E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (8K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c44-16-pq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 PIC17C4X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC17C4X Product Selection System section at the end of this data sheet. When placing orders, please use the "PIC17C4X Product Identification System" at the back of this data sheet to specify the correct part number.

For the PIC17C4X family of devices, there are four device "types" as indicated in the device number:

- C, as in PIC17C42. These devices have EPROM type memory and operate over the standard voltage range.
- 2. LC, as in PIC17LC42. These devices have EPROM type memory, operate over an extended voltage range, and reduced frequency range.
- 3. **CR**, as in PIC17**CR**42. These devices have ROM type memory and operate over the standard voltage range.
- 4. LCR, as in PIC17LCR42. These devices have ROM type memory, operate over an extended voltage range, and reduced frequency range.

2.1 UV Erasable Devices

The UV erasable version, offered in CERDIP package, is optimal for prototype development and pilot programs.

The UV erasable version can be erased and reprogrammed to any of the configuration modes. Microchip's PRO MATETM programmer supports programming of the PIC17C4X. Third party programmers also are available; refer to the *Third Party Guide* for a list of sources.

2.2 <u>One-Time-Programmable (OTP)</u> <u>Devices</u>

The availability of OTP devices is especially useful for customers expecting frequent code changes and updates.

The OTP devices, packaged in plastic packages, permit the user to program them once. In addition to the program memory, the configuration bits must also be programmed.

2.3 <u>Quick-Turnaround-Production (QTP)</u> <u>Devices</u>

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.4 <u>Serialized Quick-Turnaround</u> <u>Production (SQTPSM) Devices</u>

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number which can serve as an entry-code, password or ID number.

ROM devices do not allow serialization information in the program memory space.

For information on submitting ROM code, please contact your regional sales office.

2.5 Read Only Memory (ROM) Devices

Microchip offers masked ROM versions of several of the highest volume parts, thus giving customers a low cost option for high volume, mature products.

For information on submitting ROM code, please contact your regional sales office.

5.0 INTERRUPTS

The PIC17C4X devices have 11 sources of interrupt:

- External interrupt from the RA0/INT pin
- Change on RB7:RB0 pins
- TMR0 Overflow
- TMR1 Overflow
- TMR2 Overflow
- TMR3 Overflow
- USART Transmit buffer empty
- USART Receive buffer full
- Capture1
- Capture2
- T0CKI edge occurred

There are four registers used in the control and status of interrupts. These are:

- CPUSTA
- INTSTA
- PIE
- PIR

The CPUSTA register contains the GLINTD bit. This is the Global Interrupt Disable bit. When this bit is set, all interrupts are disabled. This bit is part of the controller core functionality and is described in the Memory Organization section. When an interrupt is responded to, the GLINTD bit is automatically set to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with the interrupt vector address. There are four interrupt vectors. Each vector address is for a specific interrupt source (except the peripheral interrupts which have the same vector address). These sources are:

- External interrupt from the RA0/INT pin
- TMR0 Overflow
- T0CKI edge occurred
- Any peripheral interrupt

When program execution vectors to one of these interrupt vector addresses (except for the peripheral interrupt address), the interrupt flag bit is automatically cleared. Vectoring to the peripheral interrupt vector address does not automatically clear the source of the interrupt. In the peripheral interrupt service routine, the source(s) of the interrupt can be determined by testing the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid infinite interrupt requests.

All of the individual interrupt flag bits will be set regardless of the status of their corresponding mask bit or the GLINTD bit.

For external interrupt events, there will be an interrupt latency. For two cycle instructions, the latency could be one instruction cycle longer.

The "return from interrupt" instruction, RETFIE, can be used to mark the end of the interrupt service routine. When this instruction is executed, the stack is "POPed", and the GLINTD bit is cleared (to re-enable interrupts).

FIGURE 5-1: INTERRUPT LOGIC

© 1996 Microchip Technology Inc.

TABLE 6-1: MODE MEMORY ACCESS

Operating Mode	Internal Program Memory	Configuration Bits, Test Memory, Boot ROM		
Microprocessor	No Access	No Access		
Microcontroller	Access	Access		
Extended Microcontroller	Access	No Access		
Protected Microcontroller	Access	Access		

The PIC17C4X can operate in modes where the program memory is off-chip. They are the microprocessor and extended microcontroller modes. The microprocessor mode is the default for an unprogrammed device.

Regardless of the processor mode, data memory is always on-chip.

FIGURE 6-2: MEMORY MAP IN DIFFERENT MODES

8.0 HARDWARE MULTIPLIER

All PIC17C4X devices except the PIC17C42, have an 8 x 8 hardware multiplier included in the ALU of the device. By making the multiply a hardware operation, it completes in a single instruction cycle. This is an unsigned multiply that gives a 16-bit result. The result is stored into the 16-bit PRODuct register (PRODH:PRODL). The multiplier does not affect any flags in the ALUSTA register.

Making the 8 x 8 multiplier execute in a single cycle gives the following advantages:

- Higher computational throughput
- Reduces code size requirements for multiply algorithms

The performance increase allows the device to be used in applications previously reserved for Digital Signal Processors.

Table 8-1 shows a performance comparison between the PIC17C42 and all other PIC17CXX devices, which have the single cycle hardware multiply.

Example 8-1 shows the sequence to do an 8 x 8 unsigned multiply. Only one instruction is required when one argument of the multiply is already loaded in the WREG register.

Example 8-2 shows the sequence to do an 8×8 signed multiply. To account for the sign bits of the arguments, each argument's most significant bit (MSb) is tested and the appropriate subtractions are done.

EXAMPLE 8-1: 8 x 8 MULTIPLY ROUTINE

MOVFP	ARG1,	WREG					
MULWF	ARG2		;	ARG1	*	ARG2	->
			;	PRO	DDI	H:PROI	ЪГ

EXAMPLE 8-2: 8 x 8 SIGNED MULTIPLY ROUTINE

MOVFP	ARG1, WREG		
MULWF	ARG2	;	ARG1 * ARG2 ->
		;	PRODH: PRODL
BTFSC	ARG2, SB	;	Test Sign Bit
SUBWF	PRODH, F	;	PRODH = PRODH
		;	- ARG1
MOVFP	ARG2, WREG		
BTFSC	ARG1, SB	;	Test Sign Bit
SUBWF	PRODH, F	;	PRODH = PRODH
		•	- ARC2

Doutino	Deviee	Program Memory		Time		
Routine	Device	(Words)	Cycles (Max)	@ 25 MHz	@ 33 MHz	
8 x 8 unsigned	PIC17C42	13	69	11.04 μs	N/A	
	All other PIC17CXX devices	1	1	160 ns	121 ns	
8 x 8 signed	PIC17C42	—	—	—	N/A	
	All other PIC17CXX devices	6	6	960 ns	727 ns	
16 x 16 unsigned	PIC17C42	21	242	38.72 μs	N/A	
	All other PIC17CXX devices	24	24	3.84 µs	2.91 μs	
16 x 16 signed	PIC17C42	52	254	40.64 μs	N/A	
	All other PIC17CXX devices	36	36	5.76 μs	4.36 μs	

TABLE 8-1: PERFORMANCE COMPARISON

FIGURE 12-2: TCON2 REGISTER (ADDRESS: 17h, BANK 3)

<u> </u>	<u> </u>	
CA2OV	F CA1OVF PWM2ON PWM1ON CA1/PR3 TMR3ON TMR2ON TMR1ON	R = Readable bit
bit7	bitO	-n = Value at POR reset
bit 7:	CA2OVF : Capture2 Overflow Status bit This bit indicates that the capture value had not been read from the captur before the next capture event occurred. The capture register retains the older capture before overflow). Subsequent capture events will not update the capt value until the capture register has been read (both bytes). 1 = Overflow occurred on Capture2 register 0 = No overflow occurred on Capture2 register	e register pair (CA2H:CA2L) st unread capture value (last oture register with the Timer3
bit 6:	CA10VF : Capture1 Overflow Status bit This bit indicates that the capture value had not been read from (PR3H/CA2H:PR3L/CA2L) before the next capture event occurred. The cap est unread capture value (last capture before overflow). Subsequent captur capture register with the TMR3 value until the capture register has been read 1 = Overflow occurred on Capture1 register 0 = No overflow occurred on Capture1 register	the capture register pair oture register retains the old- re events will not update the ad (both bytes).
bit 5:	PWM2ON : PWM2 On bit 1 = PWM2 is enabled (The RB3/PWM2 pin ignores the state of the DDRB< 0 = PWM2 is disabled (The RB3/PWM2 pin uses the state of the DDRB<3>	3> bit) bit for data direction)
bit 4:	PWM10N : PWM1 On bit 1 = PWM1 is enabled (The RB2/PWM1 pin ignores the state of the DDRB< 0 = PWM1 is disabled (The RB2/PWM1 pin uses the state of the DDRB<2>	2> bit) bit for data direction)
bit 3:	CA1/PR3 : CA1/PR3 Register Mode Select bit 1 = Enables Capture1 (PR3H/CA1H:PR3L/CA1L is the Capture1 register. To a period register) 0 = Enables the Period register (PR3H/CA1H:PR3L/CA1L is the Period regi	imer3 runs without ster for Timer3)
bit 2:	TMR3ON : Timer3 On bit 1 = Starts Timer3 0 = Stops Timer3	
bit 1:	TMR2ON : Timer2 On bit This bit controls the incrementing of the Timer2 register. When Timer2:Time is set), TMR2ON must be set. This allows the MSB of the timer to increment 1 = Starts Timer2 (Must be enabled if the T16 bit (TCON1<3>) is set) 0 = Stops Timer2	er1 form the 16-bit timer (T16 ht.
bit 0:	TMR1ON : Timer1 On bit <u>When T16 is set (in 16-bit Timer Mode)</u> 1 = Starts 16-bit Timer2:Timer1 0 = Stops 16-bit Timer2:Timer1	
	<u>When T16 is clear (in 8-bit Timer Mode)</u> 1 = Starts 8-bit Timer1 0 = Stops 8-bit Timer1	

FIGURE 13-3: USART TRANSMIT

Steps to follow when setting up an Asynchronous Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If interrupts are desired, then set the RCIE bit.
- 4. If 9-bit reception is desired, then set the RX9 bit.
- 5. Enable the reception by setting the CREN bit.
- 6. The RCIF bit will be set when reception completes and an interrupt will be generated if the RCIE bit was set.

- Read RCSTA to get the ninth bit (if enabled) and FERR bit to determine if any error occurred during reception.
- 8. Read RCREG for the 8-bit received data.
- 9. If an overrun error occurred, clear the error by clearing the OERR bit.
- Note: To terminate a reception, either clear the SREN and CREN bits, or the SPEN bit. This will reset the receive logic, so that it will be in the proper state when receive is re-enabled.

FIGURE 13-8: ASYNCHRONOUS RECEPTION

TABLE 13-6:	REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
13h, Bank 0	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00u
14h, Bank 0	RCREG	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	xxxx xxxx	uuuu uuuu
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	—	_	TRMT	TX9D	00001x	00001u
17h, Bank 0	SPBRG	Baud rate	generator	register						xxxx xxxx	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used for asynchronous reception. Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

13.3.2 USART SYNCHRONOUS MASTER RECEPTION

Once synchronous mode is selected, reception is enabled by setting either the SREN (RCSTA<5>) bit or the CREN (RCSTA<4>) bit. Data is sampled on the RA4/RX/DT pin on the falling edge of the clock. If SREN is set, then only a single word is received. If CREN is set, the reception is continuous until CREN is reset. If both bits are set, then CREN takes precedence. After clocking the last bit, the received data in the Receive Shift Register (RSR) is transferred to RCREG (if it is empty). If the transfer is complete, the interrupt bit RCIF (PIR<0>) is set. The actual interrupt can be enabled/disabled by setting/clearing the RCIE (PIE<0>) bit. RCIF is a read only bit which is RESET by the hardware. In this case it is reset when RCREG has been read and is empty. RCREG is a double buffered register; i.e., it is a two deep FIFO. It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting into the RSR. On the clocking of the last bit of the third byte, if RCREG is still full, then the overrun error bit OERR (RCSTA<1>) is set. The word in the RSR will be lost. RCREG can be read twice to retrieve the two bytes in the FIFO. The OERR bit has to be cleared in software. This is done by clearing the CREN bit. If OERR bit is set, transfers from RSR to RCREG are inhibited, so it is essential to clear OERR bit if it is set. The 9th receive bit is buffered the same way as the receive data. Reading the RCREG register will allow the RX9D and FERR bits to be loaded with values for the next received data: therefore, it is essential for the user to read the RCSTA register before reading RCREG in order not to lose the old FERR and RX9D information.

Steps to follow when setting up a Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate. See Section 13.1 for details.
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.
- 3. If interrupts are desired, then set the RCIE bit.
- 4. If 9-bit reception is desired, then set the RX9 bit.
- 5. If a single reception is required, set bit SREN. For continuous reception set bit CREN.
- 6. The RCIF bit will be set when reception is complete and an interrupt will be generated if the RCIE bit was set.
- 7. Read RCSTA to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading RCREG.
- 9. If any error occurred, clear the error by clearing CREN.

Note: To terminate a reception, either clear the SREN and CREN bits, or the SPEN bit. This will reset the receive logic, so that it will be in the proper state when receive is re-enabled.

FIGURE 13-11: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

RLN	CF	R	lotate	Left f	(no	carr	.y)	
Synt	ax:	[label]	RLN	ICF	f,d		
Ope	rands:	0 d	≤ f ≤ 2 ∈ [0,1	255]				
Ope	ration:	f∢ f	$\langle n \rangle \rightarrow \langle 7 \rangle \rightarrow$	d <n+ d<0></n+ 	1>;			
Statu	us Affected:	Ν	lone					
Enco	oding:	Γ	0010	00	1d	ff	ff	ffff
Deso	cription:	T o p s	he cont ne bit to laced ir tored ba	tents o the le WRE ack in r	f regi eft. If G. If regist regi	ster ' d' is d' is er 'f'. ster f	f' are 0 the 1 the f	rotated result is result is
Word	ds:	1						
Cycl	es:	1						
QC	cle Activity:							
	Q1	-	Q2		Q3			Q4
	Decode	F reg	Read jister 'f'	E	xecut	e	W des	rite to tination
<u>Exar</u>	<u>mple</u> :	R	LNCF		REG	, 1		
	Before Instru	ictior	ו					
	C REG	= =	0 1110	1011				
	After Instruct C	tion =						
	REG	=	1101	0111				

RRCF		Rotate	Right	f throug	gh Ca	arry
Syntax:		[label]	RRC	CF f,d		
Operand	ds:	0 ≤ f ≤ 2 d ∈ [0,1	55]			
Operatio	on:	$f < n > \rightarrow$ $f < 0 > \rightarrow$ $C \rightarrow d < 2$	d <n-1: C; 7></n-1: 	>;		
Status A	Affected:	С				
Encodin	g:	0001	100	d ff	ff	ffff
Descript	tion:	The cont one bit to Flag. If 'd WREG. I back in re	ents of the rig ' is 0 th f 'd' is 1 egister	register ' ht throug e result i the resu 'f'. register	f' are ih the s plac ilt is p f	rotated e Carry ced in blaced
\A/= = -l= -						
vvoras:		1				
Cycles:	A	1				
Q Cycle	Activity:	00		00		04
	Decode	Read register 'f	E	xecute	V de:	Vrite to stination
Example	<u>ə</u> :	RRCF		REG1	,0	
Bef	ore Instru	iction				
	REG1 C	= 1110 = 0	0110			
Afte	er Instruct REG1 WREG C	tion = 1110 = 0111 = 0	0110 0011			

NOTES:

001	DM303		-G306001		N/A		N/A		HCS200, 300, 301 *
	N/A		N/A		N/A		JV114001		MTA11200B
	N/A		N/A		DV243001		N/A		All 2 wire and 3 wire Serial EEPROM's
ity Eval/Demo Kit	opping Code Secur	rammer Kit H	Security Prog	Hopping Code	EVAL® Designers Kit	ent Kit SEI	E® Developme	TRUEGAUG	Product
stems	. See development sy	orgereg separately ering part numbers	er modules are or specific orde	ordering guide for					MIPAOM ASSEMDIE
lude	rt numbers above inc	ER-CE ordering pa	and PICMAST rogrammer	***AII PICMASTER	Simulator and	MPLAB-SIM S	ability date	hnology for avail /elopment Enviro	*Contact Microchip Tec **MPLAB Integrated Dev
DV003001	I	DV007003		EM177007/ EM177107	DV005001/ DV005002	SW006006	SW006005	SW007002	PIC17C42, 42A, 43, 44
DV003001	I	DV007003		EM167031/ EM167111	DV005001/ DV005002	SW006006	SW006005	SW007002	PIC16C923, 924*
DV003001	DV162003	DV007003		EM167029/ EM167107	DV005001/ DV005002	SW006006	SW006005	SW007002	PIC16F84
DV003001	DV162003	DV007003	EM167206	EM167029/ EM167107	DV005001/ DV005002	SW006006	SW006005	SW007002	PIC16C84
DV003001	DV162003	DV007003		EM167029/ EM167107	DV005001/ DV005002	SW006006	SW006005	SW007002	PIC16F83
DV003001	DV162002	DV007003	I	EM167025/ EM167103	I	SW006006	SW006005	SW007002	PIC16C72
DV003001	DV162003	DV007003	I	EM167027/ EM167105	DV005001/ DV005002	SW006006	SW006005	SW007002	PIC16C710, 711
DV003001	DV162003	DV007003	EM167205	EM167027/ EM167105	DV005001/ DV005002	SW006006	SW006005	SW007002	PIC16C71
DV003001	DV162002	DV007003	1	EM167035/ EM167105	1	I	SW006005	SW007002	PIC16C642, 662*
DV003001	DV162002	DV007003	EM167204	EM167025/ EM167103	DV005001/ DV005002	SW006006	SW006005	SW007002	PIC16C63, 65, 65A, 73, 73A, 74, 74A
DV003001	DV162003	DV007003	EM167202	EM167023/ EM167109	DV005001/ DV005002	SW006006	SW006005	SW007002	PIC16C620, 621, 622
DV003001	DV162002	DV007003	EM167203	EM167025/ EM167103	DV005001/ DV005002	SW006006	SW006005	SW007002	PIC16C62, 62A, 64, 64A
DV003001	DV162003	DV007003	EM167205	EM167021/ N/A	DV005001/ DV005002	SW006006	SW006005	SW007002	PIC16C61
DV003001	Ι	DV007003	1	EM167033/ EM167113	DV005001/ DV005002	I	SW006005	SW007002	PIC16C554, 556, 558
DV003001	DV162003	DV007003	EM167201	EM167015/ EM167101	DV005001/ DV005002	SW006006	SW006005	SW007002	PIC16C52, 54, 54A, 55, 56, 57, 58A
DV003001	Ι	DV007003	I	EM147001/ EM147101	1	1	SW006005	SW007002	PIC14000
DV003001	Ι	DV007003	1	EM167015/ EM167101	1	I	SW006005	SW007002	PIC12C508, 509
Universal Dev. Kit	Dev. Kit	Microchip Programmer	In-Circuit Emulator	In-Circuit Emulator	Fuzzy Logic Dev. Tool	Code Generator	-	Development Environment	
PICSTART® Plus Low-Cost	PICSTART® Lite	****PRO MATE TM Il Universal	ICEPIC Low-Cost	*** PICMASTER®/ PICMASTER-CE	fuzzyTECH®-MP Explorer/Edition	MP-DriveWay Applications	MPLAB™ C Compiler	** MPLAB™ Integrated	Product

TABLE 16-1: DEVELOPMENT TOOLS FROM MICROCHIP

PIC17C4X

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 17-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 17-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER REQUIREMENTS

Parameter	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
No.							
30	TmcL	MCLR Pulse Width (low)	100 *	—	_	ns	
31	Twdt	Watchdog Timer Time-out Period (Prescale = 1)	5*	12	25 *	ms	
32	Tost	Oscillation Start-up Timer Period		1024 Tosc §		ms	Tosc = OSC1 period
33	Tpwrt	Power-up Timer Period	40 *	96	200 *	ms	
35	TmcL2adI	MCLR to System Interface bus (AD15:AD0) invalid	_	_	100 *	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

§ This specification ensured by design.

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 18-6: TRANSCONDUCTANCE (gm) OF XT OSCILLATOR vs. VDD

Applicable Devices 42 R42 42A 43 R43 44

Applicable Devices 42 R42 42A 43 R43 44

19.0 PIC17CR42/42A/43/R43/44 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Ambient temperature under bias	55 to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	-0.6V to +14V
Voltage on RA2 and RA3 with respect to Vss	-0.6V to +14V
Voltage on all other pins with respect to Vss	0.6V to VDD + 0.6V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin(s) - total	250 mA
Maximum current into VDD pin(s) - total	200 mA
Input clamp current, Iik (VI < 0 or VI > VDD)	±20 mA
Output clamp current, IOK (VO < 0 or VO > VDD)	±20 mA
Maximum output current sunk by any I/O pin (except RA2 and RA3)	35 mA
Maximum output current sunk by RA2 or RA3 pins	60 mA
Maximum output current sourced by any I/O pin	20 mA
Maximum current sunk by PORTA and PORTB (combined)	150 mA
Maximum current sourced by PORTA and PORTB (combined)	100 mA
Maximum current sunk by PORTC, PORTD and PORTE (combined)	150 mA
Maximum current sourced by PORTC, PORTD and PORTE (combined)	100 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD-VOH)	$x \text{ IOH} + \sum (\text{VOL } x \text{ IOL})$

Note 2: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Applicable Devices 42 R42 42A 43 R43 44

			Standard O	perating	g Conditio	ns (ur	less otherwise stated)	
Operating temperature								
DC CHARACTERISTICS $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial and					≤ +85°C for industrial and			
			$0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial					
	Operating voltage VDD range as described in Section 19.1					ribed in Section 19.1		
Parameter							•	
No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
		Output Low Voltage						
D080	Vol	I/O ports (except RA2 and RA3)					IOL = VDD/1.250 mA	
			-	-	0.1Vdd	V	$4.5V \le VDD \le 6.0V$	
			-	-	0.1Vdd *	V	VDD = 2.5V	
D081		with TTL buffer	_	-	0.4	V	IOL = 6 mA, VDD = 4.5 V	
							Note 6	
D082		RA2 and RA3	_	-	3.0	V	IOL = 60.0 mA, VDD = 6.0 V	
D083		OSC2/CLKOUT	_	-	0.4	V	IOL = 1 mA, VDD = 4.5 V	
D084		(RC and EC osc modes)	-	-	0.1Vdd *	V	IOL = VDD/5 mA	
							(PIC17LC43/LC44 only)	
		Output High Voltage (Note 3)						
D090	Vон	I/O ports (except RA2 and RA3)					IOH = -VDD/2.500 mA	
			0.9VDD	-	-	V	$4.5V \le VDD \le 6.0V$	
			0.9VDD *	-	-	V	VDD = 2.5V	
D091		with TTL buffer	2.4	-	-	V	IOH = -6.0 mA, VDD=4.5V	
						.,	Note 6	
D092		RA2 and RA3	-	-	12	V	Pulled-up to externally applied voltage	
D093		OSC2/CLKOUT	2.4	_	-	V	IOH = -5 mA, VDD = 4.5 V	
D094		(RC and EC osc modes)	0.9Vdd *	-	-	V	IOH = -VDD/5 mA	
							(PIC17LC43/LC44 only)	
		Capacitive Loading Specs						
		on Output Pins						
D100	COSC2	OSC2/CLKOUT pin	_	-	25	pF	In EC or RC osc modes	
							when OSC2 pin is outputting	
							CLKOUI.	
							external clock is used to	
D 404	0				50	_	drive OSC1.	
D101	CIO	All I/O pins and OSC2	_	-	50	р⊢		
D 400					50			
0102	CAD		-	-	50	р⊢	In IVIICroprocessor or	
		(I SITIO, I SITID and FORTE)					mode	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC17CXX devices be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in: PIC17CXX Programming Specifications (Literature number DS30139).

5: The MCLR/VPP pin may be kept in this range at times other than programming, but is not recommended.

6: For TTL buffers, the better of the two specifications may be used.

Applicable Devices 42 R42 42A 43 R43 44

19.5 <u>Timing Diagrams and Specifications</u>

FIGURE 19-2: EXTERNAL CLOCK TIMING

TABLE 19-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Param							
No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
	Fosc	External CLKIN Frequency	DC	_	8	MHz	EC osc mode - 08 devices (8 MHz devices)
		(Note 1)	DC	—	16	MHz	 16 devices (16 MHz devices)
			DC	—	25	MHz	 - 25 devices (25 MHz devices)
			DC	—	33	MHz	 - 33 devices (33 MHz devices)
		Oscillator Frequency	DC		4	MHz	RC osc mode
		(Note 1)	1	—	8	MHz	XT osc mode - 08 devices (8 MHz devices)
			1	—	16	MHz	 16 devices (16 MHz devices)
			1	—	25	MHz	 - 25 devices (25 MHz devices)
			1	—	33	MHz	 - 33 devices (33 MHz devices)
			DC	—	2	MHz	LF osc mode
1	Tosc	External CLKIN Period	125	—	—	ns	EC osc mode - 08 devices (8 MHz devices)
		(Note 1)	62.5	—	—	ns	 16 devices (16 MHz devices)
			40	—	—	ns	 - 25 devices (25 MHz devices)
			30.3	—	—	ns	- 33 devices (33 MHz devices)
		Oscillator Period	250	—	—	ns	RC osc mode
		(Note 1)	125	—	1,000	ns	XT osc mode - 08 devices (8 MHz devices)
			62.5	—	1,000	ns	 16 devices (16 MHz devices)
			40	—	1,000	ns	 - 25 devices (25 MHz devices)
			30.3	—	1,000	ns	 - 33 devices (33 MHz devices)
			500	—	—	ns	LF osc mode
2	TCY	Instruction Cycle Time	121.2	4/Fosc	DC	ns	
		(Note 1)					
3	TosL,	Clock in (OSC1)	10 ‡	—	—	ns	EC oscillator
	TosH	high or low time					
4	TosR,	Clock in (OSC1)	_		5‡	ns	EC oscillator
	TosF	rise or fall time					

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

E.2 PIC16C5X Family of Devices

				0	clock Mer	nory	Perip	herals	Features
	intern	¹⁰ 813 407415	To to to the the	CANING LOUIS CONTRACT AND CONTR	(Sey GU Level (Sey GU Level) (Sey GU	(Seg.)	Suite -	10 N SGUER	SUOJORIJSUJOEd SUOJORIJSUJOEd SUCIORIJORISUJO
PIC16C52	4	384		25	TMR0	12	2.5-6.25	33	18-pin DIP, SOIC
PIC16C54	20	512		25	TMR0	12	2.5-6.25	33	18-pin DIP, SOIC; 20-pin SSOP
PIC16C54A	20	512	Ι	25	TMR0	12	2.0-6.25	33	18-pin DIP, SOIC; 20-pin SSOP
PIC16CR54A	20	I	512	25	TMR0	12	2.0-6.25	33	18-pin DIP, SOIC; 20-pin SSOP
PIC16C55	20	512		24	TMR0	20	2.5-6.25	33	28-pin DIP, SOIC, SSOP
PIC16C56	20	¥	Ι	25	TMR0	12	2.5-6.25	33	18-pin DIP, SOIC; 20-pin SSOP
PIC16C57	20	2K		72	TMR0	20	2.5-6.25	33	28-pin DIP, SOIC, SSOP
PIC16CR57B	20		2K	72	TMR0	20	2.5-6.25	33	28-pin DIP, SOIC, SSOP
PIC16C58A	20	2K		73	TMR0	12	2.0-6.25	33	18-pin DIP, SOIC; 20-pin SSOP
PIC16CR58A	20		2K	73	TMR0	12	2.5-6.25	33	18-pin DIP, SOIC; 20-pin SSOP
All PIC16/17	Family (devices	have F	Power-On	ו Reset, selectab	le Watch	Idog Timer, s	selectab	le code protect and high I/O current capability.

DS30412C-page 214

APPENDIX F: ERRATA FOR PIC17C42 SILICON

The PIC17C42 devices that you have received have the following anomalies. At present there is no intention for future revisions to the present PIC17C42 silicon. If these cause issues for the application, it is recommended that you select the PIC17C42A device.

Note: New designs should use the PIC17C42A.

 When the Oscillator Start-Up Timer (OST) is enabled (in LF or XT oscillator modes), any interrupt that wakes the processor may cause a WDT reset. This occurs when the WDT is greater than or equal to 50% time-out period when the SLEEP instruction is executed. This will not occur in either the EC or RC oscillator modes.

Work-arounds

- Always ensure that the CLRWDT instruction is executed before the WDT increments past 50% of the WDT period. This will keep the "false" WDT reset from occurring.
- b) When using the WDT as a normal timer (WDT disabled), ensure that the WDT is less than or equal to 50% time-out period when the SLEEP instruction is executed. This can be done by monitoring the TO bit for changing state from set to clear. Example 1 shows putting the PIC17C42 to sleep.

EXAMPLE F-1: PIC17C42 TO SLEEP

	BTFSS	CPUSTA,	то	;	TO = 0?
	CLRWDT			;	YES, WDT = 0
LOOP	BTFSC	CPUSTA,	то	;	WDT rollover?
	GOTO	LOOP		;	NO, Wait
	SLEEP			;	YES, goto Sleep

2. When the clock source of Timer1 or Timer2 is selected to external clock, the overflow interrupt flag will be set twice, once when the timer equals the period, and again when the timer value is reset to 0h. If the latency to clear TMRxIF is greater than the time to the next clock pulse, no problems will be noticed. If the latency is less than the time to the next timer clock pulse, the interrupt will be serviced twice.

Work-arounds

- a) Ensure that the timer has rolled over to 0h before clearing the flag bit.
- b) Clear the timer in software. Clearing the timer in software causes the period to be one count less than expected.

Design considerations

The device must not be operated outside of the specified voltage range. An external reset circuit must be used to ensure the device is in reset when a brown-out occurs or the VDD rise time is too long. Failure to ensure that the device is in reset when device voltage is out of specification may cause the device to lock-up and ignore the $\overline{\text{MCLR}}$ pin.

INDEX

Α

ADDLW	112
ADDWF	
ADDWFC	113
ALU	9
ALU STATUS Register (ALUSTA)	
ALUSTA	34, 36, 108
ALUSTA Register	
ANDLW	
ANDWF	
Application Notes	
AN552	55
Assembler	
Asynchronous Master Transmission	
Asynchronous Transmitter	

В

Bank Select Register (BSR) 42	2
Banking	2
Baud Rate Formula	ô
Baud Rate Generator (BRG)86	ô
Baud Rates	
Asynchronous Mode88	В
Synchronous Mode87	7
BCF	4
Bit Manipulation	В
Block Diagrams	
On-chip Reset Circuit15	5
PIC17C4210	C
PORTD	D
PORTE	2
PWM75	5
RA0 and RA153	3
RA2 and RA354	4
RA4 and RA554	4
RB3:RB2 Port Pins56	ô
RB7:RB4 and RB1:RB0 Port Pins55	5
RC7:RC0 Port Pins58	В
Timer3 with One Capture and One Period Register 78	в
TMR1 and TMR2 in 16-bit Timer/Counter Mode74	4
TMR1 and TMR2 in Two 8-bit Timer/Counter Mode 73	3
TMR3 with Two Capture Registers79	9
WDT 104	4
BORROW	9
BRG	ô
Brown-out Protection	В
BSF	5
BSR	2
BSR Operation	2
BTFSC	5
BTFSS	ô
BTG	ô

С

72
71
71

CA1IE	23
CA1IF	24
CA10VF	72
CA2ED0	71
CA2ED1	71
CA2H	20, 35
CA2IE	23, 78
CA2IF	24, 78
CA2L	20, 35
CA2OVF	72
Calculating Baud Rate Error	86
CALL	39, 117
Capacitor Selection	
Ceramic Resonators	101
Crystal Oscillator	101
Capture	71, 78
Capture Sequence to Read Example	78
Capture1	
Mode	71
Overflow	72
Capture2	
. Mode	71
Overflow	72
Carry (C)	9
Ceramic Resonators	100
Circular Buffer	
Clearing the Prescaler	103
Clock/Instruction Cycle (Figure)	14
Clocking Scheme/Instruction Cycle (Section)	14
CLRF	117
CLRWDT	118
Code Protection	99, 106
COMF	118
Configuration	
Bits	100
Locations	100
Oscillator	100
Word	99
CPFSEQ	119
CPFSGT	119
CPFSLT	120
CPU STATUS Register (CPUSTA)	37
CPUSTA	34, 37, 105
CREN	84
Crystal Operation, Overtone Crystals	101
Crystal or Ceramic Resonator Operation	100
Crystal Oscillator	100
CSRC	83

D

Data Memory	
GPR	
Indirect Addressing	
Organization	
SFR	
Transfer to Program Memory	43
DAW	
DC	9, 36
DDRB	
DDRC	19, 34, 58
DDRD	19, 34, 60
DDRE	
DECF	
DECFSNZ	
DECFSZ	

 $\ensuremath{\textcircled{}^{\odot}}$ 1996 Microchip Technology Inc.