

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	33MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	8KB (4K x 16)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c43t-33i-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

5.3 <u>Peripheral Interrupt Request Register</u> (PIR)

This register contains the individual flag bits for the peripheral interrupts.

Note: These bits will be set by the specified condition, even if the corresponding interrupt enable bit is cleared (interrupt disabled), or the GLINTD bit is set (all interrupts disabled). Before enabling an interrupt, the user may wish to clear the interrupt flag to ensure that the program does not immediately branch to the peripheral interrupt service routine.

FIGURE 5-4: PIR REGISTER (ADDRESS: 16h, BANK 1)

R/W - 0 RBIF bit7	0 R/W - 0 R/W - 0 R/W - 0 R - 1 R - 0 TMR3IF TMR2IF TMR1IF CA2IF CA1IF TXIF RCIF bit0 bit0 bit0 bit0 bit0 bit0
bit 7:	RBIF : PORTB Interrupt on Change Flag bit 1 = One of the PORTB inputs changed (Software must end the mismatch condition) 0 = None of the PORTB inputs have changed
bit 6:	TMR3IF : Timer3 Interrupt Flag bit If Capture1 is enabled (CA1/PR3 = 1) 1 = Timer3 overflowed 0 = Timer3 did not overflow
	If Capture1 is disabled (CA1/ PR3 = 0) 1 = Timer3 value has rolled over to 0000h from equalling the period register (PR3H:PR3L) value 0 = Timer3 value has not rolled over to 0000h from equalling the period register (PR3H:PR3L) value
bit 5:	TMR2IF : Timer2 Interrupt Flag bit 1 = Timer2 value has rolled over to 0000h from equalling the period register (PR2) value 0 = Timer2 value has not rolled over to 0000h from equalling the period register (PR2) value
bit 4:	TMR1IF : Timer1 Interrupt Flag bit If Timer1 is in 8-bit mode (T16 = 0) 1 = Timer1 value has rolled over to 0000h from equalling the period register (PR) value 0 = Timer1 value has not rolled over to 0000h from equalling the period register (PR2) value
	If Timer1 is in 16-bit mode (T16 = 1) 1 = TMR1:TMR2 value has rolled over to 0000h from equalling the period register (PR1:PR2) value 0 = TMR1:TMR2 value has not rolled over to 0000h from equalling the period register (PR1:PR2) value
bit 3:	CA2IF : Capture2 Interrupt Flag bit 1 = Capture event occurred on RB1/CAP2 pin 0 = Capture event did not occur on RB1/CAP2 pin
bit 2:	CA1IF : Capture1 Interrupt Flag bit 1 = Capture event occurred on RB0/CAP1 pin 0 = Capture event did not occur on RB0/CAP1 pin
bit 1:	TXIF : USART Transmit Interrupt Flag bit 1 = Transmit buffer is empty 0 = Transmit buffer is full
bit 0:	RCIF : USART Receive Interrupt Flag bit 1 = Receive buffer is full 0 = Receive buffer is empty

Addr	Unbanked			
00h	INDF0			
01h	FSR0			
02h	PCL			
03h	PCLATH			
04h	ALUSTA			
05h	TOSTA			
06h	CPUSTA			
07h	INTSTA			
08h	INDF1			
09h	FSR1			
0Ah	WREG			
0Bh	TMR0L			
0Ch	TMR0H			
0Dh	TBLPTRL			
0Eh	TBLPTRH			
0Fh	BSR			
	Bank 0	Bank 1 ⁽¹⁾	Bank 2 ⁽¹⁾	Bank 3 ⁽¹⁾
10h	PORTA	DDRC	TMR1	PW1DCL
10h 11h	PORTA DDRB	DDRC PORTC	TMR1 TMR2	PW1DCL PW2DCL
10h 11h 12h	PORTA DDRB PORTB	DDRC PORTC DDRD	TMR1 TMR2 TMR3L	PW1DCL PW2DCL PW1DCH
10h 11h 12h 13h	PORTA DDRB PORTB RCSTA	DDRC PORTC DDRD PORTD	TMR1 TMR2 TMR3L TMR3H	PW1DCL PW2DCL PW1DCH PW2DCH
10h 11h 12h 13h 14h	PORTA DDRB PORTB RCSTA RCREG	DDRC PORTC DDRD PORTD DDRE	TMR1 TMR2 TMR3L TMR3H PR1	PW1DCL PW2DCL PW1DCH PW2DCH CA2L
10h 11h 12h 13h 14h 15h	PORTA DDRB PORTB RCSTA RCREG TXSTA	DDRC PORTC DDRD PORTD DDRE PORTE	TMR1 TMR2 TMR3L TMR3H PR1 PR2	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H
10h 11h 12h 13h 14h 15h 16h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG	DDRC PORTC DDRD PORTD DDRE PORTE PIR	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1
10h 11h 12h 13h 14h 15h 16h 17h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG	DDRC PORTC DDRD PORTD DDRE PORTE PIR PIE	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L PR3H/CA1H	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1 TCON2
10h 11h 12h 13h 14h 15h 16h 17h 18h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG	DDRC PORTC DDRD PORTD DDRE PORTE PIR PIE	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L PR3H/CA1H	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1 TCON2
10h 11h 12h 13h 14h 15h 16h 17h 18h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG	DDRC PORTC DDRD PORTD DDRE PORTE PIR PIE	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L PR3H/CA1H	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1 TCON2
10h 11h 12h 13h 14h 15h 16h 17h 18h 1Fh	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG	DDRC PORTC DDRD PORTD DDRE PORTE PIR PIE	TMR1 TMR2 TMR3L PR1 PR2 PR3L/CA1L PR3H/CA1H	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1 TCON2
10h 11h 12h 13h 14h 15h 16h 17h 18h 1Fh 20h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG General Purpose	DDRC PORTC DDRD PORTD DDRE PORTE PIR PIE	TMR1 TMR2 TMR3L PR1 PR2 PR3L/CA1L PR3H/CA1H	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1 TCON2
10h 11h 12h 13h 14h 15h 16h 17h 18h 1Fh 20h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG General Purpose RAM	DDRC PORTC DDRD PORTD DDRE PORTE PIR PIE	TMR1 TMR2 TMR3L PR1 PR2 PR3L/CA1L PR3H/CA1H	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1 TCON2
10h 11h 12h 13h 14h 15h 16h 17h 18h 1Fh 20h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG General Purpose RAM	DDRC PORTC DDRD PORTD DDRE PORTE PIR PIE	TMR1 TMR2 TMR3L PR1 PR2 PR3L/CA1L PR3H/CA1H	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1 TCON2

FIGURE 6-5: PIC17C42 REGISTER FILE MAP

Note 1: SFR file locations 10h - 17h are banked. All other SFRs ignore the Bank Select Register (BSR) bits.

FIGURE 6-6: PIC17CR42/42A/43/R43/44 REGISTER FILE MAP

Addr	Unbanked			
00h	INDF0			
01h	FSR0			
02h	PCL			
03h	PCLATH			
04h	ALUSTA			
05h	TOSTA			
06h	CPUSTA			
07h	INTSTA			
08h	INDF1			
09h	FSR1			
0Ah	WREG			
0Bh	TMR0L			
0Ch	TMR0H			
0Dh	TBLPTRL			
0Eh	TBLPTRH			
0Fh	BSR			
	Bank 0	Bank 1 ⁽¹⁾	Bank 2 ⁽¹⁾	Bank 3 ⁽¹⁾
10h	PORTA	DDRC	TMR1	PW1DCL
11h	DDRB	PORTC	TMR2	PW2DCL
12h	PORTB	DDRD	TMR3L	PW1DCH
13h	RCSTA	PORTD	TMR3H	PW2DCH
14h	RCREG	DDRE	PR1	CA2L
15h	TXSTA	PORTE	PR2	CA2H
16h	TXREG	PIR	PR3L/CA1L	TCON1
17h	SPBRG	PIE	PR3H/CA1H	TCON2
18h	PRODL			
19h	PRODH			
1Ah				
1Fh]	
20h	General Purpose RAM (2)	General Purpose RAM ⁽²⁾		
FFh				

- Note 1: SFR file locations 10h 17h are banked. All other SFRs ignore the Bank Select Register (BSR) bits.
 - 2: General Purpose Registers (GPR) locations 20h - FFh and 120h - 1FFh are banked. All other GPRs ignore the Bank Select Register (BSR) bits.

6.3 <u>Stack Operation</u>

The PIC17C4X devices have a 16 x 16-bit wide hardware stack (Figure 6-1). The stack is not part of either the program or data memory space, and the stack pointer is neither readable nor writable. The PC is "PUSHed" onto the stack when a CALL instruction is executed or an interrupt is acknowledged. The stack is "POPed" in the event of a RETURN, RETLW, or a RETFIE instruction execution. PCLATH is not affected by a "PUSH" or a "POP" operation.

The stack operates as a circular buffer, with the stack pointer initialized to '0' after all resets. There is a stack available bit (STKAV) to allow software to ensure that the stack has not overflowed. The STKAV bit is set after a device reset. When the stack pointer equals Fh, STKAV is cleared. When the stack pointer rolls over from Fh to 0h, the STKAV bit will be held clear until a device reset.

- **Note 1:** There is not a status bit for stack underflow. The STKAV bit can be used to detect the underflow which results in the stack pointer being at the top of stack.
- Note 2: There are no instruction mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW, and RETFIE instructions, or the vectoring to an interrupt vector.
- Note 3: After a reset, if a "POP" operation occurs before a "PUSH" operation, the STKAV bit will be cleared. This will appear as if the stack is full (underflow has occurred). If a "PUSH" operation occurs next (before another "POP"), the STKAV bit will be locked clear. Only a device reset will cause this bit to set.

After the device is "PUSHed" sixteen times (without a "POP"), the seventeenth push overwrites the value from the first push. The eighteenth push overwrites the second push (and so on).

6.4 Indirect Addressing

Indirect addressing is a mode of addressing data memory where the data memory address in the instruction is not fixed. That is, the register that is to be read or written can be modified by the program. This can be useful for data tables in the data memory. Figure 6-10 shows the operation of indirect addressing. This shows the moving of the value to the data memory address specified by the value of the FSR register.

Example 6-1 shows the use of indirect addressing to clear RAM in a minimum number of instructions. A similar concept could be used to move a defined number of bytes (block) of data to the USART transmit register (TXREG). The starting address of the block of data to be transmitted could easily be modified by the program.

FIGURE 6-10: INDIRECT ADDRESSING

7.2 <u>Table Writes to External Memory</u>

Table writes to external memory are always two-cycle instructions. The second cycle writes the data to the external memory location. The sequence of events for an external memory write are the same for an internal write.

Note:	If an interrupt is pending or occurs during				
	the TABLWT, the two cycle table write				
	completes. The RA0/INT, TMR0, or T0CKI				
	interrupt flag is automatically cleared or				
	the pending peripheral interrupt is				
	acknowledged.				

7.2.2 TABLE WRITE CODE

The "i" operand of the TABLWT instruction can specify that the value in the 16-bit TBLPTR register is automatically incremented for the next write. In Example 7-1, the TBLPTR register is not automatically incremented.

EXAMPLE 7-1: TABLE WRITE

CLRWDT		;	Clear WDT
MOVLW	HIGH (TBL_ADDR)	;	Load the Table
MOVWF	TBLPTRH	;	address
MOVLW	LOW (TBL_ADDR)	;	
MOVWF	TBLPTRL	;	
MOVLW	HIGH (DATA)	;	Load HI byte
TLWT	1, WREG	;	in TABLATCH
MOVLW	LOW (DATA)	;	Load LO byte
TABLWT	0,0,WREG	;	in TABLATCH
		;	and write to
		;	program memory
		;	(Ext. SRAM)

FIGURE 7-5: TABLWT WRITE TIMING (EXTERNAL MEMORY)

NOTES:

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
05h, Unbanked	TOSTA	INTEDG	TOSE	TOCS	PS3	PS2	PS1	PS0	_	0000 000-	0000 000-
06h, Unbanked	CPUSTA	_	—	STKAV	GLINTD	TO	PD	-	_	11 11	11 qq
07h, Unbanked	INTSTA	PEIF	T0CKIF	TOIF	INTF	PEIE	TOCKIE	TOIE	INTE	0000 0000	0000 0000
0Bh, Unbanked	TMR0L	TMR0 reg	MR0 register; low byte							XXXX XXXX	uuuu uuuu
0Ch, Unbanked	TMR0H	TMR0 reg	TMR0 register; high byte							xxxx xxxx	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', g - value depends on condition, Shaded cells are not used by Timer0. Note 1: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

12.2.3 EXTERNAL CLOCK INPUT FOR TIMER3

When TMR3CS is set, the 16-bit TMR3 increments on the falling edge of clock input TCLK3. The input on the RB5/TCLK3 pin is sampled and synchronized by the internal phase clocks twice every instruction cycle. This causes a delay from the time a falling edge appears on TCLK3 to the time TMR3 is actually incremented. For the external clock input timing requirements, see the Electrical Specification section. Figure 12-9 shows the timing diagram when operating from an external clock.

12.2.4 READING/WRITING TIMER3

Since Timer3 is a 16-bit timer and only 8-bits at a time can be read or written, care should be taken when reading or writing while the timer is running. The best method to read or write the timer is to stop the timer, perform any read or write operation, and then restart Timer3 (using the TMR3ON bit). However, if it is necessary to keep Timer3 free-running, care must be taken. For writing to the 16-bit TMR3, Example 12-2 may be used. For reading the 16-bit TMR3, Example 12-3 may be used. Interrupts must be disabled during this routine.

EXAMPLE 12-2: WRITING TO TMR3

BSF CPUSTA, GLINTD ;Disable interrupt MOVFP RAM_L, TMR3L ; MOVFP RAM_H, TMR3H ; BCF CPUSTA, GLINTD ;Done,enable interrupt

EXAMPLE 12-3: READING FROM TMR3

MOVPF	TMR3L,	TMPLO	;read low tmr0
MOVPF	TMR3H,	TMPHI	;read high tmr0
MOVFP	TMPLO,	WREG	;tmplo -> wreg
CPFSLT	TMR3L,	WREG	;tmr0l < wreg?
RETURN			;no then return
MOVPF	TMR3L,	TMPLO	;read low tmr0
MOVPF	TMR3H,	TMPHI	;read high tmr0
RETURN			;return

FIGURE 12-9: TMR1, TMR2, AND TMR3 OPERATION IN EXTERNAL CLOCK MODE

13.2 USART Asynchronous Mode

In this mode, the USART uses standard nonreturn-to-zero (NRZ) format (one start bit, eight or nine data bits, and one stop bit). The most common data format is 8-bits. An on-chip dedicated 8-bit baud rate generator can be used to derive standard baud rate frequencies from the oscillator. The USART's transmitter and receiver are functionally independent but use the same data format and baud rate. The baud rate generator produces a clock x64 of the bit shift rate. Parity is not supported by the hardware, but can be implemented in software (and stored as the ninth data bit). Asynchronous mode is stopped during SLEEP.

The asynchronous mode is selected by clearing the SYNC bit (TXSTA<4>).

The USART Asynchronous module consists of the following important elements:

- Baud Rate Generator
- Sampling Circuit
- Asynchronous Transmitter
- Asynchronous Receiver

13.2.1 USART ASYNCHRONOUS TRANSMITTER

The USART transmitter block diagram is shown in Figure 13-3. The heart of the transmitter is the transmit shift register (TSR). The shift register obtains its data from the read/write transmit buffer (TXREG). TXREG is loaded with data in software. The TSR is not loaded until the stop bit has been transmitted from the previous load. As soon as the stop bit is transmitted, the TSR is loaded with new data from the TXREG (if available). Once TXREG transfers the data to the TSR (occurs in one TCY at the end of the current BRG cycle), the TXREG is empty and an interrupt bit, TXIF (PIR<1>) is set. This interrupt can be enabled or disabled by the TXIE bit (PIE<1>). TXIF will be set regardless of TXIE and cannot be reset in software. It will reset only when new data is loaded into TXREG. While TXIF indicates the status of the TXREG, the TRMT (TXSTA<1>) bit shows the status of the TSR. TRMT is a read only bit which is set when the TSR is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR is empty.

Note:	The TSR is not mapped in data memory,
	so it is not available to the user.

Transmission enabled setting is by the TXEN (TXSTA<5>) bit. The actual transmission will not occur until TXREG has been loaded with data and the baud rate generator (BRG) has produced a shift clock (Figure 13-5). The transmission can also be started by first loading TXREG and then setting TXEN. Normally when transmission is first started, the TSR is empty, so a transfer to TXREG will result in an immediate transfer to TSR resulting in an empty TXREG. A back-to-back transfer is thus possible (Figure 13-6). Clearing TXEN during a transmission will cause the transmission to be aborted. This will reset the transmitter and the RA5/TX/CK pin will revert to hi-impedance.

In order to select 9-bit transmission, the TX9 (TXSTA<6>) bit should be set and the ninth bit should be written to TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to the TXREG. This is because a data write to TXREG can result in an immediate transfer of the data to the TSR (if the TSR is empty).

Steps to follow when setting up an Asynchronous Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If interrupts are desired, then set the TXIE bit.
- 4. If 9-bit transmission is desired, then set the TX9 bit.
- 5. Load data to the TXREG register.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in TX9D.
- 7. Enable the transmission by setting TXEN (starts transmission).

Writing the transmit data to the TXREG, then enabling the transmit (setting TXEN) allows transmission to start sooner then doing these two events in the opposite order.

Note: To terminate a transmission, either clear the SPEN bit, or the TXEN bit. This will reset the transmit logic, so that it will be in the proper state when transmit is re-enabled.

13.2.2 USART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 13-4. The data comes in the RA4/RX/DT pin and drives the data recovery block. The data recovery block is actually a high speed shifter operating at 16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at Fosc.

Once asynchronous mode is selected, reception is enabled by setting bit CREN (RCSTA<4>).

The heart of the receiver is the receive (serial) shift register (RSR). After sampling the stop bit, the received data in the RSR is transferred to the RCREG (if it is empty). If the transfer is complete, the interrupt bit RCIF (PIR<0>) is set. The actual interrupt can be enabled/disabled by setting/clearing the RCIE (PIE<0>) bit. RCIF is a read only bit which is cleared by the hardware. It is cleared when RCREG has been read and is empty. RCREG is a double buffered register; (i.e. it is a two deep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte begin shifting to the RSR. On detection of the stop bit of the third byte, if the RCREG is still full, then the overrun error bit, OERR (RCSTA<1>) will be set. The word in the RSR will be lost. RCREG can be read twice to retrieve the two bytes in the FIFO. The OERR bit has to be cleared in software which is done by resetting the receive logic (CREN is set). If the OERR bit is set, transfers from the RSR to RCREG are inhibited, so it is essential to clear the OERR bit if it is set. The framing error bit FERR (RCSTA<2>) is set if a stop bit is not detected.

FIGURE 13-7: RX PIN SAMPLING SCHEME

Note: The FERR and the 9th receive bit are buffered the same way as the receive data. Reading the RCREG register will allow the RX9D and FERR bits to be loaded with values for the next received Received data; therefore, it is essential for the user to read the RCSTA register before reading RCREG in order not to lose the old FERR and RX9D information.

13.2.3 SAMPLING

The data on the RA4/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RA4/RX/DT pin. The sampling is done on the seventh, eighth and ninth falling edges of a x16 clock (Figure 11-3).

The x16 clock is a free running clock, and the three sample points occur at a frequency of every 16 falling edges.

RX		Start bit	Bit0
(RA4/RX/DT pin)	-	Baud CLK for all but start bit	
Jaud CLK	1		
x16 CLK		2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1	
		Samples	

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
13h, Bank 0	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00u
16h, Bank 0	TXREG	TX7	TX6	TX5	TX4	TX3	TX2	TX1	TX0	xxxx xxxx	uuuu uuuu
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	—	_	TRMT	TX9D	00001x	00001u
17h, Bank 0 SPBRG Baud rate generator register								xxxx xxxx	uuuu uuuu		

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used for synchronous slave transmission.

Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

TABLE 13-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
13h, Bank0	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00u
14h, Bank0	RCREG	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	XXXX XXXX	uuuu uuuu
17h, Bank1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	—	—	TRMT	TX9D	00001x	00001u
17h, Bank0	SPBRG	Baud rate generator register							xxxx xxxx	uuuu uuuu	

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used for synchronous slave reception.

Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

FIGURE 14-3: CRYSTAL OPERATION, OVERTONE CRYSTALS (XT OSC CONFIGURATION)

TABLE 14-2: CAPACITOR SELECTION FOR CERAMIC RESONATORS

Oscillator Type	Resonator Frequency	Capacitor Range C1 = C2
LF	455 kHz 2.0 MHz	15 - 68 pF 10 - 33 pF
ХТ	4.0 MHz 8.0 MHz 16.0 MHz	22 - 68 pF 33 - 100 pF 33 - 100 pF

Higher capacitance increases the stability of the oscillator but also increases the start-up time. These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.

Resonators Used:

455 kHz	Panasonic EFO-A455K04B	± 0.3%					
2.0 MHz	Murata Erie CSA2.00MG	± 0.5%					
4.0 MHz	Murata Erie CSA4.00MG	± 0.5%					
8.0 MHz Murata Erie CSA8.00MT ± 0.5%							
16.0 MHz	Murata Erie CSA16.00MX	± 0.5%					
Resonators used did not have built-in capacitors.							

TABLE 14-3:CAPACITOR SELECTION
FOR CRYSTAL OSCILLATOR

Osc Type	Freq	C1	C2
LF	32 kHz ⁽¹⁾	100-150 pF	100-150 pF
	1 MHz	10-33 pF	10-33 pF
	2 MHz	10-33 pF	10-33 pF
XT	2 MHz	47-100 pF	47-100 pF
	4 MHz	15-68 pF	15-68 pF
	8 MHz ⁽²⁾	15-47 pF	15-47 pF
	16 MHz	TBD	TBD
	25 MHz	15-47 pF	15-47 pF
	32 MHz ⁽³⁾	₍₃₎	₍₃₎

Higher capacitance increases the stability of the oscillator but also increases the start-up time and the oscillator current. These values are for design guidance only. Rs may be required in XT mode to avoid overdriving the crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values for external components.

- Note 1: For VDD > 4.5V, C1 = C2 \approx 30 pF is recommended.
 - 2: Rs of 330Ω is required for a capacitor combination of 15/15 pF.
 - 3: Only the capacitance of the board was present.

Crystals Used:

32.768 kHz	Epson C-001R32.768K-A	± 20 PPM
1.0 MHz	ECS-10-13-1	\pm 50 PPM
2.0 MHz	ECS-20-20-1	± 50 PPM
4.0 MHz	ECS-40-20-1	± 50 PPM
8.0 MHz	ECS ECS-80-S-4	± 50 PPM
	ECS-80-18-1	
16.0 MHz	ECS-160-20-1	TBD
25 MHz	CTS CTS25M	± 50 PPM
32 MHz	CRYSTEK HF-2	± 50 PPM

14.2.3 EXTERNAL CLOCK OSCILLATOR

In the EC oscillator mode, the OSC1 input can be driven by CMOS drivers. In this mode, the OSC1/CLKIN pin is hi-impedance and the OSC2/CLK-OUT pin is the CLKOUT output (4 Tosc).

FIGURE 14-4: EXTERNAL CLOCK INPUT OPERATION (EC OSC CONFIGURATION)

Table 15-2 lists the instructions recognized by the MPASM assembler.

Note 1:	Any	unused o	pcode is	Rese	erved. l	Jse of
	any	reserved	opcode	may	cause	unex-
	pected operation.					

Note 2: The shaded instructions are not available in the PIC17C42

All instruction examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

To represent a binary number:

0000 0100b

where b signifies a binary string.

FIGURE 15-1: GENERAL FORMAT FOR INSTRUCTIONS

15.1 <u>Special Function Registers as</u> <u>Source/Destination</u>

The PIC17C4X's orthogonal instruction set allows read and write of all file registers, including special function registers. There are some special situations the user should be aware of:

15.1.1 ALUSTA AS DESTINATION

If an instruction writes to ALUSTA, the Z, C, DC and OV bits may be set or cleared as a result of the instruction and overwrite the original data bits written. For example, executing CLRF ALUSTA will clear register ALUSTA, and then set the Z bit leaving 0000 0100b in the register.

15.1.2 PCL AS SOURCE OR DESTINATION

Read, write or read-modify-write on PCL may have the following results:

Read PC:	$\text{PCH} \rightarrow \text{PCLATH}; \text{PCL} \rightarrow \text{dest}$
Write PCL:	PCLATH \rightarrow PCH; 8-bit destination value \rightarrow PCL
Read-Modify-Write:	$PCL \rightarrow ALU$ operand $PCLATH \rightarrow PCH$; 8-bit result $\rightarrow PCL$

Where PCH = program counter high byte (not an addressable register), PCLATH = Program counter high holding latch, dest = destination, WREG or f.

15.1.3 BIT MANIPULATION

All bit manipulation instructions are done by first reading the entire register, operating on the selected bit and writing the result back (read-modify-write). The user should keep this in mind when operating on special function registers, such as ports.

PIC17C4X

AND	DWF	AND WRI	EG with	f	
Synt	tax:	[label] A	NDWF	f,d	
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 25 \\ d \in \ [0,1] \end{array}$	5		
Ope	ration:	(WREG) .	AND. (f)	ightarrow (dest)	1
Stat	us Affected:	Z			
Enco	oding:	0000	101d	ffff	ffff
Des	cription:	The conten register 'f'. in WREG. I back in reg	its of WR If 'd' is 0 f 'd' is 1 t ister 'f'.	EG are AN the result he result is	D'ed with is stored s stored
Wor	ds:	1			
Cycl	es:	1			
QC	ycle Activity:				
	Q1	Q2	Q	3	Q4
	Decode	Read register 'f'	Exect	ute V de:	Vrite to stination
<u>Exa</u>	<u>mple</u> :	ANDWF	REG, 1		
	Before Instru WREG REG	iction = 0x17 = 0xC2			
	After Instruct WREG REG	tion = 0x17 = 0x02			

BCF		Bit Clear	f						
Synt	Syntax: [label] BCF f,b								
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 25 \\ 0 \leq b \leq 7 \end{array}$	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \end{array}$						
Ope	ration:	$0 \rightarrow (f < b >$	-)						
Stat	us Affected:	None							
Enc	oding:	1000	1bbb	fff	f	ffff			
Des	cription:	Bit 'b' in re	Bit 'b' in register 'f' is cleared.						
Words:		1	1						
Cycl	es:	1							
QC	ycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read register 'f'	Execu	ute	re	Write gister 'f'			
Exa	<u>mple</u> :	BCF	FLAG_R	EG,	7				
Before Instruction FLAG_REG = 0xC7									
After Instruction FLAG_REG = 0x47									

PIC17C4X

RETURN Return from Subroutine								
Synt	ax:	[label]	RETURI	N				
Ope	rands:	None						
Ope	ration:	$TOS\toP$	C;					
Stat	us Affected:	None						
Enco	oding:	0000	0000	0000	0010			
Des	cription:	Return from popped an is loaded in	Return from subroutine. The stack is popped and the top of the stack (TOS) is loaded into the program counter.					
Wor	ds:	1	1					
Cycl	es:	2	2					
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read register PCL*	Execu	ite	NOP			
	Forced NOP	NOP	Execu	ite	NOP			

* Remember reading PCL causes PCLATH to be updated. This will be the high address of where the RETURN instruction is located.

Example: RETURN

After Interrupt PC = TOS

RLCF	Rotate L	Rotate Left f through Carry						
Syntax:	[label]	RLCF	f,d					
Operands:	$0 \le f \le 25$	5						
	d ∈ [0,1]							
Operation:	$f < n > \rightarrow d$	<n+1>;</n+1>						
	$t < l > \rightarrow 0$ C $\rightarrow d < 0$;; >						
Status Affected:	C	-						
Encoding:	0001	101d	ffff	ffff				
Description:	The conte one bit to Flag. If 'd' WREG. If back in reg	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0 the result is placed in WREG. If 'd' is 1 the result is stored back in register 'f'.						
		reg	ister f	_ _				
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3		Q4				
Decode	Read register 'f'	Execu	te V des	/rite to stination				
Example:	RLCF	RE	G,0					
Before Instru	uction							
REG C	= 1110 0 = 0	0110						
After Instruct REG WREG C	tion = 1110 0 = 1100 1 = 1	0110 .100						

16.0 DEVELOPMENT SUPPORT

16.1 <u>Development Tools</u>

The PIC16/17 microcontrollers are supported with a full range of hardware and software development tools:

- PICMASTER/PICMASTER CE Real-Time In-Circuit Emulator
- ICEPIC Low-Cost PIC16C5X and PIC16CXXX In-Circuit Emulator
- PRO MATE[®] II Universal Programmer
- PICSTART[®] Plus Entry-Level Prototype Programmer
- PICDEM-1 Low-Cost Demonstration Board
- PICDEM-2 Low-Cost Demonstration Board
- PICDEM-3 Low-Cost Demonstration Board
- MPASM Assembler
- MPLAB-SIM Software Simulator
- MPLAB-C (C Compiler)
- Fuzzy logic development system (fuzzyTECH[®]-MP)

16.2 <u>PICMASTER: High Performance</u> <u>Universal In-Circuit Emulator with</u> <u>MPLAB IDE</u>

The PICMASTER Universal In-Circuit Emulator is intended to provide the product development engineer with a complete microcontroller design tool set for all microcontrollers in the PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX and PIC17CXX families. PICMASTER is supplied with the MPLABTM Integrated Development Environment (IDE), which allows editing, "make" and download, and source debugging from a single environment.

Interchangeable target probes allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the PICMASTER allows expansion to support all new Microchip microcontrollers.

The PICMASTER Emulator System has been designed as a real-time emulation system with advanced features that are generally found on more expensive development tools. The PC compatible 386 (and higher) machine platform and Microsoft Windows[®] 3.x environment were chosen to best make these features available to you, the end user.

A CE compliant version of PICMASTER is available for European Union (EU) countries.

16.3 ICEPIC: Low-cost PIC16CXXX In-Circuit Emulator

ICEPIC is a low-cost in-circuit emulator solution for the Microchip PIC16C5X and PIC16CXXX families of 8-bit OTP microcontrollers.

ICEPIC is designed to operate on PC-compatible machines ranging from 286-AT[®] through Pentium[™] based machines under Windows 3.x environment. ICEPIC features real time, non-intrusive emulation.

16.4 PRO MATE II: Universal Programmer

The PRO MATE II Universal Programmer is a full-featured programmer capable of operating in stand-alone mode as well as PC-hosted mode.

The PRO MATE II has programmable VDD and VPP supplies which allows it to verify programmed memory at VDD min and VDD max for maximum reliability. It has an LCD display for displaying error messages, keys to enter commands and a modular detachable socket assembly to support various package types. In standalone mode the PRO MATE II can read, verify or program PIC16C5X, PIC16CXXX, PIC17CXX and PIC14000 devices. It can also set configuration and code-protect bits in this mode.

16.5 <u>PICSTART Plus Entry Level</u> <u>Development System</u>

The PICSTART programmer is an easy-to-use, lowcost prototype programmer. It connects to the PC via one of the COM (RS-232) ports. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. PICSTART Plus is not recommended for production programming.

PICSTART Plus supports all PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX and PIC17CXX devices with up to 40 pins. Larger pin count devices such as the PIC16C923 and PIC16C924 may be supported with an adapter socket.

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 17-9: USART MODULE: SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 17-9: SERIAL PORT SYNCHRONOUS TRANSMISSION REQUIREMENTS

Parameter							
No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
120	TckH2dtV	SYNC XMIT (MASTER & SLAVE) Clock high to data out valid	_	_	65	ns	
121	TckRF	Clock out rise time and fall time (Master Mode)	_	10	35	ns	
122	TdtRF	Data out rise time and fall time	_	10	35	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 17-10: USART MODULE: SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 17-10: SERIAL PORT SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
125	TdtV2ckL	SYNC RCV (MASTER & SLAVE) Data hold before CK↓ (DT hold time)	15		_	ns	
126	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15	_	_	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC17C4X

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 18-2: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

FIGURE 18-3: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

Applicable Devices 42 R42 42A 43 R43 44

19.3 **DC CHARACTERISTICS:**

PIC17CR42/42A/43/R43/44-16 (Commercial, Industrial) PIC17CR42/42A/43/R43/44-25 (Commercial, Industrial) PIC17CR42/42A/43/R43/44-33 (Commercial, Industrial) PIC17LCR42/42A/43/R43/44-08 (Commercial, Industrial)

Standard Operating Conditions (unless otherwise stated) Operating temperature

DC CH

D030

D031 D032

D033

D040

D041 D042 D043 D050

DC CHARA	CTERI	STICS			-40°C 0°C	: TA ≥ : TA ≥	≤ +85°C for industrial and ≤ +70°C for commercial
			Operating ve	oltage VI	D range a	s desc	ribed in Section 19.1
Parameter							
No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
		Input Low Voltage					
	VIL	I/O ports					
D030		with TTL buffer	Vss	-	0.8	V	$4.5V \le VDD \le 5.5V$
			Vss	-	0.2Vdd	V	$2.5V \le VDD \le 4.5V$
D031		with Schmitt Trigger buffer	Vss	-	0.2Vdd	V	
D032		MCLR, OSC1 (in EC and RC mode)	Vss	-	0.2Vdd	V	Note1
D033		OSC1 (in XT, and LF mode)	-	0.5Vdd	_	V	
		Input High Voltage					
	Vін	I/O ports					
D040		with TTL buffer	2.0	-	Vdd	V	$4.5V \le VDD \le 5.5V$
			1 + 0.2VDD	-	Vdd	V	$2.5V \le VDD \le 4.5V$
D041		with Schmitt Trigger buffer	0.8Vdd	-	Vdd	V	
D042		MCLR	0.8Vdd	_	Vdd	V	Note1
D043		OSC1 (XT, and LF mode)	_	0.5Vdd	_	V	
D050	VHYS	Hysteresis of	0.15Vdd *	-	-	V	
		Schmitt Trigger inputs					
		Input Leakage Current (Notes 2, 3)					
D060	lı∟	I/O ports (except RA2, RA3)	_	-	±1	μA	Vss \leq VPIN \leq VDD, I/O Pin at hi-impedance

							disabled
D061		MCLR	_	_	±2	μA	VPIN = Vss or VPIN = VDD
D062		RA2, RA3			±2	μA	$Vss \le Vra2$, $Vra3 \le 12V$
D063		OSC1, TEST (EC, RC modes)	-	_	±1	μA	$Vss \le VPIN \le VDD$
D063B		OSC1, TEST (XT, LF modes)	-	-	VPIN	μA	$R_F \ge 1 M\Omega$, see Figure 14.2
D064		MCLR	-	_	10	μA	VMCLR = VPP = 12V (when not programming)
D070	IPURB	PORTB weak pull-up current	60	200	400	μA	VPIN = Vss, $\overline{\text{RBPU}} = 0$ 4.5V \leq VDD \leq 6.0V

These parameters are characterized but not tested.

t Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

ŧ These parameters are for design guidance only and are not tested, nor characterized.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC17CXX devices be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in: PIC17CXX Programming Specifications (Literature number DS30139).

5: The MCLR/VPP pin may be kept in this range at times other than programming, but is not recommended.

6: For TTL buffers, the better of the two specifications may be used.

PIC16C7X Family of Devices

E.5

				Clock	_	Memory			Peri	pheral	s			Features	
					1										Т
				DOW AY LOS	So l			Tallo	STAL S		Slott		\backslash	01.	
			-0	though t			ANA .		1 2	8.	RES CLAR	\backslash	(SHO)	HULL BOY	
			Touene	AN LA LARD	1	(S)2	ale .		6		uices	»бį	D.	10-00	
		ir unu	NO2	W 10 LOLON	20.	inte Col	HON I		anuos		SUIS C	et or		Soler Thomas a	
	N.	it.	0 33	ALL LIFE	\mathbb{X}	and ser	\$\$ \	2			101	Juj	JA JA	200 M	
PIC16C710	20	512	36	TMR0		I	I	4	4	13	3.0-6.0	Yes	Yes	18-pin DIP, SOIC; 20-pin SSOP	
PIC16C71	20	ź	36	TMR0				4	4	13	3.0-6.0	Yes	I	18-pin DIP, SOIC	
PIC16C711	20	Ę	89	TMR0				4	4	13	3.0-6.0	Yes	Yes	18-pin DIP, SOIC; 20-pin SSOP	
PIC16C72	20	2K	128	TMR0, TMR1, TMR2	-	SPI/I ² C	1	5	8	22	2.5-6.0	Yes	Yes	28-pin SDIP, SOIC, SSOP	
PIC16C73	20	4 K	192	TMR0, TMR1, TMR2	2	SPI/I ² C, USART		5	11	22	3.0-6.0	Yes	I	28-pin SDIP, SOIC	
PIC16C73A ⁽¹⁾	20	4 K	192	TMR0, TMR1, TMR2	7	SPI/I ² C, USART		5	11	22	2.5-6.0	Yes	Yes	28-pin SDIP, SOIC	
PIC16C74	20	4 7	192	TMR0, TMR1, TMR2	7	SPI/I ² C, USART	Yes	ω	12	33	3.0-6.0	Yes	Ι	40-pin DIP; 44-pin PLCC, MQFP	
PIC16C74A ⁽¹⁾	20	4 7	192	TMR0, TMR1, TMR2	2	SPI/I ² C, USART	Yes	8	12	33	2.5-6.0	Yes	Yes	40-pin DIP; 44-pin PLCC, MQFP, TQFP	
All PI	C16/1	7 Fami	ily devi	ices have Power-	б	Reset, se	lectable	∋ Watcl	L gobh	limer,	selectable	code p	orotect	and high I/O current	
capat	bility.	Ľ	- 11 11 -							-		1			
AIL FI Note 1: Pleas	ie cont	act yo	nıly aev ur loca	vices use serial particles office for	ava	gramming ilability of	with cit	ock pin device:	З.	ana a;	ata pin къ				