	22
Table Write Interaction	
Timing	26
Vectors	
Peripheral Interrupt	26
RA0/INT Interrupt	26
T0CKI Interrupt	26
TMR0 Interrupt	26
Vectors/Priorities	25
Wake-up from SLEEP	105
NTF	22
NTSTA	34
NTSTA Register	22
ORLW	124
ORWF	

L

LCALL	125
Long Writes	45

М

Memory	
External Interface	31
External Memory Waveforms	31
Memory Map (Different Modes)	30
Mode Memory Access	30
Organization	29
Program Memory	29
Program Memory Map	29
Microcontroller	29
Microprocessor	29
Minimizing Current Consumption	106
MOVFP	126
MOVLB	126
MOVLR	127
MOVLW	127
MOVPF	128
MOVWF	128
MPASM Assembler	143, 144