

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	33MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	8KB (4K x 16)
Program Memory Type	OTP
EEPROM Size	
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c43t-33e-pq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 OVERVIEW

This data sheet covers the PIC17C4X group of the PIC17CXX family of microcontrollers. The following devices are discussed in this data sheet:

- PIC17C42
- PIC17CR42
- PIC17C42A
- PIC17C43
- PIC17CR43
- PIC17C44

The PIC17CR42, PIC17C42A, PIC17C43, PIC17CR43, and PIC17C44 devices include architectural enhancements over the PIC17C42. These enhancements will be discussed throughout this data sheet.

The PIC17C4X devices are 40/44-Pin, EPROM/ROM-based members of the versatile PIC17CXX family of low-cost, high-performance, CMOS, fully-static, 8-bit microcontrollers.

All PIC16/17 microcontrollers employ an advanced RISC architecture. The PIC17CXX has enhanced core features, 16-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 16-bit wide instruction word with a separate 8-bit wide data. The two stage instruction pipeline allows all instructions to execute in a single cycle, except for program branches (which require two cycles). A total of 55 instructions (reduced instruction set) are available in the PIC17C42 and 58 instructions in all the other devices. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance. For mathematical intensive applications all devices, except the PIC17C42, have a single cycle 8 x 8 Hardware Multiplier.

PIC17CXX microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

PIC17C4X devices have up to 454 bytes of RAM and 33 I/O pins. In addition, the PIC17C4X adds several peripheral features useful in many high performance applications including:

- · Four timer/counters
- Two capture inputs
- Two PWM outputs
- A Universal Synchronous Asynchronous Receiver Transmitter (USART)

These special features reduce external components, thus reducing cost, enhancing system reliability and reducing power consumption. There are four oscillator options, of which the single pin RC oscillator provides a low-cost solution, the LF oscillator is for low frequency crystals and minimizes power consumption, XT is a standard crystal, and the EC is for external clock input. The SLEEP (power-down) mode offers additional power saving. The user can wake-up the chip from SLEEP through several external and internal interrupts and device resets.

There are four configuration options for the device operational modes:

- Microprocessor
- Microcontroller
- Extended microcontroller
- Protected microcontroller

The microprocessor and extended microcontroller modes allow up to 64K-words of external program memory.

A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software malfunction.

Table 1-1 lists the features of the PIC17C4X devices.

A UV-erasable CERDIP-packaged version is ideal for code development while the cost-effective One-Time Programmable (OTP) version is suitable for production in any volume.

The PIC17C4X fits perfectly in applications ranging from precise motor control and industrial process control to automotive, instrumentation, and telecom applications. Other applications that require extremely fast execution of complex software programs or the flexibility of programming the software code as one of the last steps of the manufacturing process would also be well suited. The EPROM technology makes customization of application programs (with unique security codes, combinations, model numbers, parameter storage, etc.) fast and convenient. Small footprint package options make the PIC17C4X ideal for applications with space limitations that require high performance. High speed execution, powerful peripheral features, flexible I/O, and low power consumption all at low cost make the PIC17C4X ideal for a wide range of embedded control applications.

1.1 Family and Upward Compatibility

Those users familiar with the PIC16C5X and PIC16CXX families of microcontrollers will see the architectural enhancements that have been implemented. These enhancements allow the device to be more efficient in software and hardware requirements. Please refer to Appendix A for a detailed list of enhancements and modifications. Code written for PIC16C5X or PIC16CXX can be easily ported to PIC17CXX family of devices (Appendix B).

1.2 Development Support

The PIC17CXX family is supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a universal programmer, a "C" compiler, and fuzzy logic support tools.

^{© 1996} Microchip Technology Inc.

4.0 RESET

The PIC17CXX differentiates between various kinds of reset:

- Power-on Reset (POR)
- MCLR reset during normal operation
- WDT Reset (normal operation)

Some registers are not affected in any reset condition; their status is unknown on POR and unchanged in any other reset. Most other registers are forced to a "reset state" on Power-on Reset (POR), on $\overline{\text{MCLR}}$ or WDT Reset and on $\overline{\text{MCLR}}$ reset during SLEEP. They are not affected by a WDT Reset during SLEEP, since this reset is viewed as the resumption of normal operation. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared differently in different reset situations as indicated in Table 4-3. These bits are used in software to determine the nature of reset. See Table 4-4 for a full description of reset states of all registers.

Note: While the device is in a reset state, the internal phase clock is held in the Q1 state. Any processor mode that allows external execution will force the RE0/ALE pin as a low output and the RE1/OE and RE2/WR pins as high outputs.

A simplified block diagram of the on-chip reset circuit is shown in Figure 4-1.

4.1 <u>Power-on Reset (POR), Power-up</u> <u>Timer (PWRT), and Oscillator Start-up</u> <u>Timer (OST)</u>

4.1.1 POWER-ON RESET (POR)

The Power-on Reset circuit holds the device in reset until VDD is above the trip point (in the range of 1.4V -2.3V). The PIC17C42 does not produce an internal reset when VDD declines. All other devices will produce an internal reset for both rising and falling VDD. To take advantage of the POR, just tie the MCLR/VPP pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create Power-on Reset. A minimum rise time for VDD is required. See Electrical Specifications for details.

4.1.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 96 ms time-out (nominal) on power-up. This occurs from rising edge of the POR signal and after the first rising edge of $\overline{\text{MCLR}}$ (detected high). The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as the PWRT is active. In most cases the PWRT delay allows the VDD to rise to an acceptable level.

The power-up time delay will vary from chip to chip and to VDD and temperature. See DC parameters for details.

FIGURE 4-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

© 1996 Microchip Technology Inc.

5.1 Interrupt Status Register (INTSTA)

The Interrupt Status/Control register (INTSTA) records the individual interrupt requests in flag bits, and contains the individual interrupt enable bits (not for the peripherals).

The PEIF bit is a read only, bit wise OR of all the peripheral flag bits in the PIR register (Figure 5-4).

Note: T0IF, INTF, T0CKIF, or PEIF will be set by the specified condition, even if the corresponding interrupt enable bit is clear (interrupt disabled) or the GLINTD bit is set (all interrupts disabled).

Care should be taken when clearing any of the INTSTA register enable bits when interrupts are enabled (GLINTD is clear). If any of the INTSTA flag bits (T0IF, INTF, T0CKIF, or PEIF) are set in the same instruction cycle as the corresponding interrupt enable bit is cleared, the device will vector to the reset address (0x00).

When disabling any of the INTSTA enable bits, the GLINTD bit should be set (disabled).

FIGURE 5-2: INTSTA REGISTER (ADDRESS: 07h, UNBANKED)

bit $W = V$	eadable bit /ritable bit /alue at POR reset
bit 7: PEIF : Peripheral Interrupt Flag bit This bit is the OR of all peripheral interrupt flag bits AND'ed with their corres 1 = A peripheral interrupt is pending	/alue at POR reset
bit 7: PEIF : Peripheral Interrupt Flag bit This bit is the OR of all peripheral interrupt flag bits AND'ed with their corres 1 = A peripheral interrupt is pending	
	ponding enable bits.
 bit 6: TOCKIF: External Interrupt on TOCKI Pin Flag bit This bit is cleared by hardware, when the interrupt logic forces program exercised 1 = The software specified edge occurred on the RA1/T0CKI pin 0 = The software specified edge did not occur on the RA1/T0CKI pin 	cution to vector (18h).
bit 5: T0IF : TMR0 Overflow Interrupt Flag bit This bit is cleared by hardware, when the interrupt logic forces program exer 1 = TMR0 overflowed 0 = TMR0 did not overflow	cution to vector (10h).
 bit 4: INTF: External Interrupt on INT Pin Flag bit This bit is cleared by hardware, when the interrupt logic forces program exercise 1 = The software specified edge occurred on the RA0/INT pin 0 = The software specified edge did not occur on the RA0/INT pin 	cution to vector (08h).
 bit 3: PEIE: Peripheral Interrupt Enable bit This bit enables all peripheral interrupts that have their corresponding enabl 1 = Enable peripheral interrupts 0 = Disable peripheral interrupts 	e bits set.
bit 2: TOCKIE : External Interrupt on TOCKI Pin Enable bit 1 = Enable software specified edge interrupt on the RA1/TOCKI pin 0 = Disable interrupt on the RA1/TOCKI pin	
bit 1: T0IE : TMR0 Overflow Interrupt Enable bit 1 = Enable TMR0 overflow interrupt 0 = Disable TMR0 overflow interrupt	
bit 0: INTE : External Interrupt on RA0/INT Pin Enable bit 1 = Enable software specified edge interrupt on the RA0/INT pin 0 = Disable software specified edge interrupt on the RA0/INT pin	

TABLE 6-1: MODE MEMORY ACCESS

Operating Mode	Internal Program Memory	Configuration Bits, Test Memory, Boot ROM	
Microprocessor	No Access	No Access	
Microcontroller	Access	Access	
Extended Microcontroller	Access	No Access	
Protected Microcontroller	Access	Access	

The PIC17C4X can operate in modes where the program memory is off-chip. They are the microprocessor and extended microcontroller modes. The microprocessor mode is the default for an unprogrammed device.

Regardless of the processor mode, data memory is always on-chip.

FIGURE 6-2: MEMORY MAP IN DIFFERENT MODES

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (3)
Bank 2											
10h	TMR1	Timer1								xxxx xxxx	uuuu uuuu
11h	TMR2	Timer2								xxxx xxxx	uuuu uuuu
12h	TMR3L	TMR3 reg	ister; low b	yte						xxxx xxxx	uuuu uuuu
13h	TMR3H	TMR3 reg	ister; high l	oyte						xxxx xxxx	uuuu uuuu
14h	PR1	Timer1 pe	eriod registe	er						xxxx xxxx	uuuu uuuu
15h	PR2	Timer2 pe	eriod registe	er						xxxx xxxx	uuuu uuuu
16h	PR3L/CA1L	Timer3 pe	eriod registe	er, low byte/c	apture1 regi	ster; low by	te			xxxx xxxx	uuuu uuuu
17h	PR3H/CA1H	Timer3 pe	eriod registe	er, high byte/	capture1 reg	jister; high b	oyte			xxxx xxxx	uuuu uuuu
Bank 3											
10h	PW1DCL	DC1	DC0	—	—	—	—	_	—	xx	uu
11h	PW2DCL	DC1	DC0	TM2PW2	_	—	—	_	_	xx0	uu0
12h	PW1DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	xxxx xxxx	uuuu uuuu
13h	PW2DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	xxxx xxxx	uuuu uuuu
14h	CA2L	Capture2	low byte							xxxx xxxx	uuuu uuuu
15h	CA2H	Capture2	high byte							xxxx xxxx	uuuu uuuu
16h	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h	TCON2	CA2OVF	CA10VF	PWM2ON	PWM10N	CA1/PR3	TMR3ON	TMR2ON	TMR10N	0000 0000	0000 0000
Unbanke	Unbanked										
18h ⁽⁵⁾	PRODL	PRODL Low Byte of 16-bit Product (8 x 8 Hardware Multiply)									uuuu uuuu
19h ⁽⁵⁾	PRODH	High Byte of 16-bit Product (8 x 8 Hardware Multiply)									uuuu uuuu
Legend:											

TABLE 6-3: SPECIAL FUNCTION REGISTERS (Cont.'d)

Note 1: The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<15:8> whose contents are updated from or transferred to the upper byte of the program counter. The TO and PD status bits in CPUSTA are not affected by a MCLR reset. Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset. The following values are for both TBLPTRL and TBLPTRH:

2:

3: 4:

All PIC17C4X devices (Power-on Reset 0000 0000) and (All other resets 0000 0000) except the PIC17C42 (Power-on Reset xxxx xxxx) and (All other resets uuuu uuuu) The PRODL and PRODH registers are not implemented on the PIC17C42.

5:

6.8 Bank Select Register (BSR)

The BSR is used to switch between banks in the data memory area (Figure 6-13). In the PIC17C42, PIC17CR42, and PIC17C42A only the lower nibble is implemented. While in the PIC17C43, PIC17CR43, and PIC17C44 devices, the entire byte is implemented. The lower nibble is used to select the peripheral register bank. The upper nibble is used to select the general purpose memory bank.

All the Special Function Registers (SFRs) are mapped into the data memory space. In order to accommodate the large number of registers, a banking scheme has been used. A segment of the SFRs, from address 10h to address 17h, is banked. The lower nibble of the bank select register (BSR) selects the currently active "peripheral bank." Effort has been made to group the peripheral registers of related functionality in one bank. However, it will still be necessary to switch from bank to bank in order to address all peripherals related to a single task. To assist this, a MOVLB bank instruction is in the instruction set. For the PIC17C43, PIC17CR43, and PIC17C44 devices, the need for a large general purpose memory space dictated a general purpose RAM banking scheme. The upper nibble of the BSR selects the currently active general purpose RAM bank. To assist this, a MOVLR bank instruction has been provided in the instruction set.

If the currently selected bank is not implemented (such as Bank 13), any read will read all '0's. Any write is completed to the bit bucket and the ALU status bits will be set/cleared as appropriate.

Note: Registers in Bank 15 in the Special Function Register area, are reserved for Microchip use. Reading of registers in this bank may cause random values to be read.

FIGURE 6-13: BSR OPERATION (PIC17C43/R43/44)

8.0 HARDWARE MULTIPLIER

All PIC17C4X devices except the PIC17C42, have an 8 x 8 hardware multiplier included in the ALU of the device. By making the multiply a hardware operation, it completes in a single instruction cycle. This is an unsigned multiply that gives a 16-bit result. The result is stored into the 16-bit PRODuct register (PRODH:PRODL). The multiplier does not affect any flags in the ALUSTA register.

Making the 8 x 8 multiplier execute in a single cycle gives the following advantages:

- Higher computational throughput
- Reduces code size requirements for multiply algorithms

The performance increase allows the device to be used in applications previously reserved for Digital Signal Processors.

Table 8-1 shows a performance comparison between the PIC17C42 and all other PIC17CXX devices, which have the single cycle hardware multiply.

Example 8-1 shows the sequence to do an 8 x 8 unsigned multiply. Only one instruction is required when one argument of the multiply is already loaded in the WREG register.

Example 8-2 shows the sequence to do an 8×8 signed multiply. To account for the sign bits of the arguments, each argument's most significant bit (MSb) is tested and the appropriate subtractions are done.

EXAMPLE 8-1: 8 x 8 MULTIPLY ROUTINE

MOVFP	ARG1,	WREG					
MULWF	ARG2		;	ARG1	*	ARG2	->
			;	PRO	DD	H:PROI	ЪГ

EXAMPLE 8-2: 8 x 8 SIGNED MULTIPLY ROUTINE

MOVFP	ARG1, WREG	
MULWF	ARG2	; ARG1 * ARG2 ->
		; PRODH:PRODL
BTFSC	ARG2, SB	; Test Sign Bit
SUBWF	PRODH, F	; PRODH = PRODH
		; – ARG1
MOVFP	ARG2, WREG	
BTFSC	ARG1, SB	; Test Sign Bit
SUBWF	PRODH, F	; PRODH = PRODH
		; – ARG2

Routine	Device	Program Memory		Time		
Routine	Device	(Words)	Cycles (Max)	@ 25 MHz	@ 33 MHz	
8 x 8 unsigned	PIC17C42	13	69	11.04 μs	N/A	
	All other PIC17CXX devices	1	1	160 ns	121 ns	
8 x 8 signed	PIC17C42	—		_	N/A	
	All other PIC17CXX devices	6	6	960 ns	727 ns	
16 x 16 unsigned	PIC17C42	21	242	38.72 μs	N/A	
	All other PIC17CXX devices	24	24	3.84 μs	2.91 μs	
16 x 16 signed	PIC17C42	52	254	40.64 μs	N/A	
	All other PIC17CXX devices	36	36	5.76 μs	4.36 µs	

TABLE 8-1: PERFORMANCE COMPARISON

Example 8-4 shows the sequence to do an 16 x 16 signed multiply. Equation 8-2 shows the algorithm that used. The 32-bit result is stored in four registers RES3:RES0. To account for the sign bits of the arguments, each argument pairs most significant bit (MSb) is tested and the appropriate subtractions are done.

EQUATION 8-2:	16 x 16 SIGNED
	MULTIPLICATION
	ALGORITHM

RES3:RES0

- = ARG1H:ARG1L * ARG2H:ARG2L
- - (-1 * ARG1H<7> * ARG2H:ARG2L * 2¹⁶)

EXAMPLE 8-4: 16 x 16 SIGNED MULTIPLY

		ROUTI	N	E
	MOVFP	ARG1L, WREG		
	MULWF	ARG2L	;	ARG1L * ARG2L ->
				PRODH:PRODL
	MOVPF	PRODH, RES1		
		PRODL, RESO		
;		- ,		
	MOVFP	ARG1H, WREG		
				ARG1H * ARG2H ->
	110201	into bii	;	
	MOVPF	PRODH, RES3		TRODUCTRODE
		PRODL, RES2		
;	110 11 1	TRODE, REDZ	'	
'	MOVFP	ARG1L, WREG		
				ARG1L * ARG2H ->
	HOLMI	111(0211	;	
	MOVFP	PRODL, WREG		TRODITITRODE
				Add cross
			;	products
		WREG, F	;	
	ADDWFC	RES3, F	;	
;	NOTED			
		ARG1H, WREG	'	
	MULWF	ARG2L		ARG1H * ARG2L ->
			,	PRODH:PRODL
	MOMED			
		PRODL, WREG		Add man
	ADDWF	RES1, F		
		PRODH, WREG		products
			;	
	CLRF	WREG, F	;	
	ADDWFC	RES3, F	;	
;				
		ARG2H, 7	'	ARG2H:ARG2L neg?
				no, check ARG1
	MOVFP	ARG1L, WREG		
		RES2	;	
	MOVFP	ARG1H, WREG	;	
	SUBWFB	RES3		
;				
SIC	GN_ARG1			
				ARG1H:ARG1L neg?
	GOTO	CONT_CODE		no, done
		ARG2L, WREG		
	SUBWF	RES2	;	
	MOVFP	ARG2H, WREG	;	
	SUBWFB	RES3		
;				
COI	NT_CODE			
	:			

NOTES:

BAUD	Fosc = 3	3 MHz	SPBRG	FOSC = 25 MHz		SPBRG FOSC = 20 MHz		SPBRG FOSC = 16 MHz			SPBRG	
RATE (K)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)
0.3	NA	_	—	NA	_		NA	_	_	NA	_	-
1.2	NA	_	_	NA	_	_	1.221	+1.73	255	1.202	+0.16	207
2.4	2.398	-0.07	214	2.396	0.14	162	2.404	+0.16	129	2.404	+0.16	103
9.6	9.548	-0.54	53	9.53	-0.76	40	9.469	-1.36	32	9.615	+0.16	25
19.2	19.09	-0.54	26	19.53	+1.73	19	19.53	+1.73	15	19.23	+0.16	12
76.8	73.66	-4.09	6	78.13	+1.73	4	78.13	+1.73	3	83.33	+8.51	2
96	103.12	+7.42	4	97.65	+1.73	3	104.2	+8.51	2	NA	_	_
300	257.81	-14.06	1	390.63	+30.21	0	312.5	+4.17	0	NA	_	-
500	515.62	+3.13	0	NA	_	_	NA	_	_	NA	_	-
HIGH	515.62	_	0	_	_	0	312.5	_	0	250	_	0
LOW	2.014	—	255	1.53	—	255	1.221	—	255	0.977	_	255

TABLE 13-4: BAUD RATES FOR ASYNCHRONOUS MODE

BAUD RATE	Fosc = 10 MH	Iz	SPBRG value	Fosc = 7.159) MHz	SPBRG value	FOSC = 5.068	8 MHz	SPBRG value
(K)	KBAUD	%ERROR	(decimal)	KBAUD	%ERROR	(decimal)	KBAUD	%ERROR	(decimal)
0.3	NA	_	_	NA	_	_	0.31	+3.13	255
1.2	1.202	+0.16	129	1.203	_0.23	92	1.2	0	65
2.4	2.404	+0.16	64	2.380	-0.83	46	2.4	0	32
9.6	9.766	+1.73	15	9.322	-2.90	11	9.9	-3.13	7
19.2	19.53	+1.73	7	18.64	-2.90	5	19.8	+3.13	3
76.8	78.13	+1.73	1	NA	_	—	79.2	+3.13	0
96	NA	—	—	NA	—	—	NA	—	—
300	NA	_	—	NA	_	—	NA	_	_
500	NA	_	_	NA	_	_	NA	_	_
HIGH	156.3	_	0	111.9	_	0	79.2	_	0
LOW	0.610	—	255	0.437	—	255	0.309	_	2 55
BAUD	Fosc = 3.579	MHz	SPBRG	FOSC = 1 MHz SPBRG			FOSC = 32.76	SPBRG	
RATE (K)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)
0.3	0.301	+0.23	185	0.300	+0.16	51	0.256	-14.67	1
1.2	1.190	-0.83	46	1.202	+0.16	12	NA	—	—
2.4	2.432	+1.32	22	2.232	-6.99	6	NA	—	—
9.6	9.322	-2.90	5	NA	_	_	NA	_	_
19.2	18.64	-2.90	2	NA	—	—	NA	—	—
76.8	NA	—	—	NA	—	—	NA	—	—
96	NA	_	_	NA	_	_	NA	_	_
300	NA	—	—	NA	—	—	NA	—	—
500	NA	—	—	NA	—	—	NA	—	—
HIGH	55.93	_	0	15.63	_	0	0.512	_	0
l mon									

13.3 USART Synchronous Master Mode

In Master Synchronous mode, the data is transmitted in a half-duplex manner; i.e. transmission and reception do not occur at the same time: when transmitting data, the reception is inhibited and vice versa. The synchronous mode is entered by setting the SYNC (TXSTA<4>) bit. In addition, the SPEN (RCSTA<7>) bit is set in order to configure the RA5 and RA4 I/O ports to CK (clock) and DT (data) lines respectively. The Master mode indicates that the processor transmits the master clock on the CK line. The Master mode is entered by setting the CSRC (TXSTA<7>) bit.

13.3.1 USART SYNCHRONOUS MASTER TRANSMISSION

The USART transmitter block diagram is shown in Figure 13-3. The heart of the transmitter is the transmit (serial) shift register (TSR). The shift register obtains its data from the read/write transmit buffer TXREG. TXREG is loaded with data in software. The TSR is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR is loaded with new data from TXREG (if available). Once TXREG transfers the data to the TSR (occurs in one TCY at the end of the current BRG cycle), TXREG is empty and the TXIF (PIR<1>) bit is set. This interrupt can be enabled/disabled by setting/clearing the TXIE bit (PIE<1>). TXIF will be set regardless of the state of bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into TXREG. While TXIF indicates the status of TXREG, TRMT (TXSTA<1>) shows the status of the TSR. TRMT is a read only bit which is set when the TSR is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR is empty. The TSR is not mapped in data memory, so it is not available to the user.

Transmission is enabled by setting the TXEN (TXSTA<5>) bit. The actual transmission will not occur until TXREG has been loaded with data. The first data bit will be shifted out on the next available rising edge of the clock on the RA5/TX/CK pin. Data out is stable around the falling edge of the synchronous clock (Figure 13-10). The transmission can also be started by first loading TXREG and then setting TXEN. This is advantageous when slow baud rates are selected, since BRG is kept in RESET when the TXEN, CREN, and SREN bits are clear. Setting the TXEN bit will start the BRG, creating a shift clock immediately. Normally when transmission is first started, the TSR is empty, so a transfer to TXREG will result in an immediate transfer to the TSR, resulting in an empty TXREG. Back-to-back transfers are possible.

Clearing TXEN during a transmission will cause the transmission to be aborted and will reset the transmitter. The RA4/RX/DT and RA5/TX/CK pins will revert to hi-impedance. If either CREN or SREN are set during a transmission, the transmission is aborted and the

RA4/RX/DT pin reverts to a hi-impedance state (for a reception). The RA5/TX/CK pin will remain an output if the CSRC bit is set (internal clock). The transmitter logic is not reset, although it is disconnected from the pins. In order to reset the transmitter, the user has to clear the TXEN bit. If the SREN bit is set (to interrupt an ongoing transmission and receive a single word), then after the single word is received, SREN will be cleared and the serial port will revert back to transmitting, since the TXEN bit is still set. The DT line will immediately switch from hi-impedance receive mode to transmit and start driving. To avoid this, TXEN should be cleared.

In order to select 9-bit transmission, the TX9 (TXSTA<6>) bit should be set and the ninth bit should be written to TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to TXREG. This is because a data write to TXREG can result in an immediate transfer of the data to the TSR (if the TSR is empty). If the TSR was empty and TXREG was written before writing the "new" TX9D, the "present" value of TX9D is loaded.

Steps to follow when setting up a Synchronous Master Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate (see Baud Rate Generator Section for details).
- 2. Enable the synchronous master serial port by setting the SYNC, SPEN, and CSRC bits.
- 3. Ensure that the CREN and SREN bits are clear (these bits override transmission when set).
- 4. If interrupts are desired, then set the TXIE bit (the GLINTD bit must be clear and the PEIE bit must be set).
- 5. If 9-bit transmission is desired, then set the TX9 bit.
- 6. Start transmission by loading data to the TXREG register.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded in TX9D.
- 8. Enable the transmission by setting TXEN.

Writing the transmit data to the TXREG, then enabling the transmit (setting TXEN) allows transmission to start sooner then doing these two events in the reverse order.

Note: To terminate a transmission, either clear the SPEN bit, or the TXEN bit. This will reset the transmit logic, so that it will be in the proper state when transmit is re-enabled.

13.4 USART Synchronous Slave Mode

The synchronous slave mode differs from the master mode in the fact that the shift clock is supplied externally at the RA5/TX/CK pin (instead of being supplied internally in the master mode). This allows the device to transfer or receive data in the SLEEP mode. The slave mode is entered by clearing the CSRC (TXSTA<7>) bit.

13.4.1 USART SYNCHRONOUS SLAVE TRANSMIT

The operation of the sync master and slave modes are identical except in the case of the SLEEP mode.

If two words are written to TXREG and then the SLEEP instruction executes, the following will occur. The first word will immediately transfer to the TSR and will transmit as the shift clock is supplied. The second word will remain in TXREG. TXIF will not be set. When the first word has been shifted out of TSR, TXREG will transfer the second word to the TSR and the TXIF flag will now be set. If TXIE is enabled, the interrupt will wake the chip from SLEEP and if the global interrupt is enabled, then the program will branch to interrupt vector (0020h).

Steps to follow when setting up a Synchronous Slave Transmission:

- Enable the synchronous slave serial port by setting the SYNC and SPEN bits and clearing the CSRC bit.
- 2. Clear the CREN bit.
- 3. If interrupts are desired, then set the TXIE bit.
- 4. If 9-bit transmission is desired, then set the TX9 bit.
- 5. Start transmission by loading data to TXREG.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in TX9D.
- 7. Enable the transmission by setting TXEN.

Writing the transmit data to the TXREG, then enabling the transmit (setting TXEN) allows transmission to start sooner then doing these two events in the reverse order.

13.4.2 USART SYNCHRONOUS SLAVE RECEPTION

Operation of the synchronous master and slave modes are identical except in the case of the SLEEP mode. Also, SREN is a don't care in slave mode.

If receive is enabled (CREN) prior to the SLEEP instruction, then a word may be received during SLEEP. On completely receiving the word, the RSR will transfer the data to RCREG (setting RCIF) and if the RCIE bit is set, the interrupt generated will wake the chip from SLEEP. If the global interrupt is enabled, the program will branch to the interrupt vector (0020h).

Steps to follow when setting up a Synchronous Slave Reception:

- 1. Enable the synchronous master serial port by setting the SYNC and SPEN bits and clearing the CSRC bit.
- 2. If interrupts are desired, then set the RCIE bit.
- 3. If 9-bit reception is desired, then set the RX9 bit.
- 4. To enable reception, set the CREN bit.
- 5. The RCIF bit will be set when reception is complete and an interrupt will be generated if the RCIE bit was set.
- 6. Read RCSTA to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 7. Read the 8-bit received data by reading RCREG.
- 8. If any error occurred, clear the error by clearing the CREN bit.

Note: To abort reception, either clear the SPEN bit, the SREN bit (when in single receive mode), or the CREN bit (when in continuous receive mode). This will reset the receive logic, so that it will be in the proper state when receive is re-enabled.

PIC17C4X

ADDLW ADD Literal to WREG							
Syntax:	[label] A	DLW	k				
Operands:	$0 \le k \le 25$	55					
Operation:	(WREG) -	+ k \rightarrow (V	VREG)				
Status Affected:	OV, C, DC	C, Z					
Encoding:	1011	0001	kkkk	kkkk			
Description: The contents of WREG are added to the 8-bit literal 'k' and the result is placed WREG.							
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3	3	Q4			
Decode	Read literal 'k'	Execu		Vrite to WREG			
Example: ADDLW 0x15							
Before Instruction WREG = 0x10							

ADDWF	ADD WRE	EG to f		
Syntax:	[<i>label</i>] A[DDWF f	f,d	
Operands:	$0 \le f \le 255$ $d \in [0,1]$	5		
Operation:	(WREG) +	- (f) \rightarrow (de	est)	
Status Affected:	OV, C, DC	, Z		
Encoding:	0000	111d	ffff	ffff
Description:	Add WREG to register 'f'. If 'd' is 0 th result is stored in WREG. If 'd' is 1 th result is stored back in register 'f'.			is 1 the
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read register 'f'	Execute		/rite to stination
Example:	ADDWF	REG, 0		
Before Instru WREG REG	iction = 0x17 = 0xC2			
After Instruct WREG REG	tion = 0xD9 = 0xC2			

After Instruction WREG = 0x25 Applicable Devices 42 R42 42A 43 R43 44

TABLE 19-1:CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC17LCR42-08 PIC17LC42A-08 PIC17LC43-08 PIC17LCR43-08 PIC17LC44-08 PIC17LC44-08	PIC17CR42-16 PIC17C42A-16 PIC17C43-16 PIC17CR43-16 PIC17CR43-16 PIC17C44-16	PIC17CR42-25 PIC17C42A-25 PIC17C43-25 PIC17CR43-25 PIC17CR43-25	PIC17CR42-33 PIC17C42A-33 PIC17C43-33 PIC17CR43-33 PIC17CR43-33	JW Devices (Ceramic Windowed Devices)
RC	VDD: 2.5V to 6.0V IDD: 6 mA max. IPD: 5.1A max at 5.5V	VDD: 4.5V to 6.0V IDD: 6 mA max. IPD: 5 u A max at 5.5V	VDD: 4.5V to 6.0V DD: 6 mA max. PD' 5 ii A max at 5.5V	VDD: 4.5V to 6.0V IDD: 6 mA max. IDD: 5 i A max at 5.5V	VDD: 4.5V to 6.0V IDD: 6 mA max. IDD: 5 uA max at 5.5V
	WDT disabled Freq: 4 MHz max.		÷÷		÷
XT	VDD: 2.5V to 6.0V IDD: 12 mA max. IPD: 5 μA max. at 5.5V WDT disabled Fred: 8 MH7 max	VDD: 4.5V to 6.0V IDD: 24 mA max. IPD: 5 μA max. at 5.5V WDT disabled Fred: 16 MH7 max	VDD: 4.5V to 6.0V IDD: 38 mA max. IPD: 5 μA max. at 5.5V WDT disabled Free: 25 MHz max	VDD: 4.5V to 6.0V IDD: 38 mA max. IPD: 5 µA max. at 5.5V WDT disabled Fred: 33 MH7 max	VDD: 4.5V to 6.0V IDD: 38 mA max. IPD: 5 µA max. at 5.5V WDT disabled Fran: 33 MHz max
С Ш	-	VDD: 4.5V to 6.0V IDD: 24 mA max. IPD: 5 μA max. at 5.5V WDT disabled Freq: 16 MHz Max	VDD: 4.5V to 6.0V IDD: 38 mA max. IPD: 5 μA max. at 5.5V WDT disabled Freq: 25 MHz max.	VDD: 4.5V to 6.0V IDD: 38 mA max. IPD: 5 µA max. at 5.5V WDT disabled Freq: 33 MHz max.	VDD: 4.5V to 6.0V IDD: 38 mA max. IPD: 5 µA max. at 5.5V WDT disabled Freq: 33 MHz max.
5	VDD: 2.5V to 6.0V IDD: 150 μA max. at 32 kHz IPD: 5 μA max. at 5.5V WDT disabled Freq: 2 MHz max.	VDD: 4.5V to 6.0V 12 IDD: 95 μA typ. at 32 kHz IPD: <1 μA typ. at 5.5V WDT disabled Freq: 2 MHz max.	VDD: 4.5V to 6.0V IDD: 95 μA typ. at 32 kHz IPD: <1 μA typ. at 5.5V WDT disabled Freq: 2 MHz max.	VDD: 4.5V to 6.0V IDD: 95 μA typ. at 32 kHz IPD: <1 μA typ. at 5.5V WDT disabled Freq: 2 MHz max.	VDD: 2.5V to 6.0V IDD: 150 µA max. at 32 kHz IPD: 5 µA max. at 5.5V WDT disabled Freq: 2 MHz max.
The st select	aded sections indicate oscil the device type that ensures	The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device two that ensures the specifications required	for functionality, but not for M	IN/MAX specifications. It is re	commended that the user

Applicable Devices	42	R42	42A	43	R43	44

DC CHARA	CTERI	STICS	Standard C Operating t		re	-	nless otherwise stated)			
					$-40^{\circ}C \leq TA \leq +40^{\circ}C$					
	Operating voltage VDD range as described in Section 19.1					ribed in Section 19.1				
Parameter										
No.	Sym	Characteristic	Min	Typ†	Max	Units	Conditions			
		Internal Program Memory Programming Specs (Note 4)								
D110	VPP	Voltage on MCLR/VPP pin	12.75	_	13.25	V	Note 5			
D111	Vddp	Supply voltage during	4.75	5.0	5.25	V				
D112	IPP	Current into MCLR/VPP pin	_	25 ‡	50 ‡	mA				
D113	Iddp	Supply current during programming	-	-	30 ‡	mA				
D114	TPROG	Programming pulse width	10	100	1000	μs	Terminated via internal/ external interrupt or a rese			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC17CXX devices be driven with external clock in RC mode.

The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in: PIC17CXX Programming Specifications (Literature number DS30139).

5: The MCLR/VPP pin may be kept in this range at times other than programming, but is not recommended.

6: For TTL buffers, the better of the two specifications may be used.

Note: When using the Table Write for internal programming, the device temperature must be less than 40°C.

PIC17C4X

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 20-16: IOL vs. VOL, VDD = 3V

PIC17C4X

Applicable Devices 42 R42 42A 43 R43 44

21.0 PACKAGING INFORMATION

21.1 40-Lead Ceramic CERDIP Dual In-line, and CERDIP Dual In-line with Window (600 mil)

Package Group: Ceramic CERDIP Dual In-Line (CDP)						
		Millimeters			Inches	
Symbol	Min	Max	Notes	Min	Max	Notes
α	0°	10°		0°	10°	
А	4.318	5.715		0.170	0.225	
A1	0.381	1.778		0.015	0.070	
A2	3.810	4.699		0.150	0.185	
A3	3.810	4.445		0.150	0.175	
В	0.355	0.585		0.014	0.023	
B1	1.270	1.651	Typical	0.050	0.065	Typical
С	0.203	0.381	Typical	0.008	0.015	Typical
D	51.435	52.705		2.025	2.075	
D1	48.260	48.260	Reference	1.900	1.900	Reference
E	15.240	15.875		0.600	0.625	
E1	12.954	15.240		0.510	0.600	
e1	2.540	2.540	Reference	0.100	0.100	Reference
eA	14.986	16.002	Typical	0.590	0.630	Typical
eB	15.240	18.034		0.600	0.710	
L	3.175	3.810		0.125	0.150	
Ν	40	40		40	40	
S	1.016	2.286		0.040	0.090	
S1	0.381	1.778		0.015	0.070	

© 1996 Microchip Technology Inc.

21.6 **Package Marking Information** 40-Lead PDIP/CERDIP Example PIC17C43-25I/P L006 AABBCDE 9441CCA MICROCHIP MICROCHIP \bigcirc 40 Lead CERDIP Windowed Example XXXXXXXXXXXX PIC17C44 XXXXXXXXXXXX /JW XXXXXXXXXXXX L184 AABBCDE 9444CCT 44-Lead PLCC Example \mathcal{M} \mathcal{M} MICROCHIP MICROCHIP PIC17C42 XXXXXXXXXX ○ _{XXXXXXXXX} Ο -16I/L XXXXXXXXXX L013 AABBCDE 9445CCN 44-Lead MQFP Example \mathcal{M} \mathbf{w} XXXXXXXXXX PIC17C44 -25/PT XXXXXXXXXX XXXXXXXXXXX L247 AABBCDE 9450CAT \cap \cap 44-Lead TQFP Example \$ \mathcal{Q} PIC17C44 XXXXXXXXXXX -25/TQ XXXXXXXXXX XXXXXXXXXXX L247 AABBCDE 9450CAT \cap \cap Microchip part number information Legend: MM...M XX...X Customer specific information* AA Year code (last 2 digits of calendar year) BΒ Week code (week of January 1 is week '01') С Facility code of the plant at which wafer is manufactured C = Chandler, Arizona, U.S.A., S = Tempe, Arizona, U.S.A. D Mask revision number Е Assembly code of the plant or country of origin in which part was assembled Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line thus limiting the number of available characters for customer specific information. Standard OTP marking consists of Microchip part number, year code, week code, facility code, mask rev#, and assembly code. For OTP marking beyond

code, facility code, mask rev#, and assembly code. For OTP marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

PIC17C4X

MP-C C Compiler	145
MPSIM Software Simulator	
MULLW	129
Multiply Examples	
16 x 16 Routine	50
16 x 16 Signed Routine	51
8 x 8 Routine	49
8 x 8 Signed Routine	49
MULWF	129

Ν

NEGW)
NOP 130	`
NOP	'

0

OERR	
Opcode Field Descriptions	
OSC Selection	
Oscillator	
Configuration	
Crystal	
External Clock	
External Crystal Circuit	
External Parallel Resonant Crystal Circuit	
External Series Resonant Crystal Circuit	
RC	
RC Frequencies	165, 195
Oscillator Start-up Time (Figure)	
Oscillator Start-up Timer (OST)	15, 99
OST	
OV	
Overflow (OV)	9

Ρ

Package Marking Information	
Packaging Information	
Parameter Measurement Information	
PC (Program Counter)	
PCH	
PCL	34, 41, 108
PCLATH	
PD	
PEIE	
PEIF	
Peripheral Bank	
Peripheral Interrupt Enable	23
Peripheral Interrupt Request (PIR)	24
PICDEM-1 Low-Cost PIC16/17 Demo Board	143, 144
PICDEM-2 Low-Cost PIC16CXX Demo Board	143, 144
PICDEM-3 Low-Cost PIC16C9XXX Demo Boar	
PICMASTER® RT In-Circuit Emulator	
PICSTART [®] Low-Cost Development System	
PIE	34, 92, 96, 98
Pin Compatible Devices	
PIR	34, 92, 96, 98
PM0	
PM1	
POP	
POR	
PORTA	19, 34, 53
PORTB	19, 34, 55
PORTC	19, 34, 58

PORTD			
PORTE	19,	34,	62
Power-down Mode		1	05
Power-on Reset (POR)		15,	99
Power-up Timer (PWRT)			
PR1			
PR2			
PR3/CA1H			
PR3/CA1L			
PR3H/CA1H			
PR3L/CA1L			
Prescaler Assignments			
PRO MATE [®] Universal Programmer		····· 1	42
PRODH			
PRODL			
Program Counter (PC)		•••••	41
Program Memory			
External Access Waveforms			
External Connection Diagram			
Мар			29
Modes			
Extended Microcontroller			29
Microcontroller			29
Microprocessor			29
Protected Microcontroller			29
Operation			29
Organization			29
Transfers from Data Memory			43
Protected Microcontroller			
PS0			
PS1			
PS2			
PS3			
PUSH			
PW1DCH			
PW1DCL			
PW2DCH			
PW2DCL			
PW2DCL			
Duty Cycle			
External Clock Source			
Frequency vs. Resolution			
Interrupts		•••••	10
Max Resolution/Frequency for External			
Clock Input			
Output			
Periods			-
PWM1			
PWM1ON			
PWM2			72
PWM2ON		72,	75
PWRT		15,	99

R

RA1/T0CKI pin	
RBIE	
RBIF	
RBPU	
RC Oscillator	
RC Oscillator Frequencies	
RCIE	
RCIF	
RCREG	19, 34, 91, 92, 96, 97
RCSTA	
Reading 16-bit Value	