

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2010	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	33MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	8KB (4K x 16)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	_
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c43t-33-pq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

3.1 Clocking Scheme/Instruction Cycle

The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks, namely Q1, Q2, Q3, and Q4. Internally, the program counter (PC) is incremented every Q1, and the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 3-3.

3.2 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3, and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g.GOTO) then two cycles are required to complete the instruction (Example 3-2).

A fetch cycle begins with the program counter incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register (IR)" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-3: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-2: INSTRUCTION PIPELINE FLOW

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

Addr	Unbanked			
00h	INDF0			
01h	FSR0			
02h	PCL			
03h	PCLATH			
04h	ALUSTA			
05h	TOSTA			
06h	CPUSTA			
07h	INTSTA			
08h	INDF1			
09h	FSR1			
0Ah	WREG			
0Bh	TMR0L			
0Ch	TMR0H			
0Dh	TBLPTRL			
0Eh	TBLPTRH			
0Fh	BSR			
1				
	Bank 0	Bank 1 ⁽¹⁾	Bank 2 ⁽¹⁾	Bank 3 ⁽¹⁾
10h	Bank 0 PORTA	Bank 1 ⁽¹⁾ DDRC	Bank 2 ⁽¹⁾ TMR1	Bank 3 ⁽¹⁾ PW1DCL
10h 11h				
	PORTA	DDRC	TMR1	PW1DCL
11h	PORTA DDRB	DDRC PORTC	TMR1 TMR2	PW1DCL PW2DCL
11h 12h	PORTA DDRB PORTB	DDRC PORTC DDRD	TMR1 TMR2 TMR3L	PW1DCL PW2DCL PW1DCH
11h 12h 13h	PORTA DDRB PORTB RCSTA	DDRC PORTC DDRD PORTD	TMR1 TMR2 TMR3L TMR3H	PW1DCL PW2DCL PW1DCH PW2DCH
11h 12h 13h 14h	PORTA DDRB PORTB RCSTA RCREG	DDRC PORTC DDRD PORTD DDRE	TMR1 TMR2 TMR3L TMR3H PR1	PW1DCL PW2DCL PW1DCH PW2DCH CA2L
11h 12h 13h 14h 15h	PORTA DDRB PORTB RCSTA RCREG TXSTA	DDRC PORTC DDRD PORTD DDRE PORTE	TMR1 TMR2 TMR3L TMR3H PR1 PR2	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H
11h 12h 13h 14h 15h 16h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG	DDRC PORTC DDRD PORTD DDRE PORTE PIR	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1
11h 12h 13h 14h 15h 16h 17h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG	DDRC PORTC DDRD PORTD DDRE PORTE PIR	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1
11h 12h 13h 14h 15h 16h 17h 18h 1Fh	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG General	DDRC PORTC DDRD PORTD DDRE PORTE PIR	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1
11h 12h 13h 14h 15h 16h 17h 18h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG General Purpose	DDRC PORTC DDRD PORTD DDRE PORTE PIR	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1
11h 12h 13h 14h 15h 16h 17h 18h 1Fh	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG General	DDRC PORTC DDRD PORTD DDRE PORTE PIR	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1
11h 12h 13h 14h 15h 16h 17h 18h 1Fh	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG General Purpose	DDRC PORTC DDRD PORTD DDRE PORTE PIR	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1

FIGURE 6-5: PIC17C42 REGISTER FILE MAP

Note 1: SFR file locations 10h - 17h are banked. All other SFRs ignore the Bank Select Register (BSR) bits.

FIGURE 6-6: PIC17CR42/42A/43/R43/44 REGISTER FILE MAP

Addr	Unbanked			
00h	INDF0			
01h	FSR0			
02h	PCL			
03h	PCLATH			
04h	ALUSTA			
05h	TOSTA			
06h	CPUSTA			
07h	INTSTA			
08h	INDF1			
09h	FSR1			
0Ah	WREG			
0Bh	TMR0L			
0Ch	TMR0H			
0Dh	TBLPTRL			
0Eh	TBLPTRH			
0Fh	BSR			
	Bank 0	Bank 1 ⁽¹⁾	Bank 2 ⁽¹⁾	Bank 3 ⁽¹⁾
10h	PORTA	DDRC	TMR1	PW1DCL
11h	DDRB	PORTC	TMR2	PW2DCL
12h	PORTB	DDRD	TMR3L	PW1DCH
13h	RCSTA	PORTD	TMR3H	PW2DCH
14h	RCREG	DDRE	PR1	CA2L
15h	TXSTA	PORTE	PR2	CA2H
16h	TXREG	PIR	PR3L/CA1L	TCON1
17h	SPBRG	PIE	PR3H/CA1H	TCON2
18h	PRODL			
19h	PRODH			
1Ah				
1Fh			1	
20h	General	General		
	Purpose	Purpose		
	RAM ⁽²⁾	RAM (2)		
FFh				

- Note 1: SFR file locations 10h 17h are banked. All other SFRs ignore the Bank Select Register (BSR) bits.
 - 2: General Purpose Registers (GPR) locations 20h - FFh and 120h - 1FFh are banked. All other GPRs ignore the Bank Select Register (BSR) bits.

TABLE 6-3:	SPECIAL FUNCTION REGISTERS
------------	----------------------------

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (3)
Unbank	ed	•				•			•		
00h	INDF0	Uses con	tents of FSI	R0 to addres	s data mem	ory (not a p	hysical regis	ster)			
01h	FSR0	Indirect d	ata memory	address po	inter 0					XXXX XXXX	uuuu uuuu
02h	PCL	Low orde	r 8-bits of P	С						0000 0000	0000 0000
03h ⁽¹⁾	PCLATH	Holding re	egister for u	pper 8-bits o	of PC					0000 0000	uuuu uuuu
04h	ALUSTA	FS3	FS2	FS1	FS0	OV	Z	DC	С	1111 xxxx	1111 uuuu
05h	TOSTA	INTEDG	TOSE	TOCS	PS3	PS2	PS1	PS0	—	0000 000-	0000 000-
06h (2)	CPUSTA	_	_	STKAV	GLINTD	TO	PD	_	_	11 11	11 qq
07h	INTSTA	PEIF	TOCKIF	T0IF	INTF	PEIE	TOCKIE	TOIE	INTE	0000 0000	0000 0000
08h	INDF1	Uses con	tents of FSI	R1 to addres	s data mem	ory (not a p	hysical regis	ster)			
09h	FSR1	Indirect d	ata memory	address po	inter 1		, ,			xxxx xxxx	uuuu uuuu
0Ah	WREG	Working r	egister							xxxx xxxx	uuuu uuuu
0Bh	TMR0L	TMR0 reg	gister; low b	yte						xxxx xxxx	uuuu uuuu
0Ch	TMR0H	TMR0 reg	gister; high I	oyte						xxxx xxxx	uuuu uuuu
0Dh	TBLPTRL	Low byte	of program	memory tab	le pointer					(4)	(4)
0Eh	TBLPTRH	High byte	of program	memory tal	ole pointer					(4)	(4)
0Fh	BSR	Bank sele	ect register							0000 0000	0000 0000
Bank 0		1								I	
10h	PORTA	RBPU	_	RA5	RA4	RA3	RA2	RA1/T0CKI	RA0/INT	0-xx xxxx	0-uu uuuu
11h	DDRB	Data dire	ction registe	er for PORTE	3					1111 1111	1111 1111
12h	PORTB	PORTB d	ata latch							xxxx xxxx	uuuu uuuu
13h	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00u
14h	RCREG	Serial por	t receive re	gister						xxxx xxxx	uuuu uuuu
15h	TXSTA	CSRC	TX9	TXEN	SYNC	—	—	TRMT	TX9D	00001x	00001u
16h	TXREG	Serial por	t transmit re	egister						xxxx xxxx	uuuu uuuu
17h	SPBRG	Baud rate	generator	register						xxxx xxxx	uuuu uuuu
Bank 1											
10h	DDRC	Data dire	ction registe	er for PORT	2					1111 1111	1111 1111
11h	PORTC	RC7/ AD7	RC6/ AD6	RC5/ AD5	RC4/ AD4	RC3/ AD3	RC2/ AD2	RC1/ AD1	RC0/ AD0	xxxx xxxx	uuuu uuuu
12h	DDRD	Data dire	ction registe	er for PORTI)					1111 1111	1111 1111
4.01-	PORTD	RD7/ AD15	RD6/ AD14	RD5/ AD13	RD4/ AD12	RD3/ AD11	RD2/ AD10	RD1/ AD9	RD0/ AD8	xxxx xxxx	uuuu uuuu
13h		Data direction register for PORTE								111	111
13h 14h	DDRE	Data dire						-			
	DDRE PORTE	Data dire	_	_	_	_	RE2/WR	RE1/OE	RE0/ALE	xxx	uuu
14h		RBIF	— TMR3IF	— TMR2IF	— TMR1IF	— CA2IF	RE2/WR CA1IF	RE1/OE TXIF	RE0/ALE RCIF	xxx 0000 0010	uuu 0000 0010

x = unknown, u = unchanged, - = unimplemented read as '0', q - value depends on condition. Shaded cells are unimplemented, read as '0'. The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<15:8> whose contents are updated Legend: Note 1:

from or transferred to the upper byte of the program counter. The TO and PD status bits in CPUSTA are not affected by a MCLR reset. 2:

3: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

4:

The following values are for both TBLPTRL and TBLPTRH: All PIC17C4X devices (Power-on Reset 0000 0000) and (All other resets 0000 0000) except the PIC17C42 (Power-on Reset xxxx xxxx) and (All other resets uuuu uuuu)

5: The PRODL and PRODH registers are not implemented on the PIC17C42.

9.2 PORTB and DDRB Registers

PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is DDRB. A '1' in DDRB configures the corresponding port pin as an input. A '0' in the DDRB register configures the corresponding port pin as an output. Reading PORTB reads the status of the pins, whereas writing to it will write to the port latch.

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is done by clearing the $\overline{\text{RBPU}}$ (PORTA<7>) bit. The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are enabled on any reset.

PORTB also has an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (i.e. any RB7:RB0 pin configured as an output is excluded from the interrupt on change comparison). The input pins (of RB7:RB0) are compared with the value in the PORTB data latch. The "mismatch" outputs of RB7:RB0 are OR'ed together to generate the PORTB Interrupt Flag RBIF (PIR<7>). This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt by:

- a) Read-Write PORTB (such as; MOVPF PORTB, PORTB). This will end mismatch condition.
- b) Then, clear the RBIF bit.

A mismatch condition will continue to set the RBIF bit. Reading then writing PORTB will end the mismatch condition, and allow the RBIF bit to be cleared.

This interrupt on mismatch feature, together with software configurable pull-ups on this port, allows easy interface to a key pad and make it possible for wake-up on key-depression. For an example, refer to AN552 in the *Embedded Control Handbook*.

The interrupt on change feature is recommended for wake-up on operations where PORTB is only used for the interrupt on change feature and key depression operation.

FIGURE 9-4: BLOCK DIAGRAM OF RB<7:4> AND RB<1:0> PORT PINS

FIGURE 13-3: USART TRANSMIT

13.2 USART Asynchronous Mode

In this mode, the USART uses standard nonreturn-to-zero (NRZ) format (one start bit, eight or nine data bits, and one stop bit). The most common data format is 8-bits. An on-chip dedicated 8-bit baud rate generator can be used to derive standard baud rate frequencies from the oscillator. The USART's transmitter and receiver are functionally independent but use the same data format and baud rate. The baud rate generator produces a clock x64 of the bit shift rate. Parity is not supported by the hardware, but can be implemented in software (and stored as the ninth data bit). Asynchronous mode is stopped during SLEEP.

The asynchronous mode is selected by clearing the SYNC bit (TXSTA<4>).

The USART Asynchronous module consists of the following important elements:

- Baud Rate Generator
- Sampling Circuit
- Asynchronous Transmitter
- Asynchronous Receiver

13.2.1 USART ASYNCHRONOUS TRANSMITTER

The USART transmitter block diagram is shown in Figure 13-3. The heart of the transmitter is the transmit shift register (TSR). The shift register obtains its data from the read/write transmit buffer (TXREG). TXREG is loaded with data in software. The TSR is not loaded until the stop bit has been transmitted from the previous load. As soon as the stop bit is transmitted, the TSR is loaded with new data from the TXREG (if available). Once TXREG transfers the data to the TSR (occurs in one TCY at the end of the current BRG cycle), the TXREG is empty and an interrupt bit, TXIF (PIR<1>) is set. This interrupt can be enabled or disabled by the TXIE bit (PIE<1>). TXIF will be set regardless of TXIE and cannot be reset in software. It will reset only when new data is loaded into TXREG. While TXIF indicates the status of the TXREG, the TRMT (TXSTA<1>) bit shows the status of the TSR. TRMT is a read only bit which is set when the TSR is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR is empty.

Note:	The TSR is not mapped in data memory,
	so it is not available to the user.

Transmission enabled setting is by the TXEN (TXSTA<5>) bit. The actual transmission will not occur until TXREG has been loaded with data and the baud rate generator (BRG) has produced a shift clock (Figure 13-5). The transmission can also be started by first loading TXREG and then setting TXEN. Normally when transmission is first started, the TSR is empty, so a transfer to TXREG will result in an immediate transfer to TSR resulting in an empty TXREG. A back-to-back transfer is thus possible (Figure 13-6). Clearing TXEN during a transmission will cause the transmission to be aborted. This will reset the transmitter and the RA5/TX/CK pin will revert to hi-impedance.

In order to select 9-bit transmission, the TX9 (TXSTA<6>) bit should be set and the ninth bit should be written to TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to the TXREG. This is because a data write to TXREG can result in an immediate transfer of the data to the TSR (if the TSR is empty).

Steps to follow when setting up an Asynchronous Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If interrupts are desired, then set the TXIE bit.
- 4. If 9-bit transmission is desired, then set the TX9 bit.
- 5. Load data to the TXREG register.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in TX9D.
- 7. Enable the transmission by setting TXEN (starts transmission).

Writing the transmit data to the TXREG, then enabling the transmit (setting TXEN) allows transmission to start sooner then doing these two events in the opposite order.

Note: To terminate a transmission, either clear the SPEN bit, or the TXEN bit. This will reset the transmit logic, so that it will be in the proper state when transmit is re-enabled.

13.2.2 USART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 13-4. The data comes in the RA4/RX/DT pin and drives the data recovery block. The data recovery block is actually a high speed shifter operating at 16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at Fosc.

Once asynchronous mode is selected, reception is enabled by setting bit CREN (RCSTA<4>).

The heart of the receiver is the receive (serial) shift register (RSR). After sampling the stop bit, the received data in the RSR is transferred to the RCREG (if it is empty). If the transfer is complete, the interrupt bit RCIF (PIR<0>) is set. The actual interrupt can be enabled/disabled by setting/clearing the RCIE (PIE<0>) bit. RCIF is a read only bit which is cleared by the hardware. It is cleared when RCREG has been read and is empty. RCREG is a double buffered register; (i.e. it is a two deep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte begin shifting to the RSR. On detection of the stop bit of the third byte, if the RCREG is still full, then the overrun error bit, OERR (RCSTA<1>) will be set. The word in the RSR will be lost. RCREG can be read twice to retrieve the two bytes in the FIFO. The OERR bit has to be cleared in software which is done by resetting the receive logic (CREN is set). If the OERR bit is set, transfers from the RSR to RCREG are inhibited, so it is essential to clear the OERR bit if it is set. The framing error bit FERR (RCSTA<2>) is set if a stop bit is not detected.

FIGURE 13-7: RX PIN SAMPLING SCHEME

Note: The FERR and the 9th receive bit are buffered the same way as the receive data. Reading the RCREG register will allow the RX9D and FERR bits to be loaded with values for the next received Received data; therefore, it is essential for the user to read the RCSTA register before reading RCREG in order not to lose the old FERR and RX9D information.

13.2.3 SAMPLING

The data on the RA4/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RA4/RX/DT pin. The sampling is done on the seventh, eighth and ninth falling edges of a x16 clock (Figure 11-3).

The x16 clock is a free running clock, and the three sample points occur at a frequency of every 16 falling edges.

RX		Start bit	Bit0
(RA4/RX/DT pin) baud CLK	-	Baud CLK for all but start bit	
Jaud CLK	1		
x16 CLK		2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1	2 3
		Samples	

ADDLW ADD Literal to WREG						
Syntax:	[label] A	DLW	k			
Operands:	$0 \le k \le 25$	$0 \le k \le 255$				
Operation:	(WREG) -	+ k \rightarrow (V	VREG)			
Status Affected:	OV, C, DC	C, Z				
Encoding:	1011	0001	kkkk	kkkk		
Description:	The conten 8-bit literal WREG.					
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3	3	Q4		
Decode	Read literal 'k'	Execu		Vrite to WREG		
Example:	ADDLW	0x15				
Before Instruc WREG =						

ADDWF	ADD WRE	EG to f		
Syntax:	[<i>label</i>] A[DDWF 1	f,d	
Operands:	$0 \le f \le 255$ $d \in [0,1]$	5		
Operation:	(WREG) +	- (f) \rightarrow (de	est)	
Status Affected:	OV, C, DC	, Z		
Encoding:	0000	111d	ffff	ffff
Description:	Add WREG result is sto result is sto	red in WRE	EG. If 'd'	is 1 the
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read register 'f'	Execute	· ·	/rite to stination
Example:	ADDWF	REG, 0		
Before Instru WREG REG	iction = 0x17 = 0xC2			
After Instruct WREG REG	tion = 0xD9 = 0xC2			

After Instruction WREG = 0x25

DECF	Decreme	nt f		DECFSZ	Decrement f,	skip if 0	
Syntax:	[label]	DECF f,d		Syntax:	[label] DEC	FSZ f,d	
Operands:	0 ≤ f ≤ 258 d ∈ [0,1]	5		Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \ [0,1] \end{array}$		
Operation:	(f) – 1 \rightarrow (dest)		Operation:	(f) – 1 \rightarrow (dest		
Status Affected:	OV, C, DC	;, Z			skip if result =	0	
Encoding:	0000	011d ff	ff ffff	Status Affected	l: None		
Description:	Decrement	register 'f'. If '	d' is 0 the	Encoding:	0001 011	Ld fff	f ffff
		ored in WREG		Description:	The contents of mented. If 'd' is	0 the resu	It is placed in
Words:	1				WREG. If 'd' is 1 back in register		t is placed
Cycles:	1				If the result is 0,		instruction.
Q Cycle Activity:					which is already	/ fetched,	is discarded,
Q1	Q2	Q3	Q4		and an NOP is e ing it a two-cycle		
Decode	Read register 'f'	Execute	Write to destination	Words:	1		
Example:	DECF	CNT, 1		Cycles:	1(2)		
Before Instru		- ,		Q Cycle Activit	y:		
CNT	= 0x01			Q1	Q2	Q3	Q4
Z	= 0			Decode		xecute	Write to
After Instruc	tion				register 'f'		destination
CNT	= 0x00			Example:			CNT, 1
Z	= 1				GC CONTINUE	OTO	LOOP
				Defers inc			
				Before Ins	liucion		

PC	=	Address (HERE)
After Instruct	ion	
CNT	=	CNT - 1
If CNT	=	0;
PC	=	Address (CONTINUE)
If CNT	≠	0;
PC	=	Address (HERE+1)

DCF	SNZ	Decreme	nt f, skip if	not (0		
Syn	tax:	[<i>label</i>] D	CFSNZ f,c	1			
Operands:		0 ≤ f ≤ 25 d ∈ [0,1]	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \ [0,1] \end{array}$				
Ope	ration:		(f) − 1 → (dest); skip if not 0				
Stat	us Affected:	None					
Enc	oding:	0010	011d f:	Eff	ffff		
Des	cription:	mented. If WREG. If back in reg If the result which is all and an NO	nts of register 'd' is 0 the res d' is 1 the res gister 'f'. t is not 0, the ready fetched P is executed -cycle instruct	sult is sult is p next ir I, is di d inste	placed in placed nstruction, scarded,		
Wor	ds:	1					
Cyc	les:	1(2)					
QC	ycle Activity:						
	Q1	Q2	Q3		Q4		
	Decode	Read register 'f'	Execute		Write to estination		
lf sk	ip:						
	Q1	Q2	Q3		Q4		
	Forced NOP	NOP	Execute		NOP		
<u>Exa</u>	<u>mple</u> :	HERE ZERO NZERO	DCFSNZ TI : :	EMP,	1		
	Before Instru TEMP_V		?				
	After Instruct TEMP_V If TEMP_ PC If TEMP_ PC	ALUE = VALUE = =	TEMP_VA 0; Address (0; Address (ZERO)		

Synta	av.	[label]	GOTO	k			
-	ands:	[<i>iabei</i>] 0 ≤ k ≤ 81		ĸ			
•							
Oper	ation:	k<12:8> -	$k \rightarrow PC<12:0>;$ $k<12:8> \rightarrow PCLATH<4:0>,$ $PC<15:13> \rightarrow PCLATH<7:5>$				
Statu	is Affected:	None					
Enco	ding:	110k	kkkk	kkkk	kkkl		
		The thirteen loaded into upper eight	anywhere within an 8K page boundary. The thirteen bit immediate value is loaded into PC bits <12:0>. Then the upper eight bits of PC are loaded into PCLATH. GOTO is always a two-cycle instruction.				
Word	ls:	1					
Cycle	es:	2					
Q Cy	cle Activity:						
_	Q1	Q2	Q3	3	Q4		
	Decode	Read literal 'k'<7:0>	Execu	ute	NOP		
	Forced NOP	NOP	Execu	ute	NOP		
Exan		-		ute	NOP		

INC	F	In	Increment f					
Synt	tax:	[/	[<i>label</i>] INCF f,d					
Ope	rands:		$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \ [0,1] \end{array}$					
Ope	ration:	(f)	+ 1 \rightarrow	(dest)				
Stat	us Affected:	0	V, C, D0	C, Z				
Enco	oding:		0001	010d	ffff	ffff		
Des	cription:	me W	The contents of register 'f' are incre- mented. If 'd' is 0 the result is placed in WREG. If 'd' is 1 the result is placed back in register 'f'.					
Wor	ds:	1						
Cycl	es:	1						
QC	ycle Activity:							
	Q1		Q2	Q	3	Q4		
	Decode		Read gister 'f'	Exec		Vrite to stination		
<u>Exa</u>	<u>mple</u> :	IN	ICF	CNT,	1			
	Before Instru	uctior	า					
	CNT	=	0xFF					
	Z C	=	0 ?					
	After Instruct CNT Z C	tion = = =	0x00 1 1					

INCFSZ	Incremen	Increment f, skip if 0					
Syntax:	[label]	INCFSZ	f,d				
Operands:	0 ≤ f ≤ 255 d ∈ [0,1]	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \ [0,1] \end{array}$					
Operation:		(f) + 1 \rightarrow (dest) skip if result = 0					
Status Affected:	None						
Encoding:	0001	111d	ffff	ffff			
Description: The contents of register 'f' are incre- mented. If 'd' is 0 the result is placed WREG. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched, is discarde and an NOP is executed instead mak it a two-cycle instruction.							
Words:	1	1					
Cycles:	1(2)						
Q Cycle Activity:							
Q1	Q2	Q3		Q4			
Decode	Read register 'f'	Execute		Vrite to stination			
lf skip:							
Q1	Q2	Q3		Q4			
Forced NOP	NOP	Execu	te	NOP			
Example:	NZERO	INCFSZ : :	CNT,	1			
Before Instru PC		6 (HERE)					
After Instruction CNT = CNT + 1 If CNT = 0; PC = Address(ZERO) If CNT \neq 0; PC = Address(NZERO)							

RETFIE		Return from Interrupt					
Syntax:		[label] RETFIE					
Operands	:	None					
Operation	:	$0 \rightarrow \text{GLIN}$	TOS \rightarrow (PC); 0 \rightarrow GLINTD; PCLATH is unchanged.				
Status Affe	ected:	GLINTD					
Encoding:		0000	0000	0000	0101		
Descriptio	n:	and Top of PC. Interru the GLINT	Return from Interrupt. Stack is POP'ed and Top of Stack (TOS) is loaded in the PC. Interrupts are enabled by clearing the GLINTD bit. GLINTD is the global interrupt disable bit (CPUSTA<4>).				
Words:		1					
Cycles:		2					
Q Cycle A	ctivity:						
(Q1	Q2	Q	3	Q4		
Dee	Decode		Exect	ute	NOP		
Force	d NOP	NOP	Exect	ute	NOP		
Forced NOP NOP Execute NOP Example: RETFIE After Interrupt PC = TOS GLINTD 0							

RETL	w	Return Li	teral to WRI	EG				
Syntax:		[label]	[<i>label</i>] RETLW k					
Opera	ands:	$0 \le k \le 25$	$0 \le k \le 255$					
Opera	ation:	•	$k \rightarrow (WREG); TOS \rightarrow (PC);$ PCLATH is unchanged					
Status	s Affected:	None						
Enco	ding:	1011	0110 kk	kk kkkk				
Descr	ription:	'k'. The proo the top of th The high ac	WREG is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). The high address latch (PCLATH) remains unchanged.					
Words	s:	1						
Cycle	s:	2						
O Cv	cle Activity:							
Q Oy	CIE ACTIVITY.							
Q 0 / (Q1	Q2	Q3	Q4				
	-	Q2 Read literal 'k'	Q3 Execute	Q4 Write to WREG				
	Q1	Read		Write to				
	Q1 Decode Forced NOP	Read literal 'k'	Execute	Write to WREG NOP				
F	Q1 Decode Forced NOP	Read literal 'k' NOP	Execute Execute BLE ; WREG co ; offset ; WREG n ; table C ; WREG = C ; Begin t ;	Write to WREG NOP				
Exam	Q1 Decode Forced NOP	Read literal 'k' NOP CALL TAN CALL TAN CALL TAN : TABLE ADDWF PC RETLW ki : : RETLW ki : : RETLW ki	Execute Execute BLE ; WREG co ; offset ; WREG n ; table C ; WREG = C ; Begin t ;	Write to WREG NOP				

XORLW	Exclusive OR Literal with	XORWF	Exclusive OR WREG with f
	WREG	Syntax:	[label] XORWF f,d
Syntax:	[<i>label</i>] XORLW k	Operands:	$0 \le f \le 255$
Operands:	$0 \le k \le 255$		d ∈ [0,1]
Operation:	(WREG) .XOR. $k \rightarrow (WREG)$	Operation:	(WREG) .XOR. (f) \rightarrow (dest)
Status Affected:	Z	Status Affected:	Z
Encoding:	1011 0100 kkkk kkkk	Encoding:	0000 110d ffff ffff
Description:	The contents of WREG are XOR'ed with the 8-bit literal 'k'. The result is placed in WREG.	Description:	Exclusive OR the contents of WREG with register 'f'. If 'd' is 0 the result is stored in WREG. If 'd' is 1 the result is stored back in the register 'f'.
Words:	1	Words:	1
Cycles:	1	Cycles:	1
Q Cycle Activity:		Q Cycle Activity:	
Q1	Q2 Q3 Q4	Q Oycle Activity. Q1	Q2 Q3 Q4
Decode	ReadExecuteWrite toliteral 'k'WREG	Decode	Read Execute Write to destination
Example:	XORLW 0xAF	L	
Before Instruc	ction	Example:	XORWF REG, 1
After Instructi	= 0xB5 on = 0x1A	Before Instru REG WREG	ction = 0xAF = 0xB5
		After Instructi REG WREG	ion = 0x1A = 0xB5

16.0 DEVELOPMENT SUPPORT

16.1 <u>Development Tools</u>

The PIC16/17 microcontrollers are supported with a full range of hardware and software development tools:

- PICMASTER/PICMASTER CE Real-Time In-Circuit Emulator
- ICEPIC Low-Cost PIC16C5X and PIC16CXXX In-Circuit Emulator
- PRO MATE[®] II Universal Programmer
- PICSTART[®] Plus Entry-Level Prototype Programmer
- PICDEM-1 Low-Cost Demonstration Board
- PICDEM-2 Low-Cost Demonstration Board
- PICDEM-3 Low-Cost Demonstration Board
- MPASM Assembler
- MPLAB-SIM Software Simulator
- MPLAB-C (C Compiler)
- Fuzzy logic development system (fuzzyTECH[®]–MP)

16.2 <u>PICMASTER: High Performance</u> <u>Universal In-Circuit Emulator with</u> <u>MPLAB IDE</u>

The PICMASTER Universal In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for all microcontrollers in the PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX and PIC17CXX families. PICMASTER is supplied with the MPLABTM Integrated Development Environment (IDE), which allows editing, "make" and download, and source debugging from a single environment.

Interchangeable target probes allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the PICMASTER allows expansion to support all new Microchip microcontrollers.

The PICMASTER Emulator System has been designed as a real-time emulation system with advanced features that are generally found on more expensive development tools. The PC compatible 386 (and higher) machine platform and Microsoft Windows[®] 3.x environment were chosen to best make these features available to you, the end user.

A CE compliant version of PICMASTER is available for European Union (EU) countries.

16.3 ICEPIC: Low-cost PIC16CXXX In-Circuit Emulator

ICEPIC is a low-cost in-circuit emulator solution for the Microchip PIC16C5X and PIC16CXXX families of 8-bit OTP microcontrollers.

ICEPIC is designed to operate on PC-compatible machines ranging from 286-AT[®] through Pentium[™] based machines under Windows 3.x environment. ICEPIC features real time, non-intrusive emulation.

16.4 PRO MATE II: Universal Programmer

The PRO MATE II Universal Programmer is a full-featured programmer capable of operating in stand-alone mode as well as PC-hosted mode.

The PRO MATE II has programmable VDD and VPP supplies which allows it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for displaying error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In standalone mode the PRO MATE II can read, verify or program PIC16C5X, PIC16CXXX, PIC17CXX and PIC14000 devices. It can also set configuration and code-protect bits in this mode.

16.5 <u>PICSTART Plus Entry Level</u> <u>Development System</u>

The PICSTART programmer is an easy-to-use, lowcost prototype programmer. It connects to the PC via one of the COM (RS-232) ports. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. PICSTART Plus is not recommended for production programming.

PICSTART Plus supports all PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX and PIC17CXX devices with up to 40 pins. Larger pin count devices such as the PIC16C923 and PIC16C924 may be supported with an adapter socket.

Applicable Devices 42 R42 42A 43 R43 44

17.0 PIC17C42 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Ambient temperature under bias	55 to +125°C
Storage temperature	
Voltage on VDD with respect to Vss	
Voltage on MCLR with respect to Vss (Note 2)	0.6V to +14V
Voltage on RA2 and RA3 with respect to Vss	0.6V to +12V
Voltage on all other pins with respect to Vss	
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin(s) - Total	250 mA
Maximum current into VDD pin(s) - Total	200 mA
Input clamp current, liк (Vi < 0 or Vi > VDD)	
Output clamp current, IOK (VO < 0 or VO > VDD)	±20 mA
Maximum output current sunk by any I/O pin (except RA2 and RA3)	35 mA
Maximum output current sunk by RA2 or RA3 pins	60 mA
Maximum output current sourced by any I/O pin	20 mA
Maximum current sunk by PORTA and PORTB (combined)	150 mA
Maximum current sourced by PORTA and PORTB (combined)	100 mA
Maximum current sunk by PORTC, PORTD and PORTE (combined)	150 mA
Maximum current sourced by PORTC, PORTD and PORTE (combined)	100 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD-V	OH) X IOH} + Σ (VOL X IOL)

Note 2: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 17-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 17-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	100 *	_	_	ns	
31	Twdt	Watchdog Timer Time-out Period (Prescale = 1)	5 *	12	25 *	ms	
32	Tost	Oscillation Start-up Timer Period		1024 Tosc §		ms	Tosc = OSC1 period
33	Tpwrt	Power-up Timer Period	40 *	96	200 *	ms	
35	TmcL2adI	MCLR to System Interface bus (AD15:AD0) invalid	_	—	100 *	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

§ This specification ensured by design.

21.3 44-Lead Plastic Leaded Chip Carrier (Square)

	Package Group: Plastic Leaded Chip Carrier (PLCC)						
	Millimeters			Inches			
Symbol	Min	Max	Notes	Min	Max	Notes	
А	4.191	4.572		0.165	0.180		
A1	2.413	2.921		0.095	0.115		
D	17.399	17.653		0.685	0.695		
D1	16.510	16.663		0.650	0.656		
D2	15.494	16.002		0.610	0.630		
D3	12.700	12.700	Reference	0.500	0.500	Reference	
Е	17.399	17.653		0.685	0.695		
E1	16.510	16.663		0.650	0.656		
E2	15.494	16.002		0.610	0.630		
E3	12.700	12.700	Reference	0.500	0.500	Reference	
N	44	44		44	44		
CP	_	0.102		_	0.004		
LT	0.203	0.381		0.008	0.015		

E.7 <u>PIC16C9XX Family Of Devices</u>