

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	33MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	8KB (4K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c43t-33i-pq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

6.1.2 EXTERNAL MEMORY INTERFACE

When either microprocessor or extended microcontroller mode is selected, PORTC, PORTD and PORTE are configured as the system bus. PORTC and PORTD are the multiplexed address/data bus and PORTE is for the control signals. External components are needed to demultiplex the address and data. This can be done as shown in Figure 6-4. The waveforms of address and data are shown in Figure 6-3. For complete timings, please refer to the electrical specification section.

FIGURE 6-3: EXTERNAL PROGRAM MEMORY ACCESS WAVEFORMS

		••••••
	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4 Q1
AD	X	
<15:0>	Address out Data in	Address out Data out
ALE		
OE,	'1'	
WR		
	Read cycle	Write cycle

The system bus requires that there is no bus conflict (minimal leakage), so the output value (address) will be capacitively held at the desired value.

As the speed of the processor increases, external EPROM memory with faster access time must be used. Table 6-2 lists external memory speed requirements for a given PIC17C4X device frequency.

In extended microcontroller mode, when the device is executing out of internal memory, the control signals will continue to be active. That is, they indicate the action that is occurring in the internal memory. The external memory access is ignored.

This following selection is for use with Microchip EPROMs. For interfacing to other manufacturers memory, please refer to the electrical specifications of the desired PIC17C4X device, as well as the desired memory device to ensure compatibility.

TABLE 6-2:	EPROM MEMORY ACCESS
	TIME ORDERING SUFFIX

	Instruction	EPROM	I Suffix
Oscillator Frequency	Cycle Time (Tcy)	PIC17C42	PIC17C43 PIC17C44
8 MHz	500 ns	-25	-25
16 MHz	250 ns	-12	-15
20 MHz	200 ns	-90	-10
25 MHz	160 ns	N.A.	-70
33 MHz	121 ns	N.A.	(1)

Note 1: The access times for this requires the use of fast SRAMS.

Note: The external memory interface is not supported for the LC devices.

FIGURE 6-4: TYPICAL EXTERNAL PROGRAM MEMORY CONNECTION DIAGRAM

© 1996 Microchip Technology Inc.

TABLE 6-3:	SPECIAL FUNCTION REGISTERS
------------	----------------------------

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (3)	
Unbanke	Unbanked											
00h	INDF0	Uses con	Jses contents of FSR0 to address data memory (not a physical register)									
01h	FSR0	Indirect d	ata memory	/ address po	inter 0					xxxx xxxx	uuuu uuuu	
02h	PCL	Low orde	r 8-bits of P	С						0000 0000	0000 0000	
03h ⁽¹⁾	PCLATH	Holding re	egister for u	pper 8-bits o	of PC					0000 0000	uuuu uuuu	
04h	ALUSTA	FS3	FS2	FS1	FS0	OV	Z	DC	С	1111 xxxx	1111 uuuu	
05h	TOSTA	INTEDG	TOSE	TOCS	PS3	PS2	PS1	PS0	—	0000 000-	0000 000-	
06h ⁽²⁾	CPUSTA	—	—	STKAV	GLINTD	TO	PD	_	—	11 11	11 qq	
07h	INTSTA	PEIF	TOCKIF	T0IF	INTF	PEIE	TOCKIE	TOIE	INTE	0000 0000	0000 0000	
08h	INDF1	Uses con	tents of FS	R1 to addres	s data mem	ory (not a p	hysical regis	ster)	1			
09h	FSR1	Indirect d	ata memory	/ address po	inter 1					xxxx xxxx	uuuu uuuu	
0Ah	WREG	Working r	egister							XXXX XXXX	uuuu uuuu	
0Bh	TMR0L	TMR0 reg	gister; low b	yte						xxxx xxxx	uuuu uuuu	
0Ch	TMR0H	TMR0 reg	gister; high	byte						xxxx xxxx	uuuu uuuu	
0Dh	TBLPTRL	Low byte	of program	memory tab	le pointer					(4)	(4)	
0Eh	TBLPTRH	High byte	High byte of program memory table pointer								(4)	
0Fh	BSR	Bank sele	ect register							0000 0000	0000 0000	
Bank 0										-		
10h	PORTA	RBPU	_	RA5	RA4	RA3	RA2	RA1/T0CKI	RA0/INT	0-xx xxxx	0-uu uuuu	
11h	DDRB	Data dire	ction registe	er for PORTE	3					1111 1111	1111 1111	
12h	PORTB	PORTB d	ata latch							xxxx xxxx	uuuu uuuu	
13h	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00u	
14h	RCREG	Serial por	t receive re	gister						xxxx xxxx	uuuu uuuu	
15h	TXSTA	CSRC	TX9	TXEN	SYNC	—	—	TRMT	TX9D	00001x	00001u	
16h	TXREG	Serial por	t transmit r	egister						xxxx xxxx	uuuu uuuu	
17h	SPBRG	Baud rate	generator	register						xxxx xxxx	uuuu uuuu	
Bank 1												
10h	DDRC	Data dire	ction registe	er for PORT	2					1111 1111	1111 1111	
11h	PORTC	RC7/ AD7	RC6/ AD6	RC5/ AD5	RC4/ AD4	RC3/ AD3	RC2/ AD2	RC1/ AD1	RC0/ AD0	xxxx xxxx	uuuu uuuu	
12h	DDRD	Data dire	ction registe	er for PORT)					1111 1111	1111 1111	
13h	PORTD	RD7/ AD15	RD6/ AD14	RD5/ AD13	RD4/ AD12	RD3/ AD11	RD2/ AD10	RD1/ AD9	RD0/ AD8	xxxx xxxx	uuuu uuuu	
14h	DDRE	Data dire	ction registe	er for PORTE	-				-	111	111	
15h	PORTE	_	—	—	—	—	RE2/WR	RE1/OE	RE0/ALE	xxx	uuu	
16h	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010	
17h	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000	

x = unknown, u = unchanged, - = unimplemented read as '0', q - value depends on condition. Shaded cells are unimplemented, read as '0'. The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<15:8> whose contents are updated Legend: Note 1:

from or transferred to the upper byte of the program counter. The TO and PD status bits in CPUSTA are not affected by a MCLR reset. 2:

3: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

4:

The following values are for both TBLPTRL and TBLPTRH: All PIC17C4X devices (Power-on Reset 0000 0000) and (All other resets 0000 0000) except the PIC17C42 (Power-on Reset xxxx xxxx) and (All other resets uuuu uuuu)

5: The PRODL and PRODH registers are not implemented on the PIC17C42.

6.2.2.3 TMR0 STATUS/CONTROL REGISTER (T0STA)

This register contains various control bits. Bit7 (INTEDG) is used to control the edge upon which a signal on the RA0/INT pin will set the RB0/INT interrupt flag. The other bits configure the Timer0 prescaler and clock source. (Figure 11-1).

FIGURE 6-9: T0STA REGISTER (ADDRESS: 05h, UNBANKED)

R/W - 0 INTED0 bit7) R/W - 0 R/ G TOSE T	<u>/W - 0 R/W - 0</u> OCS PS3	R/W - 0 PS2	<u>R/W - 0</u> PS1	R/W - 0 PS0	U - 0 — bit0	R = Readable bit W = Writable bit U = Unimplemented, reads as '0'					
bit 7:	INTEDG: RA0/ This bit selects 1 = Rising edge 0 = Falling edge	INT Pin Interrupt E the edge upon wh of RA0/INT pin g e of RA0/INT pin g	dge Selec nich the int enerates ir enerates i	t bit errupt is d nterrupt nterrupt	etected.		-n = Value at POR reset					
bit 6:	TOSE : Timer0 (This bit selects <u>When TOCS =</u> 1 = Rising edge 0 = Falling edg <u>When TOCS =</u> Don't care	TOSE : Timer0 Clock Input Edge Select bit This bit selects the edge upon which TMR0 will increment. <u>When TOCS = 0</u> 1 = Rising edge of RA1/T0CKI pin increments TMR0 and/or generates a T0CKIF interrupt 0 = Falling edge of RA1/T0CKI pin increments TMR0 and/or generates a T0CKIF interrupt <u>When T0CS = 1</u> Don't care										
bit 5:	TOCS : Timer0 This bit selects 1 = Internal ins 0 = TOCKI pin	Clock Source Sele the clock source f truction clock cycle	ct bit or Timer0. e (TCY)									
bit 4-1:	PS3:PS0: Time These bits sele	er0 Prescale Selected the prescale va	tion bits lue for Tim	er0.								
	PS3:PS0	Prescale Value	•									
	0000 0001 0010 010 0100 0101 0110 0111 1xxx	1:1 1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256										
bit 0:	Unimplemente	ed: Read as '0'										

9.5 I/O Programming Considerations

9.5.1 BI-DIRECTIONAL I/O PORTS

Any instruction which writes, operates internally as a read followed by a write operation. For example, the BCF and BSF instructions read the register into the CPU, execute the bit operation, and write the result back to the register. Caution must be used when these instructions are applied to a port with both inputs and outputs defined. For example, a BSF operation on bit5 of PORTB will cause all eight bits of PORTB to be read into the CPU. Then the BSF operation takes place on bit5 and PORTB is written to the output latches. If another bit of PORTB is used as a bi-directional I/O pin (e.g. bit0) and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and re-written to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the input mode, no problem occurs. However, if bit0 is switched into output mode later on, the content of the data latch may now be unknown.

Reading a port reads the values of the port pins. Writing to the port register writes the value to the port latch. When using read-modify-write instructions (BCF, BSF, BTG, etc.) on a port, the value of the port pins is read, the desired operation is performed with this value, and the value is then written to the port latch.

Example 9-5 shows the effect of two sequential read-modify-write instructions on an I/O port.

EXAMPLE 9-5: READ MODIFY WRITE INSTRUCTIONS ON AN I/O PORT

; Initial PORT settings: PORTB<7:4> Inputs PORTB<3:0> Outputs ; ; PORTB<7:6> have pull-ups and are ; not connected to other circuitry ; PORT latch PORT pins ; ; _____ _____ ; PORTB, 7 BCF 01pp pppp 11pp pppp BCF PORTB, 6 10pp pppp 11pp pppp ; BCF DDRB, 7 10pp pppp 11pp pppp BCF DDRB, 6 10pp pppp 10pp pppp ; ; Note that the user may have expected the ; pin values to be 00pp pppp. The 2nd BCF ; caused RB7 to be latched as the pin value ; (High).

Note: A pin actively outputting a Low or High should not be driven from external devices in order to change the level on this pin (i.e. "wired-or", "wired-and"). The resulting high output currents may damage the device.

9.5.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (Figure 9-9). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should be such to allow the pin voltage to stabilize (load dependent) before executing the instruction that reads the values on that I/O port. Otherwise, the previous state of that pin may be read into the CPU rather than the "new" state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

FIGURE 9-9: SUCCESSIVE I/O OPERATION

Instruction fetched	Q1 Q2 Q3 Q4 PC MOVWF PORTB write to PORTB	Q1 Q2 Q3 Q4 PC + 1 MOVF PORTB,W	Q1 Q2 Q3 Q4 Q1 Q2 Q3 Q4 <u>PC + 2</u> <u>PC + 3</u> NOP NOP	 Note: This example shows a write to PORTB followed by a read from PORTB. Note that: data setup time = (0.25 TcY - TPD) where TcY = instruction cycle.
RB7:RB0	L	I	X	Therefore, at higher clock frequencies, a write followed by a
			Port pin sampled here	read may be problematic.
Instruction executed		MOVWF PORTB write to PORTB	MOVF PORTB,W NOP	

12.1.3 USING PULSE WIDTH MODULATION (PWM) OUTPUTS WITH TMR1 AND TMR2

Two high speed pulse width modulation (PWM) outputs are provided. The PWM1 output uses Timer1 as its time-base, while PWM2 may be software configured to use either Timer1 or Timer2 as the time-base. The PWM outputs are on the RB2/PWM1 and RB3/PWM2 pins.

Each PWM output has a maximum resolution of 10-bits. At 10-bit resolution, the PWM output frequency is 24.4 kHz (@ 25 MHz clock) and at 8-bit resolution the PWM output frequency is 97.7 kHz. The duty cycle of the output can vary from 0% to 100%.

Figure 12-5 shows a simplified block diagram of the PWM module. The duty cycle register is double buffered for glitch free operation. Figure 12-6 shows how a glitch could occur if the duty cycle registers were not double buffered.

The user needs to set the PWM1ON bit (TCON2<4>) to enable the PWM1 output. When the PWM1ON bit is set, the RB2/PWM1 pin is configured as PWM1 output and forced as an output irrespective of the data direction bit (DDRB<2>). When the PWM1ON bit is clear, the pin behaves as a port pin and its direction is controlled by its data direction bit (DDRB<2>). Similarly, the PWM2ON (TCON2<5>) bit controls the configuration of the RB3/PWM2 pin.

FIGURE 12-5: SIMPLIFIED PWM BLOCK DIAGRAM

FIGURE 12-6: PWM OUTPUT

12.2.1 ONE CAPTURE AND ONE PERIOD REGISTER MODE

In this mode registers PR3H/CA1H and PR3L/CA1L constitute a 16-bit period register. A block diagram is shown in Figure 12-7. The timer increments until it equals the period register and then resets to 0000h. TMR3 Interrupt Flag bit (TMR3IF) is set at this point. This interrupt can be disabled by clearing the TMR3 Interrupt Enable bit (TMR3IE). TMR3IF must be cleared in software.

This mode is selected if control bit CA1/PR3 is clear. In this mode, the Capture1 register, consisting of high byte (PR3H/CA1H) and low byte (PR3L/CA1L), is configured as the period control register for TMR3. Capture1 is disabled in this mode, and the corresponding Interrupt bit CA1IF is never set. TMR3 increments until it equals the value in the period register and then resets to 0000h.

Capture2 is active in this mode. The CA2ED1 and CA2ED0 bits determine the event on which capture will occur. The possible events are:

- · Capture on every falling edge
- Capture on every rising edge
- · Capture every 4th rising edge
- · Capture every 16th rising edge

When a capture takes place, an interrupt flag is latched into the CA2IF bit. This interrupt can be enabled by setting the corresponding mask bit CA2IE. The Peripheral Interrupt Enable bit (PEIE) must be set and the Global Interrupt Disable bit (GLINTD) must be cleared for the interrupt to be acknowledged. The CA2IF interrupt flag bit must be cleared in software.

When the capture prescale select is changed, the prescaler is not reset and an event may be generated. Therefore, the first capture after such a change will be ambiguous. However, it sets the time-base for the next capture. The prescaler is reset upon chip reset. Capture pin RB1/CAP2 is a multiplexed pin. When used as a port pin, Capture2 is not disabled. However, the user can simply disable the Capture2 interrupt by clearing CA2IE. If RB1/CAP2 is used as an output pin, the user can activate a capture by writing to the port pin. This may be useful during development phase to emulate a capture interrupt.

The input on capture pin RB1/CAP2 is synchronized internally to internal phase clocks. This imposes certain restrictions on the input waveform (see the Electrical Specification section for timing).

The Capture2 overflow status flag bit is double buffered. The master bit is set if one captured word is already residing in the Capture2 register and another "event" has occurred on the RB1/CA2 pin. The new event will not transfer the Timer3 value to the capture register, protecting the previous unread capture value. When the user reads both the high and the low bytes (in any order) of the Capture2 register, the master overflow bit is transferred to the slave overflow bit (CA2OVF) and then the master bit is reset. The user can then read TCON2 to determine the value of CA2OVF.

The recommended sequence to read capture registers and capture overflow flag bits is shown in Example 12-1.

EXAMPLE 12-1: SEQUENCE TO READ CAPTURE REGISTERS

MOVLB	3	;Select Bank 3
MOVPF	CA2L,LO_BYTE	;Read Capture2 low
		;byte, store in LO_BYTE
MOVPF	CA2H,HI_BYTE	;Read Capture2 high
		;byte, store in HI_BYTE
MOVPF	TCON2,STAT_VAL	;Read TCON2 into file
		;STAT_VAL

FIGURE 12-7: TIMER3 WITH ONE CAPTURE AND ONE PERIOD REGISTER BLOCK DIAGRAM

FIGURE 13-5: ASYNCHRONOUS MASTER TRANSMISSION

FIGURE 13-6: ASYNCHRONOUS MASTER TRANSMISSION (BACK TO BACK)

TABLE 13-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
13h, Bank 0	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00u
16h, Bank 0	TXREG	Serial port	Serial port transmit register								uuuu uuuu
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	_	—	TRMT	TX9D	00001x	00001u
17h, Bank 0 SPBRG Baud rate generator register									xxxx xxxx	uuuu uuuu	

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used for asynchronous transmission.

Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

Steps to follow when setting up an Asynchronous Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If interrupts are desired, then set the RCIE bit.
- 4. If 9-bit reception is desired, then set the RX9 bit.
- 5. Enable the reception by setting the CREN bit.
- 6. The RCIF bit will be set when reception completes and an interrupt will be generated if the RCIE bit was set.

- Read RCSTA to get the ninth bit (if enabled) and FERR bit to determine if any error occurred during reception.
- 8. Read RCREG for the 8-bit received data.
- 9. If an overrun error occurred, clear the error by clearing the OERR bit.
- Note: To terminate a reception, either clear the SREN and CREN bits, or the SPEN bit. This will reset the receive logic, so that it will be in the proper state when receive is re-enabled.

FIGURE 13-8: ASYNCHRONOUS RECEPTION

TABLE 13-6:	REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
13h, Bank 0	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00u
14h, Bank 0	RCREG	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	xxxx xxxx	uuuu uuuu
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	—	_	TRMT	TX9D	00001x	00001u
17h, Bank 0	Th, Bank 0 SPBRG Baud rate generator register										uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used for asynchronous reception. Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

13.3.2 USART SYNCHRONOUS MASTER RECEPTION

Once synchronous mode is selected, reception is enabled by setting either the SREN (RCSTA<5>) bit or the CREN (RCSTA<4>) bit. Data is sampled on the RA4/RX/DT pin on the falling edge of the clock. If SREN is set, then only a single word is received. If CREN is set, the reception is continuous until CREN is reset. If both bits are set, then CREN takes precedence. After clocking the last bit, the received data in the Receive Shift Register (RSR) is transferred to RCREG (if it is empty). If the transfer is complete, the interrupt bit RCIF (PIR<0>) is set. The actual interrupt can be enabled/disabled by setting/clearing the RCIE (PIE<0>) bit. RCIF is a read only bit which is RESET by the hardware. In this case it is reset when RCREG has been read and is empty. RCREG is a double buffered register; i.e., it is a two deep FIFO. It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting into the RSR. On the clocking of the last bit of the third byte, if RCREG is still full, then the overrun error bit OERR (RCSTA<1>) is set. The word in the RSR will be lost. RCREG can be read twice to retrieve the two bytes in the FIFO. The OERR bit has to be cleared in software. This is done by clearing the CREN bit. If OERR bit is set, transfers from RSR to RCREG are inhibited, so it is essential to clear OERR bit if it is set. The 9th receive bit is buffered the same way as the receive data. Reading the RCREG register will allow the RX9D and FERR bits to be loaded with values for the next received data: therefore, it is essential for the user to read the RCSTA register before reading RCREG in order not to lose the old FERR and RX9D information.

Steps to follow when setting up a Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate. See Section 13.1 for details.
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.
- 3. If interrupts are desired, then set the RCIE bit.
- 4. If 9-bit reception is desired, then set the RX9 bit.
- 5. If a single reception is required, set bit SREN. For continuous reception set bit CREN.
- 6. The RCIF bit will be set when reception is complete and an interrupt will be generated if the RCIE bit was set.
- 7. Read RCSTA to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading RCREG.
- 9. If any error occurred, clear the error by clearing CREN.

Note: To terminate a reception, either clear the SREN and CREN bits, or the SPEN bit. This will reset the receive logic, so that it will be in the proper state when receive is re-enabled.

FIGURE 13-11: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

14.2.4 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with series resonance, or one with parallel resonance.

Figure 14-5 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometer biases the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 14-5: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

Figure 14-6 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 14-6: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

14.2.5 RC OSCILLATOR

For timing insensitive applications, the RC device option offers additional cost savings. RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 14-6 shows how the R/C combination is connected to the PIC17CXX. For Rext values below 2.2 kQ, the oscillator operation may become unstable, or stop completely. For very high Rext values (e.g. 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend to keep Rext between 3 $k\Omega$ and 100 $k\Omega$.

Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With little or no external capacitance, oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

See Section 18.0 for RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

See Section 18.0 for variation of oscillator frequency due to VDD for given Rext/Cext values as well as frequency variation due to operating temperature for given R, C, and VDD values.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin, and can be used for test purposes or to synchronize other logic (see Figure 3-2 for waveform).

FIGURE 14-7: RC OSCILLATOR MODE

FIGURE 14-8: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 14-4: REGISTERS/BITS ASSOCIATED WITH THE WATCHDOG TIMER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
_	Config	—	PM1	—	PM0	WDTPS1	WDTPS0	FOSC1	FOSC0	(Note 2)	(Note 2)
06h, Unbanked	CPUSTA	—	—	STKAV	GLINTD	TO	PD		—	11 11	11 qq

Legend: - = unimplemented read as '0', q - value depends on condition, shaded cells are not used by the WDT.

Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

2: This value will be as the device was programmed, or if unprogrammed, will read as all '1's.

Table 15-2 lists the instructions recognized by the MPASM assembler.

Note 1:	Any	unused o	pcode is	Rese	erved. l	Jse of
	any	reserved	opcode	may	cause	unex-
	pect	ed operati	ion.			

Note 2: The shaded instructions are not available in the PIC17C42

All instruction examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

To represent a binary number:

0000 0100b

where b signifies a binary string.

FIGURE 15-1: GENERAL FORMAT FOR INSTRUCTIONS

15.1 <u>Special Function Registers as</u> <u>Source/Destination</u>

The PIC17C4X's orthogonal instruction set allows read and write of all file registers, including special function registers. There are some special situations the user should be aware of:

15.1.1 ALUSTA AS DESTINATION

If an instruction writes to ALUSTA, the Z, C, DC and OV bits may be set or cleared as a result of the instruction and overwrite the original data bits written. For example, executing CLRF ALUSTA will clear register ALUSTA, and then set the Z bit leaving 0000 0100b in the register.

15.1.2 PCL AS SOURCE OR DESTINATION

Read, write or read-modify-write on PCL may have the following results:

Read PC:	$\text{PCH} \rightarrow \text{PCLATH}; \text{PCL} \rightarrow \text{dest}$
Write PCL:	PCLATH \rightarrow PCH; 8-bit destination value \rightarrow PCL
Read-Modify-Write:	$PCL \rightarrow ALU$ operand $PCLATH \rightarrow PCH$; 8-bit result $\rightarrow PCL$

Where PCH = program counter high byte (not an addressable register), PCLATH = Program counter high holding latch, dest = destination, WREG or f.

15.1.3 BIT MANIPULATION

All bit manipulation instructions are done by first reading the entire register, operating on the selected bit and writing the result back (read-modify-write). The user should keep this in mind when operating on special function registers, such as ports.

PIC17C4X

TABLRD	Table Re	ead	
<u>Example1</u> :	TABLRD	1, 1,	REG ;
Before Instruct	tion		
REG		=	0x53
TBLATH		=	0xAA
TBLATL		=	0x55
TBLPTR		=	0xA356
MEMORY(TBLPTR)	=	0x1234
After Instruction	n (table v	vrite cor	mpletion)
REG		=	0xAA
TBLATH		=	0x12
TBLATL		=	0x34
TBLPTR		=	0xA357
MEMORY(TBLPTR)	=	0x5678
Example2:	TABLRD	0, 0,	REG ;
Before Instruct	tion		
REG		=	0x53
TBLATH		=	0xAA
TBLATL		=	0x55
TBLPTR		=	0xA356
MEMORY(TBLPTR)	=	0x1234
After Instruction	n (table v	vrite cor	mpletion)
REG		=	0x55
TBLATH		=	0x12
TBLATL		=	0x34
TBLPTR		=	0xA356
MEMORY(TBLPTR)	=	0x1234

TAB	LWT	Table Write
Synt	ax:	[label] TABLWT t,i,f
Ope	rands:	$0 \le f \le 255$ i $\in [0,1]$ t $\in [0,1]$
Ope	ration:	If t = 0, f \rightarrow TBLATL; If t = 1, f \rightarrow TBLATH; TBLAT \rightarrow Prog Mem (TBLPTR) If i = 1, TBLPTR + 1 \rightarrow TBLPTR
Stat	us Affected:	None
Enco	oding:	1010 11ti ffff ffff
N	ote: The MC voltage memory If MCLR the prog will be (althoug disturbe	 Load value in 'f' into 16-bit table latch (TBLAT) If t = 0: load into low byte; If t = 1: load into high byte The contents of TBLAT is written to the program memory location pointed to by TBLPTR If TBLPTR points to external program memory location, then the instruction takes two-cycle If TBLPTR points to an internal EPROM location, then the instruction is terminated when an interrupt is received. LR/VPP pin must be at the programming for successful programming of internal WPP = VDD gramming sequence of internal memory executed, but will not be successful h the internal memory location may be d)
		3. The TBLPTR can be automati- cally incremented
		If $i = 0$; TBLPTR is not
		Incremented If i = 1; TBLPTR is incremented
Wor	ds:	1
Cycl	es:	2 (many if write is to on-chip EPROM program memory)
QC	ycle Activity:	
	Q1	Q2 Q3 Q4
	Decode	Read Execute Write register 'f' TBLATH or TBLATL
		TBLATL

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 18-17: IOL vs. VOL, VDD = 5V

Applicable Devices 42 R42 42A 43 R43 44

19.1 DC CHARACTERISTICS:

PIC17CR42/42A/43/R43/44-16 (Commercial, Industrial) PIC17CR42/42A/43/R43/44-25 (Commercial, Industrial) PIC17CR42/42A/43/R43/44-33 (Commercial, Industrial)

	FRISTI	~s	Standard Operating	l Opera g tempe	ating C erature	ondition	is (unless otherwise stated)
						-40°C	\leq TA \leq +85°C for industrial and
						0°C	\leq TA \leq +70°C for commercial
Parameter							
No.	Sym	Characteristic	Min	Typ†	Max	Units	Conditions
D001	Vdd	Supply Voltage	4.5	—	6.0	V	
D002	Vdr	RAM Data Retention Voltage (Note 1)	1.5 *	_	—	V	Device in SLEEP mode
D003	VPOR	VDD start voltage to ensure internal Power-on Reset signal	_	Vss	_	V	See section on Power-on Reset for details
D004	SVDD	VDD rise rate to ensure internal Power-on Reset signal	0.060 *	_	_	mV/ms	See section on Power-on Reset for details
D010	IDD	Supply Current	_	3	6	mA	Fosc = 4 MHz (Note 4)
D011		(Note 2)	-	6	12 *	mA	Fosc = 8 MHz
D012			-	11	24 *	mA	Fosc = 16 MHz
D013			-	19	38	mA	Fosc = 25 MHz
D015			-	25	50	mA	Fosc = 33 MHz
D014			-	95	150	μA	Fosc = 32 kHz,
							WDT enabled (EC osc configuration)
D020	IPD	Power-down	_	10	40	μA	VDD = 5.5V, WDT enabled
D021		Current (Note 3)	-	< 1	5	μA	VDD = 5.5V, WDT disabled

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD or VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.

Current consumed from the oscillator and I/O's driving external capacitive or resistive loads needs to be considered.

For the RC oscillator, the current through the external pull-up resistor (R) can be estimated as: $VDD / (2 \bullet R)$. For capacitive loads, the current can be estimated (for an individual I/O pin) as (CL • VDD) • f

CL = Total capacitive load on the I/O pin; f = average frequency the I/O pin switches.

The capacitive currents are most significant when the device is configured for external execution (includes extended microcontroller mode).

- 3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VbD and Vss.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula IR = VDD/2Rext (mA) with Rext in kOhm.

Applicable Devices 42 R42 42A 43 R43 44

TABLE 19-12: MEMORY INTERFACE READ REQUIREMENTS (NOT SUPPORTED IN PIC17LC4X DEVICES)

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
150	TadV2alL	AD15:AD0 (address) valid to ALE↓ (address setup time)	0.25Tcy - 10	_	ľ	ns	
151	TalL2adl	ALE↓ to address out invalid (address hold time)	5*		_	ns	
160	TadZ2oeL	AD15:AD0 hi-impedance to $\overline{OE}\downarrow$	0*	—	_	ns	
161	ToeH2adD	OE↑ to AD15:AD0 driven	0.25Tcy - 15	_	_	ns	
162	TadV2oeH	Data in valid before OE↑ (data setup time)	35	—	—	ns	
163	ToeH2adI	OE↑to data in invalid (data hold time)	0	_	_	ns	
164	TalH	ALE pulse width	—	0.25Tcy §	_	ns	
165	ToeL	OE pulse width	0.5Tcy - 35 §	—	_	ns	
166	TalH2alH	ALE↑ to ALE↑(cycle time)	—	TCY §	_	ns	
167	Тасс	Address access time	—	—	0.75Tcy - 30	ns	
168	Тое	Output enable access time (OE low to Data Valid)	_	_	0.5Tcy - 45	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

*

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 20-17: IOL vs. VOL, VDD = 5V

FIGURE 20-18: VTH (INPUT THRESHOLD VOLTAGE) OF I/O PINS (TTL) VS. VDD

PIC16C7X Family of Devices

E.5

				Clock	_	Memory			Peri	pheral	s			Features	
					1										Т
				DOW AY LOS	So l			Tallo	STAL S		Slott		\backslash	01.	
			-0	though t			ANA .		1 2	8.	RES CLAR	\backslash	(SHO)	HULL BOY	
			Touene	AN LA LARD	1	(S)2	ale .		6		uices	»бį	ν.	10-00	
		ir unu	NO2	W 10 LOLON	20.	inte Col	HON I		anuos		SUIS C	et or		Soler Thomas a	
	N.	it.	0 33	ALL LIFE	\swarrow	and ser	\$\$ \	2			101	J.J.	JA JA	200 M	
PIC16C710	20	512	36	TMR0		I	I	4	4	13	3.0-6.0	Yes	Yes	18-pin DIP, SOIC; 20-pin SSOP	
PIC16C71	20	ź	36	TMR0				4	4	13	3.0-6.0	Yes	I	18-pin DIP, SOIC	
PIC16C711	20	Ę	89	TMR0				4	4	13	3.0-6.0	Yes	Yes	18-pin DIP, SOIC; 20-pin SSOP	
PIC16C72	20	2K	128	TMR0, TMR1, TMR2	-	SPI/I ² C	1	5	8	22	2.5-6.0	Yes	Yes	28-pin SDIP, SOIC, SSOP	
PIC16C73	20	4 K	192	TMR0, TMR1, TMR2	2	SPI/I ² C, USART		5	11	22	3.0-6.0	Yes	I	28-pin SDIP, SOIC	
PIC16C73A ⁽¹⁾	20	4 K	192	TMR0, TMR1, TMR2	7	SPI/I ² C, USART		5	11	22	2.5-6.0	Yes	Yes	28-pin SDIP, SOIC	
PIC16C74	20	4 7	192	TMR0, TMR1, TMR2	7	SPI/I ² C, USART	Yes	ω	12	33	3.0-6.0	Yes	I	40-pin DIP; 44-pin PLCC, MQFP	
PIC16C74A ⁽¹⁾	20	4 7	192	TMR0, TMR1, TMR2	2	SPI/I ² C, USART	Yes	8	12	33	2.5-6.0	Yes	Yes	40-pin DIP; 44-pin PLCC, MQFP, TQFP	
All PI	C16/1	7 Fami	ily devi	ices have Power-	Б	Reset, se	lectable	Matcl	L gobh	Fimer,	selectable	code p	protect	and high I/O current	
capat	bility.	Ľ	- 11 11 -							-		1			
AIL FI Note 1: Pleas	ie cont	act yo	nıly aev ur loca	vices use serial particles office for	ava	gramming ilability of	with cit	ock pin device:	З.	ana a;	ata pin къ				

NOTES: