



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Obsolete                                                                 |
|----------------------------|--------------------------------------------------------------------------|
| Core Processor             | PIC                                                                      |
| Core Size                  | 8-Bit                                                                    |
| Speed                      | 33MHz                                                                    |
| Connectivity               | UART/USART                                                               |
| Peripherals                | POR, PWM, WDT                                                            |
| Number of I/O              | 33                                                                       |
| Program Memory Size        | 8KB (4K x 16)                                                            |
| Program Memory Type        | OTP                                                                      |
| EEPROM Size                | -                                                                        |
| RAM Size                   | 454 x 8                                                                  |
| Voltage - Supply (Vcc/Vdd) | 4.5V ~ 6V                                                                |
| Data Converters            | -                                                                        |
| Oscillator Type            | External                                                                 |
| Operating Temperature      | 0°C ~ 70°C (TA)                                                          |
| Mounting Type              | Surface Mount                                                            |
| Package / Case             | 44-LCC (J-Lead)                                                          |
| Supplier Device Package    | 44-PLCC (16.59x16.59)                                                    |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/pic17c43t-33-l |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

#### **Table of Contents**

| 1.0    | Overview                                                               | 5   |
|--------|------------------------------------------------------------------------|-----|
| 2.0    | PIC17C4X Device Varieties                                              | 7   |
| 3.0    | Architectural Overview                                                 | 9   |
| 4.0    | Reset                                                                  | 15  |
| 5.0    | Interrupts                                                             | 21  |
| 6.0    | Memory Organization                                                    | 29  |
| 7.0    | Table Reads and Table Writes                                           | 43  |
| 8.0    | Hardware Multiplier                                                    | 49  |
| 9.0    | I/O Ports                                                              | 53  |
| 10.0   | Overview of Timer Resources                                            | 65  |
| 11.0   | Timer0                                                                 | 67  |
| 12.0   | Timer1, Timer2, Timer3, PWMs and Captures                              | 71  |
| 13.0   | Universal Synchronous Asynchronous Receiver Transmitter (USART) Module | 83  |
| 14.0   | Special Features of the CPU                                            | 99  |
| 15.0   | Instruction Set Summary                                                | 107 |
| 16.0   | Development Support                                                    | 143 |
| 17.0   | PIC17C42 Electrical Characteristics                                    | 147 |
| 18.0   | PIC17C42 DC and AC Characteristics                                     | 163 |
| 19.0   | PIC17CR42/42A/43/R43/44 Electrical Characteristics                     | 175 |
| 20.0   | PIC17CR42/42A/43/R43/44 DC and AC Characteristics                      | 193 |
| 21.0   | Packaging Information                                                  | 205 |
| Appen  | dix A: Modifications                                                   | 211 |
| Appen  | dix B: Compatibility                                                   | 211 |
| Appen  | dix C: What's New                                                      | 212 |
| Appen  | dix D: What's Changed                                                  | 212 |
| Appen  | dix E: PIC16/17 Microcontrollers                                       | 213 |
| Appen  | dix F: Errata for PIC17C42 Silicon                                     | 223 |
| Index. |                                                                        | 226 |
| PIC17  | C4X Product Identification System                                      | 237 |

For register and module descriptions in this data sheet, device legends show which devices apply to those sections. For example, the legend below shows that some features of only the PIC17C43, PIC17C43, PIC17C44 are described in this section.

#### Applicable Devices 42 R42 42A 43 R43 44

## To Our Valued Customers

We constantly strive to improve the quality of all our products and documentation. We have spent an exceptional amount of time to ensure that these documents are correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error from the previous version of the PIC17C4X Data Sheet (Literature Number DS30412B), please use the reader response form in the back of this data sheet to inform us. We appreciate your assistance in making this a better document.

To assist you in the use of this document, Appendix C contains a list of new information in this data sheet, while Appendix D contains information that has changed

NOTES:

#### 5.1 Interrupt Status Register (INTSTA)

The Interrupt Status/Control register (INTSTA) records the individual interrupt requests in flag bits, and contains the individual interrupt enable bits (not for the peripherals).

The PEIF bit is a read only, bit wise OR of all the peripheral flag bits in the PIR register (Figure 5-4).

Note: T0IF, INTF, T0CKIF, or PEIF will be set by the specified condition, even if the corresponding interrupt enable bit is clear (interrupt disabled) or the GLINTD bit is set (all interrupts disabled).

Care should be taken when clearing any of the INTSTA register enable bits when interrupts are enabled (GLINTD is clear). If any of the INTSTA flag bits (T0IF, INTF, T0CKIF, or PEIF) are set in the same instruction cycle as the corresponding interrupt enable bit is cleared, the device will vector to the reset address (0x00).

When disabling any of the INTSTA enable bits, the GLINTD bit should be set (disabled).

#### FIGURE 5-2: INTSTA REGISTER (ADDRESS: 07h, UNBANKED)

| R - 0  |                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |  |  |  |  |
|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|--|--|
| PEIF   | TOCKIF     TOIF     INTE     PEIE     TOCKIE     TOIE     INTE     R = Readable bit       bito     W = Writable bit                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |  |  |  |
| DILI   | - n = Value at POR reset                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |  |  |  |  |  |  |
| bit 7: | <ul> <li>PEIF: Peripheral Interrupt Flag bit</li> <li>This bit is the OR of all peripheral interrupt flag bits AND'ed with their corresponding enable bits.</li> <li>1 = A peripheral interrupt is pending</li> <li>0 = No peripheral interrupt is pending</li> </ul>                                                        |  |  |  |  |  |  |  |  |  |  |  |
| bit 6: | <b>TOCKIF</b> : External Interrupt on TOCKI Pin Flag bit<br>This bit is cleared by hardware, when the interrupt logic forces program execution to vector (18h).<br>1 = The software specified edge occurred on the RA1/T0CKI pin<br>0 = The software specified edge did not occur on the RA1/T0CKI pin                       |  |  |  |  |  |  |  |  |  |  |  |
| bit 5: | <b>T0IF</b> : TMR0 Overflow Interrupt Flag bit<br>This bit is cleared by hardware, when the interrupt logic forces program execution to vector (10h).<br>1 = TMR0 overflowed<br>0 = TMR0 did not overflow                                                                                                                    |  |  |  |  |  |  |  |  |  |  |  |
| bit 4: | <ul> <li>INTF: External Interrupt on INT Pin Flag bit</li> <li>This bit is cleared by hardware, when the interrupt logic forces program execution to vector (08h).</li> <li>1 = The software specified edge occurred on the RA0/INT pin</li> <li>0 = The software specified edge did not occur on the RA0/INT pin</li> </ul> |  |  |  |  |  |  |  |  |  |  |  |
| bit 3: | <b>PEIE</b> : Peripheral Interrupt Enable bit<br>This bit enables all peripheral interrupts that have their corresponding enable bits set.<br>1 = Enable peripheral interrupts<br>0 = Disable peripheral interrupts                                                                                                          |  |  |  |  |  |  |  |  |  |  |  |
| bit 2: | <b>T0CKIE</b> : External Interrupt on T0CKI Pin Enable bit<br>1 = Enable software specified edge interrupt on the RA1/T0CKI pin<br>0 = Disable interrupt on the RA1/T0CKI pin                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |  |
| bit 1: | <b>T0IE</b> : TMR0 Overflow Interrupt Enable bit<br>1 = Enable TMR0 overflow interrupt<br>0 = Disable TMR0 overflow interrupt                                                                                                                                                                                                |  |  |  |  |  |  |  |  |  |  |  |
| bit 0: | INTE: External Interrupt on RA0/INT Pin Enable bit<br>1 = Enable software specified edge interrupt on the RA0/INT pin<br>0 = Disable software specified edge interrupt on the RA0/INT pin                                                                                                                                    |  |  |  |  |  |  |  |  |  |  |  |

## 6.0 MEMORY ORGANIZATION

There are two memory blocks in the PIC17C4X; program memory and data memory. Each block has its own bus, so that access to each block can occur during the same oscillator cycle.

The data memory can further be broken down into General Purpose RAM and the Special Function Registers (SFRs). The operation of the SFRs that control the "core" are described here. The SFRs used to control the peripheral modules are described in the section discussing each individual peripheral module.

#### 6.1 Program Memory Organization

PIC17C4X devices have a 16-bit program counter capable of addressing a 64K x 16 program memory space. The reset vector is at 0000h and the interrupt vectors are at 0008h, 0010h, 0018h, and 0020h (Figure 6-1).

#### 6.1.1 PROGRAM MEMORY OPERATION

The PIC17C4X can operate in one of four possible program memory configurations. The configuration is selected by two configuration bits. The possible modes are:

- Microprocessor
- Microcontroller
- Extended Microcontroller
- Protected Microcontroller

The microcontroller and protected microcontroller modes only allow internal execution. Any access beyond the program memory reads unknown data. The protected microcontroller mode also enables the code protection feature.

The extended microcontroller mode accesses both the internal program memory as well as external program memory. Execution automatically switches between internal and external memory. The 16-bits of address allow a program memory range of 64K-words.

The microprocessor mode only accesses the external program memory. The on-chip program memory is ignored. The 16-bits of address allow a program memory range of 64K-words. Microprocessor mode is the default mode of an unprogrammed device.

The different modes allow different access to the configuration bits, test memory, and boot ROM. Table 6-1 lists which modes can access which areas in memory. Test Memory and Boot Memory are not required for normal operation of the device. Care should be taken to ensure that no unintended branches occur to these areas.

#### FIGURE 6-1: PROGRAM MEMORY MAP AND STACK

| AND STACK    |                                                  |                          |  |  |  |  |  |  |  |
|--------------|--------------------------------------------------|--------------------------|--|--|--|--|--|--|--|
|              | DC (15:0)                                        | 1                        |  |  |  |  |  |  |  |
|              | PC<15:0>                                         |                          |  |  |  |  |  |  |  |
| CALL, DETEIN | RETURN TO                                        | ]                        |  |  |  |  |  |  |  |
| REIFIE       | Stack Loval 1                                    |                          |  |  |  |  |  |  |  |
|              | •                                                |                          |  |  |  |  |  |  |  |
|              | :                                                |                          |  |  |  |  |  |  |  |
|              | Stack Level 16                                   |                          |  |  |  |  |  |  |  |
|              | Reset Vector                                     | 0000h                    |  |  |  |  |  |  |  |
|              |                                                  |                          |  |  |  |  |  |  |  |
|              | INT Pin Interrupt Vector                         | 0008h                    |  |  |  |  |  |  |  |
|              | Timer0 Interrupt Vector                          | 0010h                    |  |  |  |  |  |  |  |
|              | T0CKI Pin Interrupt Vector                       | 0018h                    |  |  |  |  |  |  |  |
|              | Peripheral Interrupt Vector                      | 0020h                    |  |  |  |  |  |  |  |
|              |                                                  | 0021h                    |  |  |  |  |  |  |  |
|              |                                                  | 7556                     |  |  |  |  |  |  |  |
|              |                                                  | (PIC17C42,               |  |  |  |  |  |  |  |
| 30           |                                                  | PIC17CR42,<br>PIC17C42A) |  |  |  |  |  |  |  |
| Mer          |                                                  | FFFh                     |  |  |  |  |  |  |  |
| er l<br>Spa  |                                                  | (PIC17C43                |  |  |  |  |  |  |  |
| S S          |                                                  | PIC17CR43)               |  |  |  |  |  |  |  |
|              |                                                  | 1FFFh<br>(PIC17C44)      |  |  |  |  |  |  |  |
|              |                                                  | '<br>                    |  |  |  |  |  |  |  |
|              | EOSCO                                            | FDFFh                    |  |  |  |  |  |  |  |
|              | FOSC1                                            | FE01b                    |  |  |  |  |  |  |  |
|              | WDTPS0                                           | FE02h                    |  |  |  |  |  |  |  |
| Aer          | WDTPS1                                           | FE03h                    |  |  |  |  |  |  |  |
| Ce P         | PM0                                              | FE04h                    |  |  |  |  |  |  |  |
| pa           | Reserved                                         | FE05h                    |  |  |  |  |  |  |  |
| an sun       | PM1                                              | FE06h                    |  |  |  |  |  |  |  |
| lig          | Reserved                                         | FE07h                    |  |  |  |  |  |  |  |
| CO           | Reserved                                         | FE08h                    |  |  |  |  |  |  |  |
|              |                                                  | FEUEN                    |  |  |  |  |  |  |  |
|              |                                                  | FE10h                    |  |  |  |  |  |  |  |
|              | Test EPROM                                       | FF5Fh                    |  |  |  |  |  |  |  |
|              |                                                  | FF60h                    |  |  |  |  |  |  |  |
|              | Boot ROM                                         | FFFFh                    |  |  |  |  |  |  |  |
|              |                                                  |                          |  |  |  |  |  |  |  |
| Note 1: Us   | er memory space may be inter                     | nal, external, or        |  |  |  |  |  |  |  |
| bo           | th. The memory configuration c                   | lepends on the           |  |  |  |  |  |  |  |
| 2: Th        | cessor mode.<br>is location is reserved on the P | IC17C42.                 |  |  |  |  |  |  |  |

#### 6.8 Bank Select Register (BSR)

The BSR is used to switch between banks in the data memory area (Figure 6-13). In the PIC17C42, PIC17CR42, and PIC17C42A only the lower nibble is implemented. While in the PIC17C43, PIC17CR43, and PIC17C44 devices, the entire byte is implemented. The lower nibble is used to select the peripheral register bank. The upper nibble is used to select the general purpose memory bank.

All the Special Function Registers (SFRs) are mapped into the data memory space. In order to accommodate the large number of registers, a banking scheme has been used. A segment of the SFRs, from address 10h to address 17h, is banked. The lower nibble of the bank select register (BSR) selects the currently active "peripheral bank." Effort has been made to group the peripheral registers of related functionality in one bank. However, it will still be necessary to switch from bank to bank in order to address all peripherals related to a single task. To assist this, a MOVLB bank instruction is in the instruction set. For the PIC17C43, PIC17CR43, and PIC17C44 devices, the need for a large general purpose memory space dictated a general purpose RAM banking scheme. The upper nibble of the BSR selects the currently active general purpose RAM bank. To assist this, a MOVLR bank instruction has been provided in the instruction set.

If the currently selected bank is not implemented (such as Bank 13), any read will read all '0's. Any write is completed to the bit bucket and the ALU status bits will be set/cleared as appropriate.

**Note:** Registers in Bank 15 in the Special Function Register area, are reserved for Microchip use. Reading of registers in this bank may cause random values to be read.



#### FIGURE 6-13: BSR OPERATION (PIC17C43/R43/44)

#### 7.3 <u>Table Reads</u>

FIGURE 7-7:

The table read allows the program memory to be read. This allows constant data to be stored in the program memory space, and retrieved into data memory when needed. Example 7-2 reads the 16-bit value at program memory address TBLPTR. After the dummy byte has been read from the TABLATH, the TABLATH is loaded with the 16-bit data from program memory address TBLPTR + 1. The first read loads the data into the latch, and can be considered a dummy read (unknown data loaded into 'f'). INDF0 should be configured for either auto-increment or auto-decrement.

# + 1. The first read loads the data into TABLRD 0,1,INDF0 ; Read LO byte ; of TABLATCH and ; of TABLATCH and ; Update TABLATCH auto-increment or auto-decrement.

MOVLW

MOVWF

MOVLW

MOVWF

TLRD

TABLRD

EXAMPLE 7-2: TABLE READ

LOW (TBL\_ADDR)

TBLPTRH

TBLPTRL

0,0,DUMMY

1, INDF0

HIGH (TBL\_ADDR) ; Load the Table

;

;

;

;

address

; Dummy read,

; Read HI byte

; Updates TABLATCH

of TABLATCH

#### Q4 | AD15:AD0 Data in PC PC-TBL PC4 Instruction TABLRD INST (PC+1) INST (PC+2) fetched Instruction INST (PC-1) TABLRD cycle1 TABLRD cycle2 INST (PC+1) executed Data read cycle ALE ŌĒ $\overline{\mathsf{WR}}$

#### FIGURE 7-8: TABLRD TIMING (CONSECUTIVE TABLRD INSTRUCTIONS)



DS30412C-page 48

## 8.0 HARDWARE MULTIPLIER

All PIC17C4X devices except the PIC17C42, have an 8 x 8 hardware multiplier included in the ALU of the device. By making the multiply a hardware operation, it completes in a single instruction cycle. This is an unsigned multiply that gives a 16-bit result. The result is stored into the 16-bit PRODuct register (PRODH:PRODL). The multiplier does not affect any flags in the ALUSTA register.

Making the 8 x 8 multiplier execute in a single cycle gives the following advantages:

- Higher computational throughput
- Reduces code size requirements for multiply algorithms

The performance increase allows the device to be used in applications previously reserved for Digital Signal Processors.

Table 8-1 shows a performance comparison between the PIC17C42 and all other PIC17CXX devices, which have the single cycle hardware multiply.

Example 8-1 shows the sequence to do an 8 x 8 unsigned multiply. Only one instruction is required when one argument of the multiply is already loaded in the WREG register.

Example 8-2 shows the sequence to do an  $8 \times 8$  signed multiply. To account for the sign bits of the arguments, each argument's most significant bit (MSb) is tested and the appropriate subtractions are done.

#### EXAMPLE 8-1: 8 x 8 MULTIPLY ROUTINE

| MOVFP | ARG1, | WREG |   |      |     |        |    |
|-------|-------|------|---|------|-----|--------|----|
| MULWF | ARG2  |      | ; | ARG1 | *   | ARG2   | -> |
|       |       |      | ; | PRO  | DDI | H:PROI | DГ |

#### EXAMPLE 8-2: 8 x 8 SIGNED MULTIPLY ROUTINE

| MOVFP | ARG1, WREG |   |                |
|-------|------------|---|----------------|
| MULWF | ARG2       | ; | ARG1 * ARG2 -> |
|       |            | ; | PRODH: PRODL   |
| BTFSC | ARG2, SB   | ; | Test Sign Bit  |
| SUBWF | PRODH, F   | ; | PRODH = PRODH  |
|       |            | ; | - ARG1         |
| MOVFP | ARG2, WREG |   |                |
| BTFSC | ARG1, SB   | ; | Test Sign Bit  |
| SUBWF | PRODH, F   | ; | PRODH = PRODH  |
|       |            | • | - ARC2         |

| Doutino          | Deviee                     | Program Memory |              | Time     |          |  |
|------------------|----------------------------|----------------|--------------|----------|----------|--|
| Routine          | Device                     | (Words)        | Cycles (Max) | @ 25 MHz | @ 33 MHz |  |
| 8 x 8 unsigned   | PIC17C42                   | 13             | 69           | 11.04 μs | N/A      |  |
|                  | All other PIC17CXX devices | 1              | 1            | 160 ns   | 121 ns   |  |
| 8 x 8 signed     | PIC17C42                   | —              | —            | —        | N/A      |  |
|                  | All other PIC17CXX devices | 6              | 6            | 960 ns   | 727 ns   |  |
| 16 x 16 unsigned | PIC17C42                   | 21             | 242          | 38.72 μs | N/A      |  |
|                  | All other PIC17CXX devices | 24             | 24           | 3.84 µs  | 2.91 μs  |  |
| 16 x 16 signed   | PIC17C42                   | 52             | 254          | 40.64 μs | N/A      |  |
|                  | All other PIC17CXX devices | 36             | 36           | 5.76 μs  | 4.36 μs  |  |

#### TABLE 8-1: PERFORMANCE COMPARISON

#### TABLE 9-5: PORTC FUNCTIONS

| Name    | Bit  | Buffer Type | Function                                     |
|---------|------|-------------|----------------------------------------------|
| RC0/AD0 | bit0 | TTL         | Input/Output or system bus address/data pin. |
| RC1/AD1 | bit1 | TTL         | Input/Output or system bus address/data pin. |
| RC2/AD2 | bit2 | TTL         | Input/Output or system bus address/data pin. |
| RC3/AD3 | bit3 | TTL         | Input/Output or system bus address/data pin. |
| RC4/AD4 | bit4 | TTL         | Input/Output or system bus address/data pin. |
| RC5/AD5 | bit5 | TTL         | Input/Output or system bus address/data pin. |
| RC6/AD6 | bit6 | TTL         | Input/Output or system bus address/data pin. |
| RC7/AD7 | bit7 | TTL         | Input/Output or system bus address/data pin. |

Legend: TTL = TTL input.

#### TABLE 9-6: REGISTERS/BITS ASSOCIATED WITH PORTC

| Address     | Name  | Bit 7                             | Bit 6       | Bit 5       | Bit 4       | Bit 3       | Bit 2       | Bit 1       | Bit 0       | Value on<br>Power-on<br>Reset | Value on all<br>other resets<br>(Note1) |
|-------------|-------|-----------------------------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------|-------------------------------|-----------------------------------------|
| 11h, Bank 1 | PORTC | RC7/<br>AD7                       | RC6/<br>AD6 | RC5/<br>AD5 | RC4/<br>AD4 | RC3/<br>AD3 | RC2/<br>AD2 | RC1/<br>AD1 | RC0/<br>AD0 | XXXX XXXX                     | uuuu uuuu                               |
| 10h, Bank 1 | DDRC  | Data direction register for PORTC |             |             |             |             |             |             |             | 1111 1111                     | 1111 1111                               |

Legend: x = unknown, u = unchanged.

Note 1: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

#### 11.3 Read/Write Consideration for TMR0

Although TMR0 is a 16-bit timer/counter, only 8-bits at a time can be read or written during a single instruction cycle. Care must be taken during any read or write.

#### 11.3.1 READING 16-BIT VALUE

The problem in reading the entire 16-bit value is that after reading the low (or high) byte, its value may change from FFh to 00h.

Example 11-1 shows a 16-bit read. To ensure a proper read, interrupts must be disabled during this routine.

#### EXAMPLE 11-1: 16-BIT READ

| MOVPF  | TMROL, | TMPLO | ;read low tmr0  |
|--------|--------|-------|-----------------|
| MOVPF  | TMROH, | TMPHI | ;read high tmr0 |
| MOVFP  | TMPLO, | WREG  | ;tmplo -> wreg  |
| CPFSLT | TMROL  |       | ;tmr0l < wreg?  |
| RETURN |        |       | ;no then return |
| MOVPF  | TMROL, | TMPLO | ;read low tmr0  |
| MOVPF  | TMROH, | TMPHI | ;read high tmr0 |
|        |        |       |                 |

#### 11.3.2 WRITING A 16-BIT VALUE TO TMR0

Since writing to either TMR0L or TMR0H will effectively inhibit increment of that half of the TMR0 in the next cycle (following write), but not inhibit increment of the other half, the user must write to TMR0L first and TMR0H next in two consecutive instructions, as shown in Example 11-2. The interrupt must be disabled. Any write to either TMR0L or TMR0H clears the prescaler.

#### EXAMPLE 11-2: 16-BIT WRITE

BSF CPUSTA, GLINTD ; Disable interrupt MOVFP RAM\_L, TMROL ; MOVFP RAM\_H, TMROH ; BCF CPUSTA, GLINTD ; Done, enable interrupt

#### 11.4 Prescaler Assignments

Timer0 has an 8-bit prescaler. The prescaler assignment is fully under software control; i.e., it can be changed "on the fly" during program execution. When changing the prescaler assignment, clearing the prescaler is recommended before changing assignment. The value of the prescaler is "unknown," and assigning a value that is less then the present value makes it difficult to take this unknown time into account.



#### FIGURE 11-4: TMR0 TIMING: WRITE HIGH OR LOW BYTE

#### 13.3 USART Synchronous Master Mode

In Master Synchronous mode, the data is transmitted in a half-duplex manner; i.e. transmission and reception do not occur at the same time: when transmitting data, the reception is inhibited and vice versa. The synchronous mode is entered by setting the SYNC (TXSTA<4>) bit. In addition, the SPEN (RCSTA<7>) bit is set in order to configure the RA5 and RA4 I/O ports to CK (clock) and DT (data) lines respectively. The Master mode indicates that the processor transmits the master clock on the CK line. The Master mode is entered by setting the CSRC (TXSTA<7>) bit.

#### 13.3.1 USART SYNCHRONOUS MASTER TRANSMISSION

The USART transmitter block diagram is shown in Figure 13-3. The heart of the transmitter is the transmit (serial) shift register (TSR). The shift register obtains its data from the read/write transmit buffer TXREG. TXREG is loaded with data in software. The TSR is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR is loaded with new data from TXREG (if available). Once TXREG transfers the data to the TSR (occurs in one TCY at the end of the current BRG cycle), TXREG is empty and the TXIF (PIR<1>) bit is set. This interrupt can be enabled/disabled by setting/clearing the TXIE bit (PIE<1>). TXIF will be set regardless of the state of bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into TXREG. While TXIF indicates the status of TXREG, TRMT (TXSTA<1>) shows the status of the TSR. TRMT is a read only bit which is set when the TSR is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR is empty. The TSR is not mapped in data memory, so it is not available to the user.

Transmission is enabled by setting the TXEN (TXSTA<5>) bit. The actual transmission will not occur until TXREG has been loaded with data. The first data bit will be shifted out on the next available rising edge of the clock on the RA5/TX/CK pin. Data out is stable around the falling edge of the synchronous clock (Figure 13-10). The transmission can also be started by first loading TXREG and then setting TXEN. This is advantageous when slow baud rates are selected, since BRG is kept in RESET when the TXEN, CREN, and SREN bits are clear. Setting the TXEN bit will start the BRG, creating a shift clock immediately. Normally when transmission is first started, the TSR is empty, so a transfer to TXREG will result in an immediate transfer to the TSR, resulting in an empty TXREG. Back-to-back transfers are possible.

Clearing TXEN during a transmission will cause the transmission to be aborted and will reset the transmitter. The RA4/RX/DT and RA5/TX/CK pins will revert to hi-impedance. If either CREN or SREN are set during a transmission, the transmission is aborted and the

RA4/RX/DT pin reverts to a hi-impedance state (for a reception). The RA5/TX/CK pin will remain an output if the CSRC bit is set (internal clock). The transmitter logic is not reset, although it is disconnected from the pins. In order to reset the transmitter, the user has to clear the TXEN bit. If the SREN bit is set (to interrupt an ongoing transmission and receive a single word), then after the single word is received, SREN will be cleared and the serial port will revert back to transmitting, since the TXEN bit is still set. The DT line will immediately switch from hi-impedance receive mode to transmit and start driving. To avoid this, TXEN should be cleared.

In order to select 9-bit transmission, the TX9 (TXSTA<6>) bit should be set and the ninth bit should be written to TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to TXREG. This is because a data write to TXREG can result in an immediate transfer of the data to the TSR (if the TSR is empty). If the TSR was empty and TXREG was written before writing the "new" TX9D, the "present" value of TX9D is loaded.

Steps to follow when setting up a Synchronous Master Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate (see Baud Rate Generator Section for details).
- 2. Enable the synchronous master serial port by setting the SYNC, SPEN, and CSRC bits.
- 3. Ensure that the CREN and SREN bits are clear (these bits override transmission when set).
- 4. If interrupts are desired, then set the TXIE bit (the GLINTD bit must be clear and the PEIE bit must be set).
- 5. If 9-bit transmission is desired, then set the TX9 bit.
- 6. Start transmission by loading data to the TXREG register.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded in TX9D.
- 8. Enable the transmission by setting TXEN.

Writing the transmit data to the TXREG, then enabling the transmit (setting TXEN) allows transmission to start sooner then doing these two events in the reverse order.

Note: To terminate a transmission, either clear the SPEN bit, or the TXEN bit. This will reset the transmit logic, so that it will be in the proper state when transmit is re-enabled.

| Address                                        | Name  | Bit 7 | Bit 6  | Bit 5  | Bit 4  | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Value on<br>Power-on<br>Reset | Value on all<br>other resets<br>(Note1) |
|------------------------------------------------|-------|-------|--------|--------|--------|-------|-------|-------|-------|-------------------------------|-----------------------------------------|
| 16h, Bank 1                                    | PIR   | RBIF  | TMR3IF | TMR2IF | TMR1IF | CA2IF | CA1IF | TXIF  | RCIF  | 0000 0010                     | 0000 0010                               |
| 13h, Bank 0                                    | RCSTA | SPEN  | RX9    | SREN   | CREN   | —     | FERR  | OERR  | RX9D  | 0000 -00x                     | 0000 -00u                               |
| 16h, Bank 0                                    | TXREG | TX7   | TX6    | TX5    | TX4    | TX3   | TX2   | TX1   | TX0   | xxxx xxxx                     | uuuu uuuu                               |
| 17h, Bank 1                                    | PIE   | RBIE  | TMR3IE | TMR2IE | TMR1IE | CA2IE | CA1IE | TXIE  | RCIE  | 0000 0000                     | 0000 0000                               |
| 15h, Bank 0                                    | TXSTA | CSRC  | TX9    | TXEN   | SYNC   | —     | _     | TRMT  | TX9D  | 00001x                        | 00001u                                  |
| 17h, Bank 0 SPBRG Baud rate generator register |       |       |        |        |        |       |       |       |       | xxxx xxxx                     | uuuu uuuu                               |

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used for synchronous slave transmission.

Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

#### TABLE 13-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

| Address     | Name                                     | Bit 7 | Bit 6  | Bit 5  | Bit 4  | Bit 3 | Bit 2 | Bit 1 | Bit 0 | Value on<br>Power-on<br>Reset | Value on all<br>other resets<br>(Note1) |
|-------------|------------------------------------------|-------|--------|--------|--------|-------|-------|-------|-------|-------------------------------|-----------------------------------------|
| 16h, Bank1  | PIR                                      | RBIF  | TMR3IF | TMR2IF | TMR1IF | CA2IF | CA1IF | TXIF  | RCIF  | 0000 0010                     | 0000 0010                               |
| 13h, Bank0  | RCSTA                                    | SPEN  | RX9    | SREN   | CREN   | —     | FERR  | OERR  | RX9D  | 0000 -00x                     | 0000 -00u                               |
| 14h, Bank0  | RCREG                                    | RX7   | RX6    | RX5    | RX4    | RX3   | RX2   | RX1   | RX0   | XXXX XXXX                     | uuuu uuuu                               |
| 17h, Bank1  | PIE                                      | RBIE  | TMR3IE | TMR2IE | TMR1IE | CA2IE | CA1IE | TXIE  | RCIE  | 0000 0000                     | 0000 0000                               |
| 15h, Bank 0 | TXSTA                                    | CSRC  | TX9    | TXEN   | SYNC   | —     | —     | TRMT  | TX9D  | 00001x                        | 00001u                                  |
| 17h, Bank0  | 3ank0 SPBRG Baud rate generator register |       |        |        |        |       |       |       |       | xxxx xxxx                     | uuuu uuuu                               |

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used for synchronous slave reception.

Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

Table 15-2 lists the instructions recognized by the MPASM assembler.

| Note 1: | Any  | unused o   | pcode is | Rese | erved. l | Jse of |
|---------|------|------------|----------|------|----------|--------|
|         | any  | reserved   | opcode   | may  | cause    | unex-  |
|         | pect | ed operati |          |      |          |        |

**Note 2:** The shaded instructions are not available in the PIC17C42

All instruction examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

To represent a binary number:

0000 0100b

where b signifies a binary string.

#### FIGURE 15-1: GENERAL FORMAT FOR INSTRUCTIONS



#### 15.1 <u>Special Function Registers as</u> <u>Source/Destination</u>

The PIC17C4X's orthogonal instruction set allows read and write of all file registers, including special function registers. There are some special situations the user should be aware of:

#### 15.1.1 ALUSTA AS DESTINATION

If an instruction writes to ALUSTA, the Z, C, DC and OV bits may be set or cleared as a result of the instruction and overwrite the original data bits written. For example, executing CLRF ALUSTA will clear register ALUSTA, and then set the Z bit leaving 0000 0100b in the register.

#### 15.1.2 PCL AS SOURCE OR DESTINATION

Read, write or read-modify-write on PCL may have the following results:

| Read PC:           | $\text{PCH} \rightarrow \text{PCLATH}; \text{PCL} \rightarrow \text{dest}$                    |
|--------------------|-----------------------------------------------------------------------------------------------|
| Write PCL:         | PCLATH $\rightarrow$ PCH;<br>8-bit destination value $\rightarrow$ PCL                        |
| Read-Modify-Write: | $PCL \rightarrow ALU$ operand<br>$PCLATH \rightarrow PCH$ ;<br>8-bit result $\rightarrow PCL$ |

Where PCH = program counter high byte (not an addressable register), PCLATH = Program counter high holding latch, dest = destination, WREG or f.

#### 15.1.3 BIT MANIPULATION

All bit manipulation instructions are done by first reading the entire register, operating on the selected bit and writing the result back (read-modify-write). The user should keep this in mind when operating on special function registers, such as ports.

| CLRWDT Clear Watchdog Timer                          |                        |                                   |                      |                               |                            |           |                                   |  |
|------------------------------------------------------|------------------------|-----------------------------------|----------------------|-------------------------------|----------------------------|-----------|-----------------------------------|--|
| Synt                                                 | Syntax: [label] CLRWDT |                                   |                      |                               |                            |           |                                   |  |
| Ope                                                  | rands:                 | None                              |                      |                               |                            |           |                                   |  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$ |                        |                                   |                      |                               |                            |           |                                   |  |
| State                                                | us Affected:           | to, PD                            |                      |                               |                            |           |                                   |  |
| Encoding:                                            |                        | 0000                              |                      | 0000                          | 000                        | 00        | 0100                              |  |
| Des                                                  | cription:              | CLRWDT<br>timer. It a<br>WDT. Sta | inst<br>also<br>atus | truction<br>resets<br>bits TC | resets<br>the pro<br>and I | the vesca | watchdog<br>ler of the<br>re set. |  |
| Wor                                                  | ds:                    | 1                                 |                      |                               |                            |           |                                   |  |
| Cycles:                                              |                        | 1                                 |                      |                               |                            |           |                                   |  |
| QC                                                   | ycle Activity:         |                                   |                      |                               |                            |           |                                   |  |
|                                                      | Q1                     | Q2                                |                      | Q                             | 3                          |           | Q4                                |  |
|                                                      | Decode                 | Read<br>register<br>ALUSTA        |                      | Exec                          | ute                        |           | NOP                               |  |
| Example: CLRV                                        |                        |                                   |                      |                               |                            |           |                                   |  |
| Before Instruction<br>WDT counter                    |                        |                                   |                      | ?                             |                            |           |                                   |  |
|                                                      | After Instruction      |                                   |                      |                               |                            |           |                                   |  |
|                                                      | WDT cou                | nter                              | =                    | 0x00                          |                            |           |                                   |  |
|                                                      |                        | stscaler                          | =                    | 0                             |                            |           |                                   |  |
|                                                      |                        |                                   | =                    | י<br>1                        |                            |           |                                   |  |
|                                                      | · -                    |                                   |                      | •                             |                            |           |                                   |  |

| COMF                          | Complem                                                  | nent f                                                                                                                                                     |        |                     |  |  |  |  |  |
|-------------------------------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------|--|--|--|--|--|
| Syntax:                       | [label] (                                                | COMF                                                                                                                                                       | f,d    |                     |  |  |  |  |  |
| Operands:                     | $0 \le f \le 255$<br>d \equiv [0,1]                      | $\begin{array}{l} 0 \leq f \leq 255 \\ d \in \ [0,1] \end{array}$                                                                                          |        |                     |  |  |  |  |  |
| Operation:                    | $(\overline{f}) \rightarrow (d$                          | $(\overline{f}) \rightarrow (dest)$                                                                                                                        |        |                     |  |  |  |  |  |
| Status Affected:              | Z                                                        | Z                                                                                                                                                          |        |                     |  |  |  |  |  |
| Encoding:                     | 0001                                                     | 001d                                                                                                                                                       | ffff   | ffff                |  |  |  |  |  |
| Description:                  | The conten<br>mented. If '<br>WREG. If 'c<br>back in reg | The contents of register 'f' are comple-<br>mented. If 'd' is 0 the result is stored in<br>WREG. If 'd' is 1 the result is stored<br>back in register 'f'. |        |                     |  |  |  |  |  |
| Words:                        | 1                                                        |                                                                                                                                                            |        |                     |  |  |  |  |  |
| Cycles:                       | 1                                                        |                                                                                                                                                            |        |                     |  |  |  |  |  |
| Q Cycle Activity:             |                                                          |                                                                                                                                                            |        |                     |  |  |  |  |  |
| Q1                            | Q2                                                       | Q3                                                                                                                                                         | 3      | Q4                  |  |  |  |  |  |
| Decode                        | Read<br>register 'f'                                     | Execu                                                                                                                                                      | ute re | Write<br>gister 'f' |  |  |  |  |  |
| Example:                      | COMF                                                     | REG                                                                                                                                                        | 1,0    |                     |  |  |  |  |  |
| Before Instru<br>REG1         | uction<br>= 0x13                                         |                                                                                                                                                            |        |                     |  |  |  |  |  |
| After Instruc<br>REG1<br>WREG | tion<br>= 0x13<br>= 0xEC                                 |                                                                                                                                                            |        |                     |  |  |  |  |  |

| MULLW                                                    | Multiply I                                                                                                                                                                                                                                                                                                                                                                                             | _iteral with V                    | VREG                                  | MUL         | WF                                                                                                                                                        | Multiply V                                                                                                                                                                                                             | VREG with f                                                                                                                              | :                                     |  |
|----------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|
| Syntax:                                                  | [ label ]                                                                                                                                                                                                                                                                                                                                                                                              | MULLW k                           |                                       | Synt        | ax:                                                                                                                                                       | [ label ]                                                                                                                                                                                                              | MULWF f                                                                                                                                  |                                       |  |
| Operands:                                                | $0 \le k \le 25$                                                                                                                                                                                                                                                                                                                                                                                       | 5                                 |                                       | Ope         | rands:                                                                                                                                                    | $0 \le f \le 255$                                                                                                                                                                                                      |                                                                                                                                          |                                       |  |
| Operation:                                               | (k x WRE                                                                                                                                                                                                                                                                                                                                                                                               | G) $\rightarrow$ PRODH            | H:PRODL                               | Ope         | ration:                                                                                                                                                   | (WREG x                                                                                                                                                                                                                | f) $\rightarrow$ PRODH                                                                                                                   | I:PRODL                               |  |
| Status Affected:                                         | None                                                                                                                                                                                                                                                                                                                                                                                                   |                                   |                                       | Statu       | us Affected:                                                                                                                                              | None                                                                                                                                                                                                                   |                                                                                                                                          |                                       |  |
| Encoding:                                                | 1011                                                                                                                                                                                                                                                                                                                                                                                                   | 1100 kkl                          | kk kkkk                               | Enco        | oding:                                                                                                                                                    | 0011                                                                                                                                                                                                                   | 0100 fff                                                                                                                                 | f ffff                                |  |
| Description:                                             | An unsigned multiplication is carried<br>out between the contents of WREG<br>and the 8-bit literal 'k'. The 16-bit<br>result is placed in PRODH:PRODL<br>register pair. PRODH contains the<br>high byte.<br>WREG is unchanged.<br>None of the status flags are affected.<br>Note that neither overflow nor carry<br>is possible in this operation. A zero<br>result is possible but not detected.<br>1 |                                   | Desc                                  | cription:   | An unsigne<br>out betwee<br>and the reg<br>16-bit resul<br>PRODH:PF<br>PRODH co<br>Both WREC<br>None of the<br>Note that n<br>is possible<br>result is po | d multiplication<br>n the contents<br>jister file locati<br>t is stored in th<br>RODL register<br>ntains the high<br>G and 'f' are ur<br>e status flags a<br>either overflow<br>in this operation<br>ssible but not of | n is carried<br>of WREG<br>on 'f'. The<br>ne<br>pair.<br>n byte.<br>nchanged.<br>are affected.<br>v nor carry<br>on. A zero<br>detected. |                                       |  |
| Words:                                                   | 1                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                       | Word        | ds:                                                                                                                                                       | 1                                                                                                                                                                                                                      |                                                                                                                                          |                                       |  |
| Cycles:                                                  | 1                                                                                                                                                                                                                                                                                                                                                                                                      |                                   |                                       | Cycl        | es:                                                                                                                                                       | 1                                                                                                                                                                                                                      |                                                                                                                                          |                                       |  |
| Q Cycle Activity:                                        |                                                                                                                                                                                                                                                                                                                                                                                                        |                                   |                                       | Q Cy        | cle Activity:                                                                                                                                             |                                                                                                                                                                                                                        |                                                                                                                                          |                                       |  |
| Q1                                                       | Q2                                                                                                                                                                                                                                                                                                                                                                                                     | Q3                                | Q4                                    | -           | Q1                                                                                                                                                        | Q2                                                                                                                                                                                                                     | Q3                                                                                                                                       | Q4                                    |  |
| Decode                                                   | Read<br>literal 'k'                                                                                                                                                                                                                                                                                                                                                                                    | Execute                           | Write<br>registers<br>PRODH:<br>PRODL |             | Decode                                                                                                                                                    | Read<br>register 'f'                                                                                                                                                                                                   | Execute                                                                                                                                  | Write<br>registers<br>PRODH:<br>PRODL |  |
| Example:                                                 | MULLW                                                                                                                                                                                                                                                                                                                                                                                                  | 0xC4                              |                                       | <u>Exar</u> | nple:                                                                                                                                                     | MULWF                                                                                                                                                                                                                  | REG                                                                                                                                      |                                       |  |
| Before Instru<br>WREG<br>PRODH<br>PRODL<br>After Instruc | uction<br>= 0x<br>= ?<br>= ?<br>tion                                                                                                                                                                                                                                                                                                                                                                   | Æ2                                |                                       |             | Before Instru<br>WREG<br>REG<br>PRODH<br>PRODL                                                                                                            | uction<br>= 0><br>= 0><br>= ?<br>= ?                                                                                                                                                                                   | (C4<br>(B5                                                                                                                               |                                       |  |
| WREG<br>PRODH<br>PRODL                                   | = 0<br>= 0<br>= 0<br>instruction                                                                                                                                                                                                                                                                                                                                                                       | (C4<br>(AD<br>(08<br>is not avail | able in the                           |             | After Instruc<br>WREG<br>REG<br>PRODH<br>PRODL                                                                                                            | tion<br>= 0><br>= 0><br>= 0><br>= 0>                                                                                                                                                                                   | xC4<br>(B5<br>(8A<br>(94                                                                                                                 |                                       |  |
|                                                          |                                                                                                                                                                                                                                                                                                                                                                                                        | •                                 |                                       | No          | ote: This<br>PIC1                                                                                                                                         | instruction<br>7C42 device                                                                                                                                                                                             | is not avail                                                                                                                             | able in the                           |  |

| SUBWF                                                  | Subtract                                               | WREG fr                                                 | rom f                                           |                                               |  |  |  |  |
|--------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------|-------------------------------------------------|-----------------------------------------------|--|--|--|--|
| Syntax:                                                | [label]                                                | SUBWF                                                   | f,d                                             |                                               |  |  |  |  |
| Operands:                                              | 0 ≤ f ≤ 25<br>d ∈ [0,1]                                | $0 \le f \le 255$<br>$d \in [0,1]$                      |                                                 |                                               |  |  |  |  |
| Operation:                                             | (f) – (W)                                              | $\rightarrow$ (dest)                                    |                                                 |                                               |  |  |  |  |
| Status Affected:                                       | OV, C, D                                               | C, Z                                                    |                                                 |                                               |  |  |  |  |
| Encoding:                                              | 0000                                                   | 010d                                                    | ffff                                            | ffff                                          |  |  |  |  |
| Description:                                           | Subtract V<br>compleme<br>result is st<br>result is st | VREG from<br>ent method)<br>cored in WR<br>cored back i | registe<br>. If 'd' is<br>EG. If 'd<br>n regist | r 'f' (2's<br>0 the<br>d' is 1 the<br>er 'f'. |  |  |  |  |
| Words:                                                 | 1                                                      |                                                         |                                                 |                                               |  |  |  |  |
| Cycles:                                                | 1                                                      |                                                         |                                                 |                                               |  |  |  |  |
| Q Cycle Activity:                                      |                                                        |                                                         |                                                 |                                               |  |  |  |  |
| Q1                                                     | Q2                                                     | Q3                                                      |                                                 | Q4                                            |  |  |  |  |
| Decode                                                 | Read                                                   | Execute                                                 | v   e                                           | Vrite to<br>stination                         |  |  |  |  |
| Example 1:                                             |                                                        | PEC1 1                                                  |                                                 | 50112001                                      |  |  |  |  |
| <u>Example 1</u> .                                     | otion                                                  | REGI, I                                                 |                                                 |                                               |  |  |  |  |
| REG1<br>WREG<br>C<br>After Instructi                   | = 3<br>= 2<br>= ?<br>on                                |                                                         |                                                 |                                               |  |  |  |  |
| REG1<br>WREG<br>C<br>Z                                 | = 1<br>= 2<br>= 1 ;<br>= 0                             | result is po                                            | sitive                                          |                                               |  |  |  |  |
| Example 2:                                             |                                                        |                                                         |                                                 |                                               |  |  |  |  |
| Before Instruc<br>REG1<br>WREG<br>C<br>After Instructi | ction<br>= 2<br>= 2<br>= ?<br>on                       |                                                         |                                                 |                                               |  |  |  |  |
| REG1<br>WREG<br>C<br>Z                                 | = 0<br>= 2<br>= 1 ;<br>= 1                             | result is zei                                           | ro                                              |                                               |  |  |  |  |
| Example 3:                                             |                                                        |                                                         |                                                 |                                               |  |  |  |  |
| Before Instruc<br>REG1<br>WREG<br>C                    | ction<br>= 1<br>= 2<br>= ?                             |                                                         |                                                 |                                               |  |  |  |  |
| After Instructi<br>REG1<br>WREG<br>C<br>Z              | on<br>= FF<br>= 2<br>= 0 ;<br>= 0                      | result is ne                                            | gative                                          |                                               |  |  |  |  |

| SUE        | BWFB                               | Sub<br>Bor                              | tract<br>row                                                                                                                                                                                        | WREG                               | from                  | n f v                | /ith                  |
|------------|------------------------------------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------|----------------------|-----------------------|
| Synt       | tax:                               | [ lab                                   | <i>el</i> ] S                                                                                                                                                                                       | SUBWF                              | B f,o                 | b                    |                       |
| Ope        | rands:                             | 0 ≤ f                                   | <sup>5</sup> ≤ 25                                                                                                                                                                                   | 5                                  |                       |                      |                       |
| One        | ration.                            | (f)                                     | (\\\/) -                                                                                                                                                                                            | $-\overline{C} \rightarrow 0$      | dest)                 |                      |                       |
| Stat       |                                    | (i) –<br>OV                             |                                                                                                                                                                                                     | - C → ((<br>- 7                    | Jesij                 |                      |                       |
| Enc        | odina:                             | <b>U</b> V,                             |                                                                                                                                                                                                     | <b>0</b> 01d                       | ffi                   | FF                   | fff                   |
| Des        | cription:                          | Subt<br>(borr<br>ment<br>store<br>store | Subtract WREG and the carry flag<br>(borrow) from register 'f' (2's comple-<br>ment method). If 'd' is 0 the result is<br>stored in WREG. If 'd' is 1 the result is<br>stored back in register 'f'. |                                    |                       |                      |                       |
| Wor        | ds:                                | 1                                       |                                                                                                                                                                                                     |                                    |                       |                      |                       |
| Cycl       | les:                               | 1                                       |                                                                                                                                                                                                     |                                    |                       |                      |                       |
| QC         | ycle Activity:                     |                                         |                                                                                                                                                                                                     |                                    |                       |                      |                       |
|            | Q1                                 | Q2                                      | <u>}</u>                                                                                                                                                                                            | Q3                                 |                       |                      | Q4                    |
|            | Decode                             | Rea<br>registe                          | d<br>er 'f'                                                                                                                                                                                         | Execu                              | ute                   | V<br>de              | Vrite to<br>stination |
| Exa        | <u>mple 1</u> :                    | SUB                                     | VFB                                                                                                                                                                                                 | REG1,                              | 1                     |                      |                       |
|            | Before Instru                      | iction                                  |                                                                                                                                                                                                     |                                    |                       |                      |                       |
|            | REG1<br>WREG<br>C                  | = 0x<br>= 0x<br>= 1                     | :19<br>:0D                                                                                                                                                                                          | (0001<br>(0000                     | 100<br>110            | 1)<br>1)             |                       |
|            | After Instruct                     | tion                                    |                                                                                                                                                                                                     |                                    |                       |                      |                       |
|            | REG1<br>WREG<br>C<br>Z             | = 0x $= 0x$ $= 1$ $= 0$                 | :0C<br>:0D                                                                                                                                                                                          | (0000<br>(0000<br>; <b>resul</b> t | 101<br>110<br>t is po | 1)<br>1)<br>ositiv   | е                     |
| Exa        | mple2:                             | SUBWE                                   | FB R                                                                                                                                                                                                | EG1,0                              |                       |                      |                       |
|            | Before Instru                      | iction                                  |                                                                                                                                                                                                     |                                    |                       |                      |                       |
|            | REG1<br>WREG<br>C                  | = 0x<br>= 0x<br>= 0                     | :1B<br>:1A                                                                                                                                                                                          | (0001<br>(0001                     | 101<br>101            | 1)<br>0)             |                       |
|            | After Instruct<br>REG1<br>WREG     | tion<br>= 0x<br>= 0x                    | :1B<br>:00                                                                                                                                                                                          | (0001                              | 101                   | 1)                   |                       |
|            | C<br>Z                             | = 1<br>= 1                              |                                                                                                                                                                                                     | ; resul                            | t is ze               | ro                   |                       |
| <u>Exa</u> | mple3:                             | SUBWE                                   | FB R                                                                                                                                                                                                | EG1,1                              |                       |                      |                       |
|            | Before Instru<br>REG1<br>WREG<br>C | iction<br>= 0x<br>= 0x<br>= 1           | :03<br>:0E                                                                                                                                                                                          | (0000<br>(0000                     | 001:<br>110           | 1)<br>1)             |                       |
|            | After Instruct                     | tion                                    |                                                                                                                                                                                                     |                                    |                       |                      |                       |
|            | REG1<br>WREG<br>C<br>Z             | = 0x $= 0x$ $= 0$ $= 0$                 | :F5<br>:0E                                                                                                                                                                                          | (1111<br>(0000<br>; <b>resul</b> t | 010<br>110<br>t is ne | 0) [2<br>1)<br>egati | ?'s comp]<br>ve       |

| TABLRD            | Table Read |           |           |  |  |  |
|-------------------|------------|-----------|-----------|--|--|--|
| <u>Example1</u> : | TABLRD     | 1, 1,     | REG ;     |  |  |  |
| Before Instruct   | tion       |           |           |  |  |  |
| REG               |            | =         | 0x53      |  |  |  |
| TBLATH            |            | =         | 0xAA      |  |  |  |
| TBLATL            |            | =         | 0x55      |  |  |  |
| TBLPTR            |            | =         | 0xA356    |  |  |  |
| MEMORY(           | TBLPTR)    | =         | 0x1234    |  |  |  |
| After Instruction | n (table v | vrite cor | mpletion) |  |  |  |
| REG               |            | =         | 0xAA      |  |  |  |
| TBLATH            |            | =         | 0x12      |  |  |  |
| TBLATL            |            | =         | 0x34      |  |  |  |
| TBLPTR            |            | =         | 0xA357    |  |  |  |
| MEMORY(           | TBLPTR)    | =         | 0x5678    |  |  |  |
| Example2:         | TABLRD     | 0, 0,     | REG ;     |  |  |  |
| Before Instruct   | tion       |           |           |  |  |  |
| REG               |            | =         | 0x53      |  |  |  |
| TBLATH            |            | =         | 0xAA      |  |  |  |
| TBLATL            |            | =         | 0x55      |  |  |  |
| TBLPTR            |            | =         | 0xA356    |  |  |  |
| MEMORY(           | TBLPTR)    | =         | 0x1234    |  |  |  |
| After Instructio  | n (table v | vrite cor | mpletion) |  |  |  |
| REG               |            | =         | 0x55      |  |  |  |
| TBLATH            |            | =         | 0x12      |  |  |  |
| TBLATL            |            | =         | 0x34      |  |  |  |
| TBLPTR            |            | =         | 0xA356    |  |  |  |
| MEMORY(           | TBLPTR)    | =         | 0x1234    |  |  |  |
|                   |            |           |           |  |  |  |
|                   |            |           |           |  |  |  |
|                   |            |           |           |  |  |  |
|                   |            |           |           |  |  |  |
|                   |            |           |           |  |  |  |

| $ [ label ] T  0 \le f \le 255  i \in [0,1]  t \in [0,1]  If t = 0,  f \rightarrow TBIf t = 1,TBLATIf i = 1,TBLPTNone10101. Load vlatch (If t = 01. Load vlatch (If t = 12. The ccto the pointerIf TBLprograthe insIf TBLPRO$                   | TABLWT t,i,f         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         5         11ti         5         10ad into low byte;         10ad into high byte         5         10at by TBLPTR         10at by TB |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $0 \le f \le 255$ $i \in [0,1]$ $I \in [0,1]$ If t = 0,<br>$f \rightarrow TB$ If t = 1,<br>$f \rightarrow TB$ TBLAT If i = 1,<br>TBLPT None 1010 1. Load v latch ( If t = 0 If t = 1 2. The cc to the pointed If TBL progra the ins If TBL EPRO | SLATL;<br>SLATH;<br>$\rightarrow$ Prog Mem (TBLPTR)<br>$TR + 1 \rightarrow TBLPTR$<br>11ti ffff ffff<br>value in 'f' into 16-bit table<br>TBLAT)<br>2: load into low byte;<br>2: load into low byte;<br>2: load into high byte<br>pontents of TBLAT is written<br>program memory location<br>d to by TBLPTR<br>LPTR points to external<br>am memory location, then<br>struction takes two-cycle<br>PTR points to an internal                                                                                                                                                                                                                                 |
| If $t = 0$ ,<br>$f \rightarrow TB$<br>If $t = 1$ ,<br>TBLAT<br>If $i = 1$ ,<br>TBLPT<br>None<br>1010<br>1. Load v<br>latch (<br>If $t = 1$<br>2. The cc<br>to the<br>pointer<br>If TBL<br>progra<br>the ins<br>If TBL<br>PRO                    | SLATL;<br>SLATH;<br>$T \rightarrow \text{Prog Mem (TBLPTR)}$<br>$TR + 1 \rightarrow \text{TBLPTR}$<br>11ti ffff ffff<br>value in 'f' into 16-bit table<br>TBLAT)<br>TBLAT<br>TBLAT is written<br>program memory location<br>d to by TBLPTR<br>LPTR points to external<br>am memory location, then<br>struction takes two-cycle<br>PTR points to an internal                                                                                                                                                                                                                                                                                                  |
| None<br>1010<br>1. Load v<br>latch (<br>If t = 0<br>If t = 1<br>2. The cc<br>to the<br>pointer<br>If TBL<br>progra<br>the ins<br>If TBL<br>EPRO                                                                                                 | 11tiffffffffvalue in 'f' into 16-bit tableTBLAT)b: load into low byte;: load into high bytepontents of TBLAT is writtenprogram memory locationd to by TBLPTRLPTR points to externalam memory location, thenstruction takes two-cyclePTR points to an internal                                                                                                                                                                                                                                                                                                                                                                                                |
| 1010<br>1. Load v<br>latch (<br>If t = 0<br>If t = 1<br>2. The cc<br>to the<br>pointer<br>If TBL<br>progra<br>the ins<br>If TBL<br>EPRO                                                                                                         | 11tiffffffffvalue in 'f' into 16-bit table<br>TBLAT)b: load into low byte;<br>: load into high byteb: load into high byteontents of TBLAT is written<br>program memory location<br>d to by TBLPTR<br>LPTR points to external<br>am memory location, then<br>struction takes two-cycle<br>PTR points to an internal                                                                                                                                                                                                                                                                                                                                           |
| <ol> <li>Load v<br/>latch (<br/>If t = 0</li> <li>If t = 1</li> <li>The cc<br/>to the<br/>pointer</li> <li>If TBL<br/>progra<br/>the ins<br/>If TBL</li> <li>EPRO</li> </ol>                                                                    | value in 'f' into 16-bit table<br>TBLAT)<br>b: load into low byte;<br>: load into high byte<br>protents of TBLAT is written<br>program memory location<br>d to by TBLPTR<br>_PTR points to external<br>am memory location, then<br>struction takes two-cycle<br>PTR points to an internal                                                                                                                                                                                                                                                                                                                                                                    |
| instruct<br>an inter<br>R/VPP pin m<br>r successfu<br>PP = VDD<br>Imming sec<br>xecuted, but<br>the internal                                                                                                                                    | M location, then the<br>ction is terminated when<br>errupt is received.<br>nust be at the programming<br>ul programming of internal<br>quence of internal memory<br>ut will not be successful<br>I memory location may be                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3. The T<br>cally ir                                                                                                                                                                                                                            | BLPTR can be automati-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| If $i = 0$                                                                                                                                                                                                                                      | ; TBLPTR is not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| lf i = 1                                                                                                                                                                                                                                        | ; TBLPTR is incremented                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2 (many if<br>EPROM p                                                                                                                                                                                                                           | write is to on-chip<br>program memory)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Q2                                                                                                                                                                                                                                              | Q3 Q4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Read<br>egister 'f'                                                                                                                                                                                                                             | Execute Write<br>register<br>TBLATH or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                 | amming sec<br>xecuted, b<br>the interna<br>3. The T<br>cally in<br>If i = 0<br>If i = 1<br>2 (many if<br>EPROM p<br>Q2<br>Read<br>register 'f'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

## Applicable Devices 42 R42 42A 43 R43 44

#### FIGURE 17-12: MEMORY INTERFACE READ TIMING



| Parameter<br>No. | Sym      | Characteristic                                           | Min           | Тур†      | Мах          | Units | Conditions |
|------------------|----------|----------------------------------------------------------|---------------|-----------|--------------|-------|------------|
| 150              | TadV2alL | AD<15:0> (address) valid to ALE↓<br>(address setup time) | 0.25Tcy - 30  | _         | _            | ns    |            |
| 151              | TalL2adl | ALE↓ to address out invalid (address hold time)          | 5*            | _         | _            | ns    |            |
| 160              | TadZ2oeL | AD<15:0> high impedance to $\overline{OE}\downarrow$     | 0*            | _         | —            | ns    |            |
| 161              | ToeH2adD | OE↑ to AD<15:0> driven                                   | 0.25Tcy - 15  | —         | _            | ns    |            |
| 162              | TadV2oeH | Data in valid before OE↑<br>(data setup time)            | 35            | —         | _            | ns    |            |
| 163              | ToeH2adl | OE to data in invalid (data hold time)                   | 0             | _         | _            | ns    |            |
| 164              | TalH     | ALE pulse width                                          | —             | 0.25Tcy § | —            | ns    |            |
| 165              | ToeL     | OE pulse width                                           | 0.5Tcy - 35 § | _         | _            | ns    |            |
| 166              | TalH2alH | ALE↑ to ALE↑ (cycle time)                                | —             | TCY §     | —            | ns    |            |
| 167              | Tacc     | Address access time                                      | —             | _         | 0.75 Tcy-40  | ns    |            |
| 168              | Тое      | Output enable access time<br>(OE low to Data Valid)      | _             |           | 0.5 TCY - 60 | ns    |            |

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification guaranteed by design.

## Applicable Devices 42 R42 42A 43 R43 44

#### FIGURE 20-13: WDT TIMER TIME-OUT PERIOD vs. VDD



FIGURE 20-14: IOH vs. VOH, VDD = 3V



#### INDEX

# Α

| ADDLW                            | 112         |
|----------------------------------|-------------|
| ADDWF                            |             |
| ADDWFC                           | 113         |
| ALU                              | 9           |
| ALU STATUS Register (ALUSTA)     |             |
| ALUSTA                           | 34, 36, 108 |
| ALUSTA Register                  |             |
| ANDLW                            |             |
| ANDWF                            |             |
| Application Notes                |             |
| AN552                            | 55          |
| Assembler                        |             |
| Asynchronous Master Transmission |             |
| Asynchronous Transmitter         |             |
|                                  |             |

# В

| Bank Select Register (BSR) 42                      | 2 |
|----------------------------------------------------|---|
| Banking                                            | 2 |
| Baud Rate Formula                                  | ô |
| Baud Rate Generator (BRG)86                        | ô |
| Baud Rates                                         |   |
| Asynchronous Mode88                                | В |
| Synchronous Mode87                                 | 7 |
| BCF                                                | 4 |
| Bit Manipulation                                   | В |
| Block Diagrams                                     |   |
| On-chip Reset Circuit15                            | 5 |
| PIC17C4210                                         | C |
| PORTD                                              | D |
| PORTE                                              | 2 |
| PWM75                                              | 5 |
| RA0 and RA153                                      | 3 |
| RA2 and RA354                                      | 4 |
| RA4 and RA554                                      | 4 |
| RB3:RB2 Port Pins56                                | ô |
| RB7:RB4 and RB1:RB0 Port Pins55                    | 5 |
| RC7:RC0 Port Pins58                                | В |
| Timer3 with One Capture and One Period Register 78 | в |
| TMR1 and TMR2 in 16-bit Timer/Counter Mode74       | 4 |
| TMR1 and TMR2 in Two 8-bit Timer/Counter Mode 73   | 3 |
| TMR3 with Two Capture Registers79                  | 9 |
| WDT 104                                            | 4 |
| BORROW                                             | 9 |
| BRG                                                | ô |
| Brown-out Protection                               | В |
| BSF                                                | 5 |
| BSR                                                | 2 |
| BSR Operation                                      | 2 |
| BTFSC                                              | 5 |
| BTFSS                                              | ô |
| BTG                                                | ô |

# С

| 72 |
|----|
| 71 |
| 71 |
|    |

| CA1IE                                       | 23          |
|---------------------------------------------|-------------|
| CA1IF                                       | 24          |
| CA10VF                                      | 72          |
| CA2ED0                                      | 71          |
| CA2ED1                                      | 71          |
| CA2H                                        | 20, 35      |
| CA2IE                                       | 23, 78      |
| CA2IF                                       | 24, 78      |
| CA2L                                        | 20, 35      |
| CA2OVF                                      | 72          |
| Calculating Baud Rate Error                 | 86          |
| CALL                                        |             |
| Capacitor Selection                         |             |
| Ceramic Resonators                          | 101         |
| Crystal Oscillator                          | 101         |
| Capture                                     | 71, 78      |
| Capture Sequence to Read Example            | 78          |
| Capture1                                    |             |
| Mode                                        | 71          |
| Overflow                                    | 72          |
| Capture2                                    |             |
| . Mode                                      | 71          |
| Overflow                                    | 72          |
| Carry (C)                                   | 9           |
| Ceramic Resonators                          | 100         |
| Circular Buffer                             |             |
| Clearing the Prescaler                      | 103         |
| Clock/Instruction Cycle (Figure)            | 14          |
| Clocking Scheme/Instruction Cycle (Section) | 14          |
| CLRF                                        | 117         |
| CLRWDT                                      | 118         |
| Code Protection                             | 99, 106     |
| COMF                                        | 118         |
| Configuration                               |             |
| Bits                                        | 100         |
| Locations                                   | 100         |
| Oscillator                                  | 100         |
| Word                                        | 99          |
| CPFSEQ                                      | 119         |
| CPFSGT                                      | 119         |
| CPFSLT                                      | 120         |
| CPU STATUS Register (CPUSTA)                | 37          |
| CPUSTA                                      | 34, 37, 105 |
| CREN                                        | 84          |
| Crystal Operation, Overtone Crystals        | 101         |
| Crystal or Ceramic Resonator Operation      | 100         |
| Crystal Oscillator                          | 100         |
| CSRC                                        | 83          |
|                                             |             |

# D

| Data Memory                |            |
|----------------------------|------------|
| GPR                        |            |
| Indirect Addressing        |            |
| Organization               |            |
| SFR                        |            |
| Transfer to Program Memory | 43         |
| DAW                        |            |
| DC                         | 9, 36      |
| DDRB                       |            |
| DDRC                       | 19, 34, 58 |
| DDRD                       | 19, 34, 60 |
| DDRE                       |            |
| DECF                       |            |
| DECFSNZ                    |            |
| DECFSZ                     |            |
|                            |            |

 $\ensuremath{\textcircled{}^{\odot}}$  1996 Microchip Technology Inc.

| WDT                        | 99, 103 |
|----------------------------|---------|
| Clearing the WDT           | 103     |
| Normal Timer               | 103     |
| Period                     | 103     |
| Programming Considerations | 103     |
| WDTPS0                     |         |
| WDTPS1                     |         |
| WREG                       |         |

# Χ

| XORLW | . 141 |
|-------|-------|
| XORWF | . 141 |

# Ζ

| Ζ        | <br> | <br>9, | 36 |
|----------|------|--------|----|
| Zero (Z) | <br> | <br>   | 9  |

#### LIST OF EXAMPLES

| Example 3-1:  | Signed Math                          | 9   |
|---------------|--------------------------------------|-----|
| Example 3-2:  | Instruction Pipeline Flow            | 14  |
| Example 5-1:  | Saving STATUS and WREG in RAM        | 27  |
| Example 6-1:  | Indirect Addressing                  | 40  |
| Example 7-1:  | Table Write                          | 46  |
| Example 7-2:  | Table Read                           | 48  |
| Example 8-1:  | 8 x 8 Multiply Routine               | 49  |
| Example 8-2:  | 8 x 8 Signed Multiply Routine        | 49  |
| Example 8-3:  | 16 x 16 Multiply Routine             | 50  |
| Example 8-4:  | 16 x 16 Signed Multiply Routine      | 51  |
| Example 9-1:  | Initializing PORTB                   | 57  |
| Example 9-2:  | Initializing PORTC                   | 58  |
| Example 9-3:  | Initializing PORTD                   | 60  |
| Example 9-4:  | Initializing PORTE                   | 62  |
| Example 9-5:  | Read Modify Write Instructions on an |     |
|               | I/O Port                             | 64  |
| Example 11-1: | 16-Bit Read                          | 69  |
| Example 11-2: | 16-Bit Write                         | 69  |
| Example 12-1: | Sequence to Read Capture Registers.  | 78  |
| Example 12-2: | Writing to TMR3                      | 80  |
| Example 12-3: | Reading from TMR3                    | 80  |
| Example 13-1: | Calculating Baud Rate Error          | 86  |
| Example F-1:  | PIC17C42 to Sleep                    | 223 |
|               |                                      |     |

#### LIST OF FIGURES

| Figure 3-1:  | PIC17C42 Block Diagram               | 10 |
|--------------|--------------------------------------|----|
| Figure 3-2:  | PIC17CR42/42A/43/R43/44 Block        |    |
|              | Diagram                              | 11 |
| Figure 3-3:  | Clock/Instruction Cycle              | 14 |
| Figure 4-1:  | Simplified Block Diagram of On-chip  |    |
|              | Reset Circuit                        | 15 |
| Figure 4-2:  | Time-Out Sequence on Power-Up        |    |
|              | (MCLR Tied to VDD)                   | 17 |
| Figure 4-3:  | Time-Out Sequence on Power-Up        |    |
|              | (MCLR NOT Tied to VDD)               | 17 |
| Figure 4-4:  | Slow Rise Time (MCLR Tied to VDD)    | 17 |
| Figure 4-5:  | Oscillator Start-Up Time             | 18 |
| Figure 4-6:  | Using On-Chip POR                    | 18 |
| Figure 4-7:  | Brown-out Protection Circuit 1       | 18 |
| Figure 4-8:  | PIC17C42 External Power-On Reset     |    |
|              | Circuit (For Slow VDD Power-Up)      | 18 |
| Figure 4-9:  | Brown-out Protection Circuit 2       | 18 |
| Figure 5-1:  | Interrupt Logic                      | 21 |
| Figure 5-2:  | INTSTA Register (Address: 07h,       |    |
|              | Unbanked)                            | 22 |
| Figure 5-3:  | PIE Register (Address: 17h, Bank 1)  | 23 |
| Figure 5-4:  | PIR Register (Address: 16h, Bank 1)  | 24 |
| Figure 5-5:  | INT Pin / T0CKI Pin Interrupt Timing | 26 |
| Figure 6-1:  | Program Memory Map and Stack         | 29 |
| Figure 6-2:  | Memory Map in Different Modes        | 30 |
| Figure 6-3:  | External Program Memory Access       |    |
|              | Waveforms                            | 31 |
| Figure 6-4:  | Typical External Program Memory      |    |
|              | Connection Diagram                   | 31 |
| Figure 6-5:  | PIC17C42 Register File Map           | 33 |
| Figure 6-6:  | PIC17CR42/42A/43/R43/44 Register     |    |
|              | File Map                             | 33 |
| Figure 6-7:  | ALUSTA Register (Address: 04h,       |    |
|              | Unbanked)                            | 36 |
| Figure 6-8:  | CPUSTA Register (Address: 06h,       |    |
|              | Unbanked)                            | 37 |
| Figure 6-9:  | T0STA Register (Address: 05h,        |    |
|              | Unbanked)                            | 38 |
| Figure 6-10: | Indirect Addressing                  | 39 |
| Figure 6-11: | Program Counter Operation            | 41 |
|              |                                      |    |