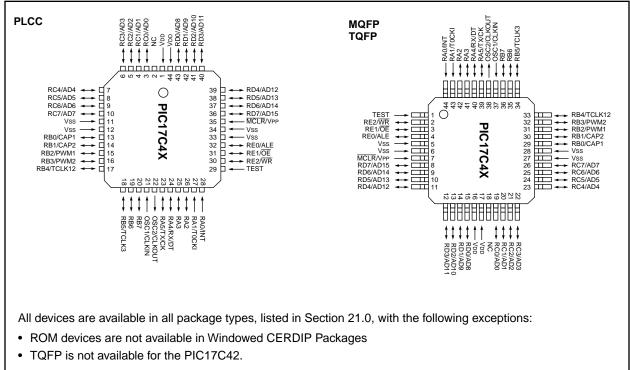


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	8KB (4K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c43t-16e-pq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams Cont.'d

5.1 Interrupt Status Register (INTSTA)

The Interrupt Status/Control register (INTSTA) records the individual interrupt requests in flag bits, and contains the individual interrupt enable bits (not for the peripherals).

The PEIF bit is a read only, bit wise OR of all the peripheral flag bits in the PIR register (Figure 5-4).

Note: T0IF, INTF, T0CKIF, or PEIF will be set by the specified condition, even if the corresponding interrupt enable bit is clear (interrupt disabled) or the GLINTD bit is set (all interrupts disabled).

Care should be taken when clearing any of the INTSTA register enable bits when interrupts are enabled (GLINTD is clear). If any of the INTSTA flag bits (T0IF, INTF, T0CKIF, or PEIF) are set in the same instruction cycle as the corresponding interrupt enable bit is cleared, the device will vector to the reset address (0x00).

When disabling any of the INTSTA enable bits, the GLINTD bit should be set (disabled).

FIGURE 5-2: INTSTA REGISTER (ADDRESS: 07h, UNBANKED)

bit $W = V$	eadable bit /ritable bit /alue at POR reset
bit 7: PEIF : Peripheral Interrupt Flag bit This bit is the OR of all peripheral interrupt flag bits AND'ed with their corres 1 = A peripheral interrupt is pending	/alue at POR reset
bit 7: PEIF : Peripheral Interrupt Flag bit This bit is the OR of all peripheral interrupt flag bits AND'ed with their corres 1 = A peripheral interrupt is pending	
	ponding enable bits.
 bit 6: TOCKIF: External Interrupt on TOCKI Pin Flag bit This bit is cleared by hardware, when the interrupt logic forces program exercised 1 = The software specified edge occurred on the RA1/T0CKI pin 0 = The software specified edge did not occur on the RA1/T0CKI pin 	cution to vector (18h).
bit 5: T0IF : TMR0 Overflow Interrupt Flag bit This bit is cleared by hardware, when the interrupt logic forces program exer 1 = TMR0 overflowed 0 = TMR0 did not overflow	cution to vector (10h).
 bit 4: INTF: External Interrupt on INT Pin Flag bit This bit is cleared by hardware, when the interrupt logic forces program exercise 1 = The software specified edge occurred on the RA0/INT pin 0 = The software specified edge did not occur on the RA0/INT pin 	cution to vector (08h).
 bit 3: PEIE: Peripheral Interrupt Enable bit This bit enables all peripheral interrupts that have their corresponding enabl 1 = Enable peripheral interrupts 0 = Disable peripheral interrupts 	e bits set.
bit 2: TOCKIE : External Interrupt on TOCKI Pin Enable bit 1 = Enable software specified edge interrupt on the RA1/TOCKI pin 0 = Disable interrupt on the RA1/TOCKI pin	
bit 1: T0IE : TMR0 Overflow Interrupt Enable bit 1 = Enable TMR0 overflow interrupt 0 = Disable TMR0 overflow interrupt	
bit 0: INTE : External Interrupt on RA0/INT Pin Enable bit 1 = Enable software specified edge interrupt on the RA0/INT pin 0 = Disable software specified edge interrupt on the RA0/INT pin	

6.1.2 EXTERNAL MEMORY INTERFACE

When either microprocessor or extended microcontroller mode is selected, PORTC, PORTD and PORTE are configured as the system bus. PORTC and PORTD are the multiplexed address/data bus and PORTE is for the control signals. External components are needed to demultiplex the address and data. This can be done as shown in Figure 6-4. The waveforms of address and data are shown in Figure 6-3. For complete timings, please refer to the electrical specification section.

FIGURE 6-3: EXTERNAL PROGRAM MEMORY ACCESS WAVEFORMS

:	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 Q1							
AD	X								
<15:0>	Address out Data in	Address out Data out							
ALE									
OE	'4'	· · · ·							
WR	'1'	<u> </u>							
	Read cycle	Write cycle							
		, white cycle							

The system bus requires that there is no bus conflict (minimal leakage), so the output value (address) will be capacitively held at the desired value.

As the speed of the processor increases, external EPROM memory with faster access time must be used. Table 6-2 lists external memory speed requirements for a given PIC17C4X device frequency.

In extended microcontroller mode, when the device is executing out of internal memory, the control signals will continue to be active. That is, they indicate the action that is occurring in the internal memory. The external memory access is ignored.

This following selection is for use with Microchip EPROMs. For interfacing to other manufacturers memory, please refer to the electrical specifications of the desired PIC17C4X device, as well as the desired memory device to ensure compatibility.

TABLE 6-2:	EPROM MEMORY ACCESS
	TIME ORDERING SUFFIX

PIC17C4X	Instruction	EPRON	OM Suffix		
Oscillator Frequency	Cycle Time (Tcy)	PIC17C42	PIC17C43 PIC17C44		
8 MHz	500 ns	-25	-25		
16 MHz	250 ns	-12	-15		
20 MHz	200 ns	-90	-10		
25 MHz	160 ns	N.A.	-70		
33 MHz	121 ns	N.A.	(1)		

Note 1: The access times for this requires the use of fast SRAMS.

Note: The external memory interface is not supported for the LC devices.

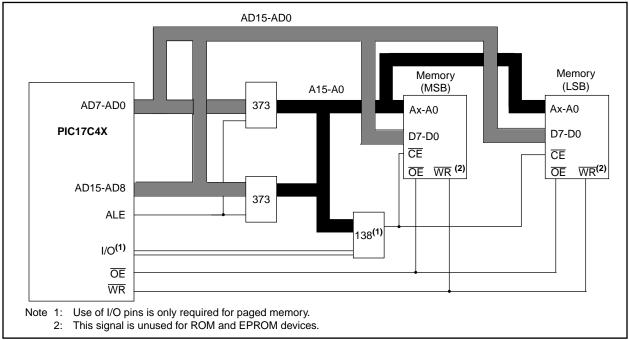


FIGURE 6-4: TYPICAL EXTERNAL PROGRAM MEMORY CONNECTION DIAGRAM

© 1996 Microchip Technology Inc.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (3)
Bank 2	Bank 2										
10h	TMR1	Timer1								xxxx xxxx	uuuu uuuu
11h	TMR2	Timer2								xxxx xxxx	uuuu uuuu
12h	TMR3L	TMR3 reg	ister; low b	yte						xxxx xxxx	uuuu uuuu
13h	TMR3H	TMR3 reg	ister; high l	oyte						xxxx xxxx	uuuu uuuu
14h	PR1	Timer1 pe	eriod registe	er						xxxx xxxx	uuuu uuuu
15h	PR2	Timer2 pe	eriod registe	er						xxxx xxxx	uuuu uuuu
16h	PR3L/CA1L	Timer3 pe	eriod registe	er, low byte/c	apture1 regi	ster; low by	te			xxxx xxxx	uuuu uuuu
17h	PR3H/CA1H	Timer3 pe	eriod registe	er, high byte/	capture1 reg	jister; high b	oyte			xxxx xxxx	uuuu uuuu
Bank 3											
10h	PW1DCL	DC1	DC0	—	—	—	—	_	—	xx	uu
11h	PW2DCL	DC1	DC0	TM2PW2	_	—	—	_	_	xx0	uu0
12h	PW1DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	xxxx xxxx	uuuu uuuu
13h	PW2DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	xxxx xxxx	uuuu uuuu
14h	CA2L	Capture2	low byte							xxxx xxxx	uuuu uuuu
15h	CA2H	Capture2	high byte							xxxx xxxx	uuuu uuuu
16h	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h	TCON2	CA2OVF	CA10VF	PWM2ON	PWM10N	CA1/PR3	TMR3ON	TMR2ON	TMR10N	0000 0000	0000 0000
Unbanke	ed										
18h ⁽⁵⁾	PRODL	Low Byte	of 16-bit Pr	oduct (8 x 8	Hardware M	lultiply)				XXXX XXXX	uuuu uuuu
19h ⁽⁵⁾	PRODH	High Byte	of 16-bit P	roduct (8 x 8	B Hardware N	/lultiply)				xxxx xxxx	uuuu uuuu
Legend:	egend: x = unknown, u = unchanged, - = unimplemented read as '0', q - value depends on condition. Shaded cells are unimplemented, read as '0'.										

TABLE 6-3: SPECIAL FUNCTION REGISTERS (Cont.'d)

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<15:8> whose contents are updated from or transferred to the upper byte of the program counter. The TO and PD status bits in CPUSTA are not affected by a MCLR reset. Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset. The following values are for both TBLPTRL and TBLPTRH:

2:

3: 4:

All PIC17C4X devices (Power-on Reset 0000 0000) and (All other resets 0000 0000) except the PIC17C42 (Power-on Reset xxxx xxxx) and (All other resets uuuu uuuu) The PRODL and PRODH registers are not implemented on the PIC17C42.

5:

6.2.2.3 TMR0 STATUS/CONTROL REGISTER (T0STA)

This register contains various control bits. Bit7 (INTEDG) is used to control the edge upon which a signal on the RA0/INT pin will set the RB0/INT interrupt flag. The other bits configure the Timer0 prescaler and clock source. (Figure 11-1).

FIGURE 6-9: T0STA REGISTER (ADDRESS: 05h, UNBANKED)

R/W - 0	R/W - 0	R/W - 0	R/W - 0	R/W - 0	R/W - 0	R/W - 0	U - 0		
INTEDG bit7	TOSE	TOCS	PS3	PS2	PS1	PS0	bit0	R = Readable bit W = Writable bit U = Unimplemented, reads as '0' -n = Value at POR reset	
bit 7:	INTEDG: R This bit sele 1 = Rising e 0 = Falling e	ects the ed edge of RA	ge upon w 0/INT pin g	hich the in generates i	terrupt is d nterrupt	etected.			
bit 6:		ects the ed S = 0 edge of RA edge of RA	ge upon w 1/T0CKI pi	hich TMRC	nts TMR0 a	and/or gene		CKIF interrupt CKIF interrupt	
bit 5:	TOCS : Timer0 Clock Source Select bit This bit selects the clock source for Timer0. 1 = Internal instruction clock cycle (TcY) 0 = T0CKI pin								
bit 4-1:	PS3:PS0: 7 These bits				ner0.				
	PS3:PS0	Pre	scale Valu	е					
	0000 001 0010 010 0100 0101 0110 0111 1xxx		1:1 1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256						
bit 0:	Unimplem	ented : Rea	id as '0'						

Example 8-4 shows the sequence to do an 16 x 16 signed multiply. Equation 8-2 shows the algorithm that used. The 32-bit result is stored in four registers RES3:RES0. To account for the sign bits of the arguments, each argument pairs most significant bit (MSb) is tested and the appropriate subtractions are done.

EQUATION 8-2:	16 x 16 SIGNED
	MULTIPLICATION
	ALGORITHM

RES3:RES0

- = ARG1H:ARG1L * ARG2H:ARG2L
- - (-1 * ARG1H<7> * ARG2H:ARG2L * 2¹⁶)

EXAMPLE 8-4: 16 x 16 SIGNED MULTIPLY

	ROUTINE									
	MOVFP	ARG1L, WREG								
	MULWF	ARG2L	;	ARG1L * ARG2L ->						
				PRODH:PRODL						
	MOVPF	PRODH, RES1								
		PRODL, RESO								
;		- ,								
	MOVFP	ARG1H, WREG								
				ARG1H * ARG2H ->						
	110201	into bii	;							
	MOVPF	PRODH, RES3		TRODUCTRODE						
		PRODL, RES2								
;	110 11 1	TRODE, REDZ	'							
'	MOVFP	ARG1L, WREG								
				ARG1L * ARG2H ->						
	HOLMI	111(0211	;							
	MOVFP	PRODL, WREG		TRODITITRODE						
				Add cross						
			;	products						
		WREG, F	;							
	ADDWFC	RES3, F	;							
;	NOTED									
		ARG1H, WREG	'	100111 + 10001						
	MULWF	ARG2L		ARG1H * ARG2L ->						
			,	PRODH:PRODL						
	MOMED									
		PRODL, WREG		Add among						
	ADDWF	RES1, F								
		PRODH, WREG		products						
			;							
	CLRF	WREG, F	;							
	ADDWFC	RES3, F	;							
;										
		ARG2H, 7	'	ARG2H:ARG2L neg?						
				no, check ARG1						
	MOVFP	ARG1L, WREG								
		RES2	;							
	MOVFP	ARG1H, WREG	;							
	SUBWFB	RES3								
;										
SIC	GN_ARG1									
				ARG1H:ARG1L neg?						
	GOTO	CONT_CODE		no, done						
		ARG2L, WREG								
	SUBWF	RES2	;							
	MOVFP	ARG2H, WREG	;							
	SUBWFB	RES3								
;										
COI	NT_CODE									
	:									

12.0 TIMER1, TIMER2, TIMER3, PWMS AND CAPTURES

The PIC17C4X has a wealth of timers and time-based functions to ease the implementation of control applications. These time-base functions include two PWM outputs and two Capture inputs.

Timer1 and Timer2 are two 8-bit incrementing timers, each with a period register (PR1 and PR2 respectively) and separate overflow interrupt flags. Timer1 and Timer2 can operate either as timers (increment on internal Fosc/4 clock) or as counters (increment on falling edge of external clock on pin RB4/TCLK12). They are also software configurable to operate as a single 16-bit timer. These timers are also used as the time-base for the PWM (pulse width modulation) module. Timer3 is a 16-bit timer/counter consisting of the TMR3H and TMR3L registers. This timer has four other associated registers. Two registers are used as a 16-bit period register or a 16-bit Capture1 register (PR3H/CA1H:PR3L/CA1L). The other two registers are strictly the Capture2 registers (CA2H:CA2L). Timer3 is the time-base for the two 16-bit captures.

TMR3 can be software configured to increment from the internal system clock or from an external signal on the RB5/TCLK3 pin.

Figure 12-1 and Figure 12-2 are the control registers for the operation of Timer1, Timer2, and Timer3, as well as PWM1, PWM2, Capture1, and Capture2.

FIGURE 12-1: TCON1 REGISTER (ADDRESS: 16h, BANK 3)

bit7	I CA2ED0 CA1ED1 CA1ED0 T16 TMR3CS TMR2CS TMR1CS bit0	R = Readable bit W = Writable bit -n = Value at POR reset
bit 7-6:	CA2ED1:CA2ED0 : Capture2 Mode Select bits 00 = Capture on every falling edge 01 = Capture on every rising edge 10 = Capture on every 4th rising edge 11 = Capture on every 16th rising edge	
bit 5-4:	CA1ED1:CA1ED0 : Capture1 Mode Select bits 00 = Capture on every falling edge 01 = Capture on every rising edge 10 = Capture on every 4th rising edge 11 = Capture on every 16th rising edge	
bit 3:	T16 : Timer1:Timer2 Mode Select bit 1 = Timer1 and Timer2 form a 16-bit timer 0 = Timer1 and Timer2 are two 8-bit timers	
bit 2:	TMR3CS : Timer3 Clock Source Select bit 1 = TMR3 increments off the falling edge of the RB5/TCLK3 pin 0 = TMR3 increments off the internal clock	
bit 1:	TMR2CS : Timer2 Clock Source Select bit 1 = TMR2 increments off the falling edge of the RB4/TCLK12 pin 0 = TMR2 increments off the internal clock	
bit 0:	TMR1CS : Timer1 Clock Source Select bit 1 = TMR1 increments off the falling edge of the RB4/TCLK12 pin 0 = TMR1 increments off the internal clock	

FIGURE 13-2: RCSTA REGISTER (ADDRESS: 13h, BANK 0)

SPEN	N.W0 R/W - 0 R/W - 0 U - 0 R - 0 R - 0 R - x RX9 SREN CREN — FERR OERR RX9D R = Readable bit
bit7	bit 0 W = Writable bit -n = Value at POR reset (x = unknown)
bit 7:	SPEN : Serial Port Enable bit 1 = Configures RA5/RX/DT and RA4/TX/CK pins as serial port pins 0 = Serial port disabled
bit 6:	RX9 : 9-bit Receive Enable bit 1 = Selects 9-bit reception 0 = Selects 8-bit reception
bit 5:	SREN: Single Receive Enable bit This bit enables the reception of a single byte. After receiving the byte, this bit is automatically cleared. Synchronous mode: 1 = Enable reception 0 = Disable reception Note: This bit is ignored in synchronous slave reception. Asynchronous mode: Don't care
bit 4:	CREN: Continuous Receive Enable bit This bit enables the continuous reception of serial data. <u>Asynchronous mode:</u> 1 = Enable reception 0 = Disables reception <u>Synchronous mode:</u> 1 = Enables continuous reception until CREN is cleared (CREN overrides SREN) 0 = Disables continuous reception
bit 3:	Unimplemented: Read as '0'
bit 2:	FERR: Framing Error bit 1 = Framing error (Updated by reading RCREG) 0 = No framing error
bit 1:	OERR: Overrun Error bit 1 = Overrun (Cleared by clearing CREN) 0 = No overrun error
bit 0:	RX9D : 9th bit of receive data (can be the software calculated parity bit)

CPFSEQ	Compare f with WREG, skip if f = WREG		CPF	SGT	-	Compare f with WREG, skip if f > WREG				
Syntax:	[label] CPFSEQ f			Syn	tax:	[label]	[label] CPFSGT f			
Operands:	$0 \le f \le 255$	5		Ope	rands:	$0 \le f \le 255$	5			
Operation:	(f) – (WREG), skip if (f) = (WREG) (unsigned comparison)			Ope	ration:	skip if (f) >	(f) – (WREG), skip if (f) > (WREG) (unsigned comparison)			
Status Affected:	None			Stat	us Affected:	None				
Encoding:	0011	0001 fff	f ffff	Enc	oding:	0011	0010 ff:	ff ffff		
Description:	Compares the contents of data memory location 'f' to the contents of WREG by performing an unsigned subtraction. If 'f' = WREG then the fetched instruc- tion is discarded and an NOP is exe- cuted instead making this a two-cycle instruction.				cription:	location 'f' t by performi If the conte WREG the discarded a instead ma	o the contents ng an unsigne nts of 'f' > the n the fetched in and an NOP is	nstruction is		
Words:	1			14/0 -	de .	tion. 1				
Cycles:	1 (2)			Wor		-				
Q Cycle Activity:				Cyc		1 (2)				
Q1	Q2	Q3	Q4	QC	ycle Activity: Q1	Q2	Q3	Q4		
Decode	Read register 'f'	Execute	NOP		Decode	Read	Execute	NOP		
If skip:				lf sk	in:	register 'f'				
Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4		
Forced NOP	NOP	Execute	NOP		Forced NOP	NOP	Execute	NOP		
Example: HERE CPFSEQ REG NEQUAL : EQUAL :			<u>Exa</u>	mple:	HERE NGREATER GREATER	CPFSGT RE : :	G			
Before Instru PC Addre	Before Instruction				Before Instru	-	·			
WREG REG	ess = HE = ? = ?	RE			PC WREG		dress (HERE)			
REG = ? After Instruction If REG = WREG; PC = Address (EQUAL) If REG ≠ WREG; PC = Address (NEQUAL)					After Instruc If REG PC If REG PC	> Wi = Ad ≤ Wi	REG; Idress (GREAT REG; Idress (NGREZ			

PIC17C4X

DECF	Decreme	nt f		DECFSZ	Decrement f, s	skip if 0	
Syntax:	[label]	DECF f,d		Syntax:	[label] DECF	SZ f,d	
Operands:	0 ≤ f ≤ 255 d ∈ [0,1]	5		Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \ [0,1] \end{array}$		
Operation:	$(f) - 1 \rightarrow ($	(dest)		Operation:	(f) – 1 \rightarrow (dest));	
Status Affected:	OV, C, DC	;, Z			skip if result = 0	0	
Encoding:	0000	011d ff	ff ffff	Status Affected	: None		
Description:	Decrement	register 'f'. If '	d' is 0 the	Encoding:	0001 0110	d ffff	ffff
		ored in WREG		Description:	The contents of r mented. If 'd' is 0	the result is p	laced in
Words:	1				WREG. If 'd' is 1 back in register 'f	•	laced
Cycles:	1				If the result is 0, 1		iction.
Q Cycle Activity:					which is already	fetched, is dis	carded,
Q1	Q2	Q3	Q4		and an NOP is ex ing it a two-cycle		ad mak-
Decode	Read register 'f'	Execute	Write to destination	Words:	1		
Example:	DECF	CNT, 1		Cycles:	1(2)		
Before Instru		- ,		Q Cycle Activit	y:		
CNT	= 0x01			Q1	Q2	Q3	Q4
Z	= 0			Decode			rite to
After Instruc	tion				register 'f'	des	tination
CNT	= 0x00			Example:		CFSZ CNT,	
Z	= 1				GO1 CONTINUE	TO LOOP	2
				Defers inc			
				Before Ins	liucuon		

PC	=	Address (HERE)
After Instruct	ion	
CNT	=	CNT - 1
If CNT	=	0;
PC	=	Address (CONTINUE)
If CNT	≠	0;
PC	=	Address (HERE+1)

PIC17C4X

TLWT	Table Late	ch Write		TSTFSZ	Test f, sk	ip if 0			
Syntax:	[label] T	LWT t,f		Syntax:	[label]	TSTFSZ f			
Operands:	0 ≤ f ≤ 255	$0 \le f \le 255$				Operands:	0 ≤ f ≤ 25	5	
	t ∈ [0,1]			Operation:	skip if f =	0			
Operation:	If $t = 0$,			Status Affected:	None				
	$f \rightarrow TB$ If t = 1,	LAIL;		Encoding:	0011	0011 fff	f ffff		
	$f \rightarrow TB$	LATH		Description:	If 'f' = 0, the	e next instructio	on, fetched		
Status Affected:	None			·		current instructi			
Encoding:	1010	01tx ff:	ff ffff			d and an NOP a two-cycle in			
Description:	Data from fi	ile register 'f' i	s written into	Words:	1	·			
·		able latch (TBI		Cycles:	1 (2)				
	-	byte is writte		Q Cycle Activity:	()				
		byte is written tion is used in		Q1	Q2	Q3	Q4		
			lata from data	Decode	Read	Execute	NOP		
	memory to	program mem	iory.		register 'f'				
Words:	1			If skip:	00	02	04		
Cycles:	1			Q1 Forced NOP	Q2 NOP	Q3 Execute	Q4 NOP		
Q Cycle Activity:							NOI		
Q1	Q2	Q3	Q4	Example:	HERE NZERO	TSTFSZ CNT :			
Decode	Read register 'f'	Execute	Write register		ZERO :	-			
	regioner 1		TBLATH or TBLATL	Before Instru PC = Ado	lction dress(HERE)				
Example:	TLWT t	:, RAM		After Instruct	tion				
Before Instru				If CNT		.00,			
t	= 0			PC If CNT		dress (ZERO) 00,			
RAM TBLAT	= 0xB7 = 0x0000	(TBLATH =	0×00)	PC	= Ac	dress (NZERO)		
IDEAI	- 000000	(TBLATL =							
After Instruct	tion								
RAM	= 0xB7								
TBLAT	= 0x00B7	(TBLATH = (TBLATL =	,						
Before Instru									
t RAM	= 1 = 0xB7								
TBLAT	= 0x0000	(TBLATH = (TBLATL =	,						
After Instruct	tion								
RAM	= 0xB7								
TBLAT	= 0xB700	``	,						
		(TBLATL =	UXUU)						

MPASM allow full symbolic debugging from the Microchip Universal Emulator System (PICMASTER).

MPASM has the following features to assist in developing software for specific use applications.

- Provides translation of Assembler source code to object code for all Microchip microcontrollers.
- Macro assembly capability.
- Produces all the files (Object, Listing, Symbol, and special) required for symbolic debug with Microchip's emulator systems.
- Supports Hex (default), Decimal and Octal source and listing formats.

MPASM provides a rich directive language to support programming of the PIC16/17. Directives are helpful in making the development of your assemble source code shorter and more maintainable.

16.11 Software Simulator (MPLAB-SIM)

The MPLAB-SIM Software Simulator allows code development in a PC host environment. It allows the user to simulate the PIC16/17 series microcontrollers on an instruction level. On any given instruction, the user may examine or modify any of the data areas or provide external stimulus to any of the pins. The input/ output radix can be set by the user and the execution can be performed in; single step, execute until break, or in a trace mode.

MPLAB-SIM fully supports symbolic debugging using MPLAB-C and MPASM. The Software Simulator offers the low cost flexibility to develop and debug code outside of the laboratory environment making it an excellent multi-project software development tool.

16.12 C Compiler (MPLAB-C)

The MPLAB-C Code Development System is a complete 'C' compiler and integrated development environment for Microchip's PIC16/17 family of micro-controllers. The compiler provides powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compiler provides symbol information that is compatible with the MPLAB IDE memory display (PICMASTER emulator software versions 1.13 and later).

16.13 <u>Fuzzy Logic Development System</u> (*fuzzy*TECH-MP)

*fuzzy*TECH-MP fuzzy logic development tool is available in two versions - a low cost introductory version, MP Explorer, for designers to gain a comprehensive working knowledge of fuzzy logic system design; and a full-featured version, *fuzzy*TECH-MP, edition for implementing more complex systems.

Both versions include Microchip's *fuzzy*LAB[™] demonstration board for hands-on experience with fuzzy logic systems implementation.

16.14 <u>MP-DriveWay™ – Application Code</u> <u>Generator</u>

MP-DriveWay is an easy-to-use Windows-based Application Code Generator. With MP-DriveWay you can visually configure all the peripherals in a PIC16/17 device and, with a click of the mouse, generate all the initialization and many functional code modules in C language. The output is fully compatible with Microchip's MPLAB-C C compiler. The code produced is highly modular and allows easy integration of your own code. MP-DriveWay is intelligent enough to maintain your code through subsequent code generation.

16.15 <u>SEEVAL® Evaluation and</u> <u>Programming System</u>

The SEEVAL SEEPROM Designer's Kit supports all Microchip 2-wire and 3-wire Serial EEPROMs. The kit includes everything necessary to read, write, erase or program special features of any Microchip SEEPROM product including Smart Serials[™] and secure serials. The Total Endurance[™] Disk is included to aid in tradeoff analysis and reliability calculations. The total kit can significantly reduce time-to-market and result in an optimized system.

16.16 <u>TrueGauge[®] Intelligent Battery</u> <u>Management</u>

The TrueGauge development tool supports system development with the MTA11200B TrueGauge Intelligent Battery Management IC. System design verification can be accomplished before hardware prototypes are built. User interface is graphically-oriented and measured data can be saved in a file for exporting to Microsoft Excel.

16.17 <u>KEELOQ[®] Evaluation and</u> <u>Programming Tools</u>

KEELOQ evaluation and programming tools support Microchips HCS Secure Data Products. The HCS evaluation kit includes an LCD display to show changing codes, a decoder to decode transmissions, and a programming interface to program test transmitters. NOTES:

Applicable Devices 42 R42 42A 43 R43 44

19.2 **DC CHARACTERISTICS:**

PIC17LC42A/43/LC44 (Commercial, Industrial) PIC17LCR42/43 (Commercial, Industrial)

DC CHARA	CTERIS	STICS	Standard Operating		•		s (unless otherwise stated) $\leq TA \leq +85^{\circ}C$ for industrial and $\leq TA \leq +70^{\circ}C$ for commercial
Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
D001	Vdd	Supply Voltage	2.5	_	6.0	V	
D002	Vdr	RAM Data Retention Voltage (Note 1)	1.5 *	-	Ι	V	Device in SLEEP mode
D003	VPOR	VDD start voltage to ensure internal Power-on Reset signal	_	Vss	_	V	See section on Power-on Reset for details
D004	SVDD	VDD rise rate to ensure internal Power-on Reset signal	0.060 *	_	Ι	mV/ms	See section on Power-on Reset for details
D010	IDD	Supply Current	-	3	6	mA	Fosc = 4 MHz (Note 4)
D011		(Note 2)	-	6	12 *	mA	Fosc = 8 MHz
D014			-	95	150	μA	Fosc = 32 kHz,
							WDT disabled (EC osc configuration)
D020	IPD	Power-down	-	10	40	μA	VDD = 5.5V, WDT enabled
D021		Current (Note 3)	-	< 1	5	μA	VDD = 5.5V, WDT disabled

These parameters are characterized but not tested.

+ Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

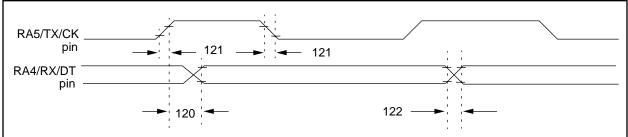
The test conditions for all IDD measurements in active operation mode are:

OSC1=external square wave, from rail to rail; all I/O pins tristated, pulled to VDD or VSS, TOCKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.

Current consumed from the oscillator and I/O's driving external capacitive or resistive loads needs to be considered.

For the RC oscillator, the current through the external pull-up resistor (R) can be estimated as: VbD / (2 • R). For capacitive loads, the current can be estimated (for an individual I/O pin) as (CL • VDD) • f

CL = Total capacitive load on the I/O pin; f = average frequency the I/O pin switches.


The capacitive currents are most significant when the device is configured for external execution (includes extended microcontroller mode).

- 3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula IR = VDD/2Rext (mA) with Rext in kOhm.

Standard Operating Conditions (unloss otherwise stated)

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 19-9: USART MODULE: SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

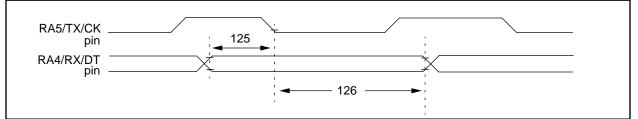


TABLE 19-9: SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param	C. m	Characteristic		Min	Trent	Max	Unito	Conditions
No.	Sym	Characteristic		IVIIII	Тур†	Max	Units	Conditions
120	TckH2dtV	SYNC XMIT (MASTER &						
		SLAVE)	PIC17CR42/42A/43/R43/44	—	—	50	ns	
		Clock high to data out valid	PIC17LCR42/42A/43/R43/44	—	—	75	ns	
121	TckRF	Clock out rise time and fall time	PIC17CR42/42A/43/R43/44	—	—	25	ns	
		(Master Mode)	PIC17LCR42/42A/43/R43/44	—	—	40	ns	
122	TdtRF	Data out rise time and fall time	PIC17CR42/42A/43/R43/44	—	—	25	ns	
			PIC17LCR42/42A/43/R43/44	—	—	40	ns	
†	Data in "T	yp" column is at 5V, 25°C unless	otherwise stated. These parameters	are for	design	guidan	ce only	and are not

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 19-10: USART MODULE: SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

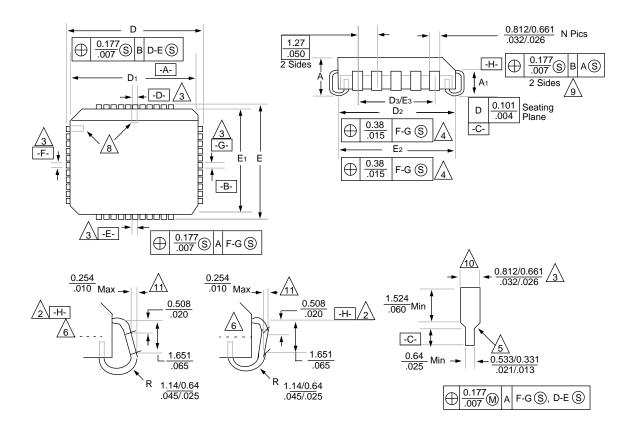


TABLE 19-10: SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
125	TdtV2ckL	SYNC RCV (MASTER & SLAVE) Data hold before CK↓ (DT hold time)	15		_	ns	
126	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15	_	_	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

21.3 44-Lead Plastic Leaded Chip Carrier (Square)

	Package Group: Plastic Leaded Chip Carrier (PLCC)					
		Millimeters			Inches	
Symbol	Min	Max	Notes	Min	Max	Notes
А	4.191	4.572		0.165	0.180	
A1	2.413	2.921		0.095	0.115	
D	17.399	17.653		0.685	0.695	
D1	16.510	16.663		0.650	0.656	
D2	15.494	16.002		0.610	0.630	
D3	12.700	12.700	Reference	0.500	0.500	Reference
Е	17.399	17.653		0.685	0.695	
E1	16.510	16.663		0.650	0.656	
E2	15.494	16.002		0.610	0.630	
E3	12.700	12.700	Reference	0.500	0.500	Reference
N	44	44		44	44	
CP	_	0.102		_	0.004	
LT	0.203	0.381		0.008	0.015	

APPENDIX C: WHAT'S NEW

The structure of the document has been made consistent with other data sheets. This ensures that important topics are covered across all PIC16/17 families. Here is an overview of new features.

Added the following devices:

PIC17CR42

PIC17C42A

PIC17CR43

A 33 MHz option is now available.

APPENDIX D: WHAT'S CHANGED

To make software more portable across the different PIC16/17 families, the name of several registers and control bits have been changed. This allows control bits that have the same function, to have the same name (regardless of processor family). Care must still be taken, since they may not be at the same special function register address. The following shows the register and bit names that have been changed:

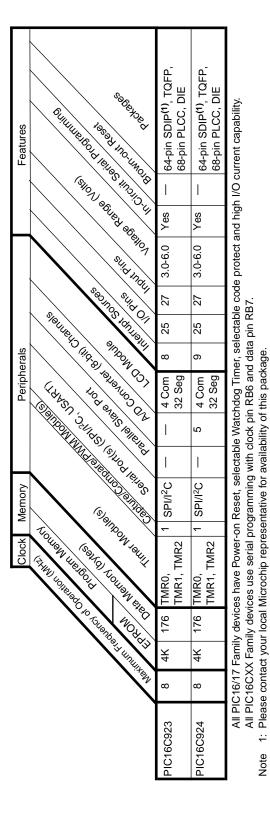
Old Name	New Name
TX8/9	TX9
RC8/9	RX9
RCD8	RX9D
TXD8	TX9D

Instruction DECFSNZ corrected to DCFSNZ

Instruction INCFSNZ corrected to INFSNZ

Enhanced discussion on PWM to include equation for determining bits of PWM resolution.

Section 13.2.2 and 13.3.2 have had the description of updating the FERR and RX9 bits enhanced.


The location of configuration bit PM2 was changed (Figure 6-1 and Figure 14-1).

Enhanced description of the operation of the INTSTA register.

Added note to discussion of interrupt operation.

Tightened electrical spec D110.

Corrected steps for setting up USART Asynchronous Reception.

E.7 <u>PIC16C9XX Family Of Devices</u>

ON-LINE SUPPORT

Microchip provides two methods of on-line support. These are the Microchip BBS and the Microchip World Wide Web (WWW) site.

Use Microchip's Bulletin Board Service (BBS) to get current information and help about Microchip products. Microchip provides the BBS communication channel for you to use in extending your technical staff with microcontroller and memory experts.

To provide you with the most responsive service possible, the Microchip systems team monitors the BBS, posts the latest component data and software tool updates, provides technical help and embedded systems insights, and discusses how Microchip products provide project solutions.

The web site, like the BBS, is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp.mchip.com/biz/mchip

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
 Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products

Connecting to the Microchip BBS

Connect worldwide to the Microchip BBS using either the Internet or the CompuServe[®] communications network.

Internet:

You can telnet or ftp to the Microchip BBS at the address:

mchipbbs.microchip.com

CompuServe Communications Network:

When using the BBS via the Compuserve Network, in most cases, a local call is your only expense. The Microchip BBS connection does not use CompuServe membership services, therefore you do not need CompuServe membership to join Microchip's BBS. There is no charge for connecting to the Microchip BBS. The procedure to connect will vary slightly from country to country. Please check with your local CompuServe agent for details if you have a problem. CompuServe service allow multiple users various baud rates depending on the local point of access.

The following connect procedure applies in most locations.

- 1. Set your modem to 8-bit, No parity, and One stop (8N1). This is not the normal CompuServe setting which is 7E1.
- 2. Dial your local CompuServe access number.
- 3. Depress the <Enter> key and a garbage string will appear because CompuServe is expecting a 7E1 setting.
- 4. Type +, depress the <Enter> key and "Host Name:" will appear.
- 5. Type MCHIPBBS, depress the <Enter> key and you will be connected to the Microchip BBS.

In the United States, to find the CompuServe phone number closest to you, set your modem to 7E1 and dial (800) 848-4480 for 300-2400 baud or (800) 331-7166 for 9600-14400 baud connection. After the system responds with "Host Name:", type NETWORK, depress the <Enter> key and follow CompuServe's directions.

For voice information (or calling from overseas), you may call (614) 723-1550 for your local CompuServe number.

Microchip regularly uses the Microchip BBS to distribute technical information, application notes, source code, errata sheets, bug reports, and interim patches for Microchip systems software products. For each SIG, a moderator monitors, scans, and approves or disapproves files submitted to the SIG. No executable files are accepted from the user community in general to limit the spread of computer viruses.

Systems Information and Upgrade Hot Line

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive any currently available upgrade kits.The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and

1-602-786-7302 for the rest of the world.

960513

Trademarks: The Microchip name, logo, PIC, PICSTART, PICMASTER and PRO MATE are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FlexROM, MPLAB and fuzzyLAB, are trademarks and SQTP is a service mark of Microchip in the U.S.A.

fuzzyTECH is a registered trademark of Inform Software Corporation. IBM, IBM PC-AT are registered trademarks of International Business Machines Corp. Pentium is a trademark of Intel Corporation. Windows is a trademark and MS-DOS, Microsoft Windows are registered trademarks of Microsoft Corporation. CompuServe is a registered trademark of CompuServe Incorporated.

All other trademarks mentioned herein are the property of their respective companies.

^{© 1996} Microchip Technology Inc.

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:		Technical Publications Manager Total Pages Sent
RE _		Reader Response
Fro	om:	Name
		Company
		Address City / State / ZIP / Country
		Telephone: () FAX: ()
Ар	plica	ation (optional):
Wo	buld	you like a reply?YN
De	vice	E: PIC17C4X Literature Number: DS30412C
		ions:
1.	W	hat are the best features of this document?
2	— Ho	ow does this document meet your hardware and software development needs?
۷.		Sw does this document meet your hardware and software development needs:
3.	Do	o you find the organization of this data sheet easy to follow? If not, why?
4.	W	hat additions to the data sheet do you think would enhance the structure and subject?
~		
5.	vvi	hat deletions from the data sheet could be made without affecting the overall usefulness?
6.	ls	there any incorrect or misleading information (what and where)?
7.	Ho	ow would you improve this document?
8.	Ho	ow would you improve our software, systems, and silicon products?