

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (8K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c44-16i-pq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

5.4 Interrupt Operation

Global Interrupt Disable bit, GLINTD (CPUSTA<4>), enables all unmasked interrupts (if clear) or disables all interrupts (if set). Individual interrupts can be disabled through their corresponding enable bits in the INTSTA register. Peripheral interrupts need either the global peripheral enable PEIE bit disabled, or the specific peripheral enable bit disabled. Disabling the peripherals via the global peripheral enable bit, disables all peripheral interrupts. GLINTD is set on reset (interrupts disabled).

The RETFIE instruction allows returning from interrupt and re-enable interrupts at the same time.

When an interrupt is responded to, the GLINTD bit is automatically set to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with interrupt vector. There are four interrupt vectors to reduce interrupt latency.

The peripheral interrupt vector has multiple interrupt sources. Once in the peripheral interrupt service routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The peripheral interrupt flag bit(s) must be cleared in software before reenabling interrupts to avoid continuous interrupts.

The PIC17C4X devices have four interrupt vectors. These vectors and their hardware priority are shown in Table 5-1. If two enabled interrupts occur "at the same time", the interrupt of the highest priority will be serviced first. This means that the vector address of that interrupt will be loaded into the program counter (PC).

TABLE 5-1: INTERRUPT VECTORS/ PRIORITIES

Address	Vector	Priority
0008h	External Interrupt on RA0/ INT pin (INTF)	1 (Highest)
0010h	TMR0 overflow interrupt (T0IF)	2
0018h	External Interrupt on T0CKI (T0CKIF)	3
0020h	Peripherals (PEIF)	4 (Lowest)

- **Note 1:** Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GLINTD bit.
- **Note 2:** When disabling any of the INTSTA enable bits, the GLINTD bit should be set (disabled).

Note 3: For the PIC17C42 only: If an interrupt occurs while the Global Interrupt Disable (GLINTD) bit is being set, the GLINTD bit may unintentionally be reenabled by the user's Interrupt Service Routine (the RETFIE instruction). The events that would cause this to occur are:

- 1. An interrupt occurs simultaneously with an instruction that sets the GLINTD bit.
- 2. The program branches to the Interrupt vector and executes the Interrupt Service Routine.
- 3. The Interrupt Service Routine completes with the execution of the RET-FIE instruction. This causes the GLINTD bit to be cleared (enables interrupts), and the program returns to the instruction after the one which was meant to disable interrupts.

The method to ensure that interrupts are globally disabled is:

1. Ensure that the GLINTD bit was set by the instruction, as shown in the follow-ing code:

LOOP	BSF	CPUSTA,	GLINTD	;	Disable Global
				;	Interrupt
	BTFSS	CPUSTA,	GLINTD	;	Global Interrupt
				;	Disabled?
	GOTO	LOOP		;	NO, try again
				;	YES, continue
				;	with program
				:	low

6.4.1 INDIRECT ADDRESSING REGISTERS

The PIC17C4X has four registers for indirect addressing. These registers are:

- INDF0 and FSR0
- INDF1 and FSR1

Registers INDF0 and INDF1 are not physically implemented. Reading or writing to these registers activates indirect addressing, with the value in the corresponding FSR register being the address of the data. The FSR is an 8-bit register and allows addressing anywhere in the 256-byte data memory address range. For banked memory, the bank of memory accessed is specified by the value in the BSR.

If file INDF0 (or INDF1) itself is read indirectly via an FSR, all '0's are read (Zero bit is set). Similarly, if INDF0 (or INDF1) is written to indirectly, the operation will be equivalent to a NOP, and the status bits are not affected.

6.4.2 INDIRECT ADDRESSING OPERATION

The indirect addressing capability has been enhanced over that of the PIC16CXX family. There are two control bits associated with each FSR register. These two bits configure the FSR register to:

- Auto-decrement the value (address) in the FSR after an indirect access
- Auto-increment the value (address) in the FSR after an indirect access
- No change to the value (address) in the FSR after an indirect access

These control bits are located in the ALUSTA register. The FSR1 register is controlled by the FS3:FS2 bits and FSR0 is controlled by the FS1:FS0 bits.

When using the auto-increment or auto-decrement features, the effect on the FSR is not reflected in the ALUSTA register. For example, if the indirect address causes the FSR to equal '0', the Z bit will not be set.

If the FSR register contains a value of 0h, an indirect read will read 0h (Zero bit is set) while an indirect write will be equivalent to a NOP (status bits are not affected).

Indirect addressing allows single cycle data transfers within the entire data space. This is possible with the use of the MOVPF and MOVFP instructions, where either 'p' or 'f' is specified as INDF0 (or INDF1).

If the source or destination of the indirect address is in banked memory, the location accessed will be determined by the value in the BSR. A simple program to clear RAM from 20h - FFh is shown in Example 6-1.

EXAMPLE 6-1: INDIRECT ADDRESSING

	MOVLW	0x20	;	
	MOVWF	FSR0	;	FSR0 = 20h
	BCF	ALUSTA, FS1	;	Increment FSR
	BSF	ALUSTA, FSO	;	after access
	BCF	ALUSTA, C	;	C = 0
	MOVLW	END_RAM + 1	;	
LP	CLRF	INDF0	;	Addr(FSR) = 0
	CPFSEQ	FSR0	;	FSR0 = END_RAM+1?
	GOTO	LP	;	NO, clear next
	:		;	YES, All RAM is
	:		;	cleared

6.5 <u>Table Pointer (TBLPTRL and</u> <u>TBLPTRH)</u>

File registers TBLPTRL and TBLPTRH form a 16-bit pointer to address the 64K program memory space. The table pointer is used by instructions TABLWT and TABLRD.

The TABLRD and the TABLWT instructions allow transfer of data between program and data space. The table pointer serves as the 16-bit address of the data word within the program memory. For a more complete description of these registers and the operation of Table Reads and Table Writes, see Section 7.0.

6.6 <u>Table Latch (TBLATH, TBLATL)</u>

The table latch (TBLAT) is a 16-bit register, with TBLATH and TBLATL referring to the high and low bytes of the register. It is not mapped into data or program memory. The table latch is used as a temporary holding latch during data transfer between program and data memory (see descriptions of instructions TABLRD, TABLWT, TLRD and TLWT). For a more complete description of these registers and the operation of Table Reads and Table Writes, see Section 7.0.

FIGURE 9-2: RA2 AND RA3 BLOCK DIAGRAM

 \overline{OE} = SPEN,SYNC,TXEN, \overline{CREN} , \overline{SREN} for RA4 \overline{OE} = SPEN (\overline{SYNC} +SYNC, \overline{CSRC}) for RA5

Note: I/O pins have protection diodes to VDD and VSS.

TABLE 9-1:	POF	RIA FU	NCTI	ONS	

.

Name	Bit0	Buffer Type	Function
RA0/INT	bit0	ST	Input or external interrupt input.
RA1/T0CKI	bit1	ST	Input or clock input to the TMR0 timer/counter, and/or an external interrupt input.
RA2	bit2	ST	Input/Output. Output is open drain type.
RA3	bit3	ST	Input/Output. Output is open drain type.
RA4/RX/DT	bit4	ST	Input or USART Asynchronous Receive or USART Synchronous Data.
RA5/TX/CK	bit5	ST	Input or USART Asynchronous Transmit or USART Synchronous Clock.
RBPU	bit7	—	Control bit for PORTB weak pull-ups.

Legend: ST = Schmitt Trigger input.

TABLE 9-2: REGISTERS/BITS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
10h, Bank 0	PORTA	RBPU	-	RA5	RA4	RA3	RA2	RA1/T0CKI	RA0/INT	0-xx xxxx	0-uu uuuu
05h, Unbanked	TOSTA	INTEDG	T0SE	TOCS	PS3	PS2	PS1	PS0	—	0000 000-	0000 000-
13h, Bank 0	RCSTA	SPEN	RC9	SREN	CREN	_	FERR	OERR	RC9D	0000 -00x	0000 -00u
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	—	_	TRMT	TX9D	00001x	00001u

Legend: x = unknown, u = unchanged, - = unimplemented reads as '0'. Shaded cells are not used by PORTA. Note 1: Other (non power-up) resets include: external reset through \overline{MCLR} and the Watchdog Timer Reset.

12.2.2 DUAL CAPTURE REGISTER MODE

This mode is selected by setting CA1/PR3. A block diagram is shown in Figure 12-8. In this mode, TMR3 runs without a period register and increments from 0000h to FFFFh and rolls over to 0000h. The TMR3 interrupt Flag (TMR3IF) is set on this roll over. The TMR3IF bit must be cleared in software.

Registers PR3H/CA1H and PR3L/CA1L make a 16-bit capture register (Capture1). It captures events on pin RB0/CAP1. Capture mode is configured by the CA1ED1 and CA1ED0 bits. Capture1 Interrupt Flag bit (CA1IF) is set on the capture event. The corresponding interrupt mask bit is CA1IE. The Capture1 Overflow Status bit is CA1OVF.

The Capture2 overflow status flag bit is double buffered. The master bit is set if one captured word is already residing in the Capture2 register and another "event" has occurred on the RB1/CA2 pin. The new event will not transfer the TMR3 value to the capture register which protects the previous unread capture value. When the user reads both the high and the low bytes (in any order) of the Capture2 register, the master overflow bit is transferred to the slave overflow bit (CA2OVF) and then the master bit is reset. The user can then read TCON2 to determine the value of CA2OVF.

The operation of the Capture1 feature is identical to Capture2 (as described in Section 12.2.1).

TABLE 12-5: REGISTERS ASSOCIATED WITH CAPTURE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 3	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h, Bank 3	TCON2	CA2OVF	CA10VF	PWM2ON	PWM1ON	CA1/PR3	TMR3ON	TMR2ON	TMR10N	0000 0000	0000 0000
12h, Bank 2	TMR3L	TMR3 reg	ister; low by	/te						xxxx xxxx	uuuu uuuu
13h, Bank 2	TMR3H	TMR3 reg	ister; high b	oyte						xxxx xxxx	uuuu uuuu
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
07h, Unbanked	INTSTA	PEIF	T0CKIF	T0IF	INTF	PEIE	T0CKIE	T0IE	INTE	0000 0000	0000 0000
06h, Unbanked	CPUSTA	—	_	STKAV	GLINTD	TO	PD	—	—	11 11	11 qq
16h, Bank 2	PR3L/CA1L	Timer3 pe	riod registe	r, low byte/ca	apture1 regis	ter, low byte	e			xxxx xxxx	uuuu uuuu
17h, Bank 2	PR3H/CA1H	Timer3 pe	riod registe	r, high byte/c	apture1 regi	ster, high b	yte			xxxx xxxx	uuuu uuuu
14h, Bank 3	CA2L	Capture2	low byte							xxxx xxxx	uuuu uuuu
15h, Bank 3	CA2H	Capture2	high byte							xxxx xxxx	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q - value depends on condition, shaded cells are not used by Capture.

Note 1: Other (non power-up) resets include: external reset through MCLR and WDT Timer Reset.

13.3 USART Synchronous Master Mode

In Master Synchronous mode, the data is transmitted in a half-duplex manner; i.e. transmission and reception do not occur at the same time: when transmitting data, the reception is inhibited and vice versa. The synchronous mode is entered by setting the SYNC (TXSTA<4>) bit. In addition, the SPEN (RCSTA<7>) bit is set in order to configure the RA5 and RA4 I/O ports to CK (clock) and DT (data) lines respectively. The Master mode indicates that the processor transmits the master clock on the CK line. The Master mode is entered by setting the CSRC (TXSTA<7>) bit.

13.3.1 USART SYNCHRONOUS MASTER TRANSMISSION

The USART transmitter block diagram is shown in Figure 13-3. The heart of the transmitter is the transmit (serial) shift register (TSR). The shift register obtains its data from the read/write transmit buffer TXREG. TXREG is loaded with data in software. The TSR is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR is loaded with new data from TXREG (if available). Once TXREG transfers the data to the TSR (occurs in one TCY at the end of the current BRG cycle), TXREG is empty and the TXIF (PIR<1>) bit is set. This interrupt can be enabled/disabled by setting/clearing the TXIE bit (PIE<1>). TXIF will be set regardless of the state of bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into TXREG. While TXIF indicates the status of TXREG, TRMT (TXSTA<1>) shows the status of the TSR. TRMT is a read only bit which is set when the TSR is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR is empty. The TSR is not mapped in data memory, so it is not available to the user.

Transmission is enabled by setting the TXEN (TXSTA<5>) bit. The actual transmission will not occur until TXREG has been loaded with data. The first data bit will be shifted out on the next available rising edge of the clock on the RA5/TX/CK pin. Data out is stable around the falling edge of the synchronous clock (Figure 13-10). The transmission can also be started by first loading TXREG and then setting TXEN. This is advantageous when slow baud rates are selected, since BRG is kept in RESET when the TXEN, CREN, and SREN bits are clear. Setting the TXEN bit will start the BRG, creating a shift clock immediately. Normally when transmission is first started, the TSR is empty, so a transfer to TXREG will result in an immediate transfer to the TSR, resulting in an empty TXREG. Back-to-back transfers are possible.

Clearing TXEN during a transmission will cause the transmission to be aborted and will reset the transmitter. The RA4/RX/DT and RA5/TX/CK pins will revert to hi-impedance. If either CREN or SREN are set during a transmission, the transmission is aborted and the

RA4/RX/DT pin reverts to a hi-impedance state (for a reception). The RA5/TX/CK pin will remain an output if the CSRC bit is set (internal clock). The transmitter logic is not reset, although it is disconnected from the pins. In order to reset the transmitter, the user has to clear the TXEN bit. If the SREN bit is set (to interrupt an ongoing transmission and receive a single word), then after the single word is received, SREN will be cleared and the serial port will revert back to transmitting, since the TXEN bit is still set. The DT line will immediately switch from hi-impedance receive mode to transmit and start driving. To avoid this, TXEN should be cleared.

In order to select 9-bit transmission, the TX9 (TXSTA<6>) bit should be set and the ninth bit should be written to TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to TXREG. This is because a data write to TXREG can result in an immediate transfer of the data to the TSR (if the TSR is empty). If the TSR was empty and TXREG was written before writing the "new" TX9D, the "present" value of TX9D is loaded.

Steps to follow when setting up a Synchronous Master Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate (see Baud Rate Generator Section for details).
- 2. Enable the synchronous master serial port by setting the SYNC, SPEN, and CSRC bits.
- 3. Ensure that the CREN and SREN bits are clear (these bits override transmission when set).
- 4. If interrupts are desired, then set the TXIE bit (the GLINTD bit must be clear and the PEIE bit must be set).
- 5. If 9-bit transmission is desired, then set the TX9 bit.
- 6. Start transmission by loading data to the TXREG register.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded in TX9D.
- 8. Enable the transmission by setting TXEN.

Writing the transmit data to the TXREG, then enabling the transmit (setting TXEN) allows transmission to start sooner then doing these two events in the reverse order.

Note: To terminate a transmission, either clear the SPEN bit, or the TXEN bit. This will reset the transmit logic, so that it will be in the proper state when transmit is re-enabled.

TABLE 13-8: R	REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION
---------------	--

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
13h, Bank 0	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00u
14h, Bank 0	RCREG	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	xxxx xxxx	uuuu uuuu
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	—	_	TRMT	TX9D	00001x	00001u
17h, Bank 0	SPBRG	Baud rate	Baud rate generator register								uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used for synchronous master reception.

Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

14.4.2 MINIMIZING CURRENT CONSUMPTION

To minimize current consumption, all I/O pins should be either at VDD, or VSS, with no external circuitry drawing current from the I/O pin. I/O pins that are hi-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should be at VDD or VSS. The contributions from on-chip pull-ups on PORTB should also be considered, and disabled when possible.

14.5 <u>Code Protection</u>

The code in the program memory can be protected by selecting the microcontroller in code protected mode (PM2:PM0 = '000').

Note:	PM2 de	oes not	exist on th	e PIC17C42. To
	select	code	protected	microcontroller
	mode.	PM1:PM	AO = '00'	

In this mode, instructions that are in the on-chip program memory space, can continue to read or write the program memory. An instruction that is executed outside of the internal program memory range will be inhibited from writing to or reading from program memory.

Note: Microchip does not recommend code protecting windowed devices.

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

TABLE 15-2: PIC17CXX INSTRUCTION SET

Mnemonic,		Description	Cycles	1	16-bit	Opcode	e	Status	Notes
Operands				MSb			LSb	Affected	
BYTE-ORIE	NTED F	ILE REGISTER OPERATIONS		•					
ADDWF	f,d	ADD WREG to f	1	0000	111d	ffff	ffff	OV,C,DC,Z	
ADDWFC	f,d	ADD WREG and Carry bit to f	1	0001	000d	ffff	ffff	OV,C,DC,Z	
ANDWF	f,d	AND WREG with f	1	0000	101d	ffff	ffff	Z	
CLRF	f,s	Clear f, or Clear f and Clear WREG	1	0010	100s	ffff	ffff	None	3
COMF	f,d	Complement f	1	0001	001d	ffff	ffff	Z	
CPFSEQ	f	Compare f with WREG, skip if f = WREG	1 (2)	0011	0001	ffff	ffff	None	6,8
CPFSGT	f	Compare f with WREG, skip if f > WREG	1 (2)	0011	0010	ffff	ffff	None	2,6,8
CPFSLT	f	Compare f with WREG, skip if f < WREG	1 (2)	0011	0000	ffff	ffff	None	2,6,8
DAW	f,s	Decimal Adjust WREG Register	1	0010	111s	ffff	ffff	C	3
DECF	f,d	Decrement f	1	0000	011d	ffff	ffff	OV,C,DC,Z	
DECFSZ	f,d	Decrement f, skip if 0	1 (2)	0001	011d	ffff	ffff	None	6,8
DCFSNZ	f,d	Decrement f, skip if not 0	1 (2)	0010	011d	ffff	ffff	None	6,8
INCF	f,d	Increment f	1	0001	010d	ffff	ffff	OV,C,DC,Z	
INCFSZ	f,d	Increment f, skip if 0	1 (2)	0001	111d	ffff	ffff	None	6,8
INFSNZ	f,d	Increment f, skip if not 0	1 (2)	0010	010d	ffff	ffff	None	6,8
IORWF	f,d	Inclusive OR WREG with f	1	0000	100d	ffff	ffff	Z	
MOVFP	f,p	Move f to p	1	011p]	pppp	ffff	ffff	None	
MOVPF	p,f	Move p to f	1	010p j	pppp	ffff	ffff	Z	
MOVWF	f	Move WREG to f	1	0000	0001	ffff	ffff	None	
MULWF	f	Multiply WREG with f	1	0011	0100	ffff	ffff	None	9
NEGW	f,s	Negate WREG	1	0010	110s	ffff	ffff	OV,C,DC,Z	1,3
NOP	_	No Operation	1	0000	0000	0000	0000	None	
RLCF	f,d	Rotate left f through Carry	1	0001	101d	ffff	ffff	С	
RLNCF	f,d	Rotate left f (no carry)	1	0010	001d	ffff	ffff	None	
RRCF	f,d	Rotate right f through Carry	1	0001	100d	ffff	ffff	C	
RRNCF	f,d	Rotate right f (no carry)	1	0010	000d	ffff	ffff	None	
SETF	f,s	Set f	1	0010	101s	ffff	ffff	None	3
SUBWF	f,d	Subtract WREG from f	1	0000	010d	ffff	ffff	OV,C,DC,Z	1
SUBWFB	f,d	Subtract WREG from f with Borrow	1	0000	001d	ffff	ffff	OV,C,DC,Z	1
SWAPF	f,d	Swap f	1	0001	110d	ffff	ffff	None	
TABLRD	t,i,f	Table Read	2 (3)	1010	10ti	ffff	ffff	None	7

Legend: Refer to Table 15-1 for opcode field descriptions.

- Note 1: 2's Complement method.
 - 2: Unsigned arithmetic.

3: If s = '1', only the file is affected: If s = '0', both the WREG register and the file are affected; If only the Working register (WREG) is required to be affected, then f = WREG must be specified.

- 4: During an LCALL, the contents of PCLATH are loaded into the MSB of the PC and kkkk kkkk is loaded into the LSB of the PC (PCL)
- 5: Multiple cycle instruction for EPROM programming when table pointer selects internal EPROM. The instruction is terminated by an interrupt event. When writing to external program memory, it is a two-cycle instruction.
- 6: Two-cycle instruction when condition is true, else single cycle instruction.
- 7: Two-cycle instruction except for TABLRD to PCL (program counter low byte) in which case it takes 3 cycles.
- 8: A "skip" means that instruction fetched during execution of current instruction is not executed, instead an NOP is executed.
- 9: These instructions are not available on the PIC17C42.

ADD	DLW	ADD Lite	eral to W	REG		
Synt	ax:	[label] A	ADDLW	k		
Ope	rands:	$0 \le k \le 25$	55			
Ope	ration:	(WREG)	+ k \rightarrow (V	VREG	i)	
State	us Affected:	OV, C, D0	C, Z			
Enco	oding:	1011	0001	kkk	k	kkkk
Des	cription:	The conter 8-bit literal WREG.	nts of WR	EG are e resu	e ado Ilt is	ded to the placed in
Wor	ds:	1				
Cycl	es:	1				
QC	vcle Activity:					
	Q1	Q2	Q3	3		Q4
	Decode	Read literal 'k'	Exect	ute	V V	Vrite to VREG
<u>Exa</u>	mple:	ADDLW	0x15			
	Before Instrue WREG =	ction 0x10				

ADD	WF	A	DD WR	EG to f			
Synta	ax:	[<i>l</i> á	abel]A	DDWF	f,d		
Oper	ands:	0 ≤ d ∉	≤ f ≤ 25 ≡ [0,1]	5			
Oper	ation:	(W	/REG)	+ (f) \rightarrow (dest)		
Statu	is Affected:	O\	/, C, D0	C, Z			
Enco	oding:		0000	111d	fff	f	ffff
Desc	ription:	Ad res res	d WREC sult is sto sult is sto	G to regis pred in W pred back	ter 'f'. I REG. in reg	f 'd' If 'd' jiste	is 0 the is 1 the r 'f'.
Word	ls:	1					
Cycle	es:	1					
Q Cy	cle Activity:						
	Q1		Q2	Q	3		Q4
	Decode	F reg	Read ister 'f'	Exec	ute	V de:	Vrite to stination
<u>Exan</u>	nple:	AD	DWF	REG,	0		
I	Before Instru WREG REG	ictior = =	0x17 0xC2				
,	After Instruct WREG REG	ion = =	0xD9 0xC2				

After Instruction WREG = 0x25

INFS	SNZ	Incremer	nt f, skip	if no	t 0
Synt	tax:	[<i>label</i>] I	NFSNZ	f,d	
Ope	rands:	0 ≤ f ≤ 25 d ∈ [0,1]	5		
Ope	ration:	(f) + 1 \rightarrow	(dest), s	kip if ı	not 0
Stat	us Affected:	None			
Enco	oding:	0010	010d	fff	f ffff
Des	cription:	The conter mented. If WREG. If ' back in reg If the result which is all and an NO it a two-cyc	nts of reg 'd' is 0 the d' is 1 the jister 'f'. t is not 0, ready feto P is exect cle instruc	the ne the ne ched, is uted in	are incre- t is placed in is placed xt instruction, s discarded, stead making
Wor	ds:	1			
Cycl	es:	1(2)			
QC	ycle Activity:				
	Q1	Q2	Q	3	Q4
	Decode	Read register 'f'	Exec	ute	Write to destination
lf sk	ip:				
	Q1	Q2	Q	3	Q4
	Forced NOP	NOP	Exec	ute	NOP
<u>Exa</u>	mple:	HERE ZERO NZERO	INFSNZ	REG	, 1
	Before Instru REG	iction = REG			
	After Instruct REG If REG PC If REG PC	tion = REG + = 1; = Addres = 0; = Addres	1 s (zero s (nzero)	

IORL	w	Inclusiv	e OR Lite	eral w	vith	WREG
Synta	ax:	[label]	IORLW	k		
Oper	ands:	$0 \le k \le 2$	255			
Oper	ation:	(WREG)	.OR. (k)	\rightarrow (W	RE	G)
Statu	s Affected:	Z				
Enco	ding:	1011	0011	kkk	ĸk	kkkk
Desc	ription:	The content the eight placed in	ents of WR bit literal 'k WREG.	EG ar .'. The	e Ol resu	R'ed with Ilt is
Word	ls:	1				
Cycle	es:	1				
Q Cy	cle Activity:					
_	Q1	Q2	Q	3		Q4
	Decode	Read literal 'k'	Exect	ute	V V	Vrite to VREG
<u>Exan</u>	<u>nple</u> :	IORLW	0x35			
E	Before Instru	iction				
	WREG	= 0x9A				
/	After Instruct WREG	tion = 0xBF				

SUBWF	Subtract	WREG fr	rom f	
Syntax:	[label]	SUBWF	f,d	
Operands:	0 ≤ f ≤ 25 d ∈ [0,1]	55		
Operation:	(f) – (W)	\rightarrow (dest)		
Status Affected:	OV, C, D	C, Z		
Encoding:	0000	010d	ffff	ffff
Description:	Subtract V compleme result is st result is st	VREG from ent method) cored in WR cored back i	registe . If 'd' is EG. If 'd n regist	r 'f' (2's 0 the d' is 1 the er 'f'.
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read	Execute	v e	Vrite to stination
Example 1:		PEC1 1		50112001
<u>Example 1</u> .	otion	REGI, I		
REG1 WREG C After Instructi	= 3 = 2 = ? on			
REG1 WREG C Z	= 1 = 2 = 1 ; = 0	result is po	sitive	
Example 2:				
Before Instruc REG1 WREG C After Instructi	ction = 2 = 2 = ? on			
REG1 WREG C Z	= 0 = 2 = 1 ; = 1	result is zei	ro	
Example 3:				
Before Instruc REG1 WREG C	ction = 1 = 2 = ?			
After Instructi REG1 WREG C Z	on = FF = 2 = 0 ; = 0	result is ne	gative	

SUE	BWFB	Sub Bor	tract row	WREG	from	n f v	/ith
Synt	tax:	[lab	<i>el</i>] S	SUBWF	B f,o	b	
Ope	rands:	0 ≤ f	⁵ ≤ 25	5			
One	ration.	(f)	(\\\/) -	$-\overline{C} \rightarrow 0$	dest)		
Stat		(i) – OV		- C → ((- 7	Jesij		
Enc	odina:	οv,		0 01d	ffi	FF	fff
Des	cription:	Subt (borr ment store store	ract W ow) fr t meth ed in W ed bac	/REG an om regis iod). If 'd' VREG. If k in regis	d the ter 'f' is 0 t 'd' is ' ster 'f'	carr (2's he r 1 the	y flag comple- esult is e result is
Wor	ds:	1					
Cycl	les:	1					
QC	ycle Activity:						
	Q1	Q2	<u>}</u>	Q3			Q4
	Decode	Rea registe	d er 'f'	Execu	ute	V de	Vrite to stination
Exa	<u>mple 1</u> :	SUB	VFB	REG1,	1		
	Before Instru	iction					
	REG1 WREG C	= 0x = 0x = 1	:19 :0D	(0001 (0000	100 110	1) 1)	
	After Instruct	tion					
	REG1 WREG C Z	= 0x $= 0x$ $= 1$ $= 0$:0C :0D	(0000 (0000 ; resul t	101 110 t is po	1) 1) ositiv	е
Exa	mple2:	SUBWE	FB R	EG1,0			
	Before Instru	iction					
	REG1 WREG C	= 0x = 0x = 0	:1B :1A	(0001 (0001	101 101	1) 0)	
	After Instruct REG1 WREG	tion = 0x = 0x	:1B :00	(0001	101	1)	
	C Z	= 1 = 1		; resul	t is ze	ro	
<u>Exa</u>	mple3:	SUBWE	FB R	EG1,1			
	Before Instru REG1 WREG C	iction = 0x = 0x = 1	:03 :0E	(0000 (0000	001: 110	1) 1)	
	After Instruct	tion					
	REG1 WREG C Z	= 0x $= 0x$ $= 0$ $= 0$:F5 :0E	(1111 (0000 ; resul t	010 110 t is ne	0) [2 1) egati	?'s comp] ve

Applicable Devices 42 R42 42A 43 R43 44

DC CHARA	CTERI	STICS	Standard C Operating te Operating v	perating emperatu	g Conditic ire -40°C DD range a	ons (ur C ≤ TA : as desc	nless otherwise stated) ≤ +40°C cribed in Section 17.1
Parameter No.	Sym	Characteristic	Min	Typ†	Max	Units	Conditions
		Internal Program Memory Programming Specs (Note 4)					
D110 D111	Vpp Vddp	Voltage on MCLR/VPP pin Supply voltage during programming	12.75 4.75	_ 5.0	13.25 5.25	V V	Note 5
D112	IPP	Current into MCLR/VPP pin	-	25 ‡	50 ‡	mA	
D113	IDDP	Supply current during programming	-	_	30 ‡	mA	
D114	TPROG	Programming pulse width	10	100	1000	μs	Terminated via internal/exter- nal interrupt or a reset

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC17CXX devices be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in: PIC17CXX Programming Specifications (Literature number DS30139).

5: The MCLR/VPP pin may be kept in this range at times other than programming, but is not recommended.

6: For TTL buffers, the better of the two specifications may be used.

Note: When using the Table Write for internal programming, the device temperature must be less than 40°C.

Applicable Devices 42 R42 42A 43 R43 44

17.4 <u>Timing Diagrams and Specifications</u>

TABLE 17-2: EXTERNAL CLOCK TIMING REQUIREMENTS

Parameter							
No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency	DC	—	16	MHz	EC osc mode - PIC17C42-16
		(Note 1)	DC	—	25	MHz	- PIC17C42-25
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	1	—	16	MHz	XT osc mode - PIC17C42-16
			1	—	25	MHz	- PIC17C42-25
			DC	—	2	MHz	LF osc mode
1	Tosc	External CLKIN Period	62.5	—	—	ns	EC osc mode - PIC17C42-16
		(Note 1)	40	—	—	ns	- PIC17C42-25
		Oscillator Period	250	—	—	ns	RC osc mode
		(Note 1)	62.5	—	1,000	ns	XT osc mode - PIC17C42-16
			40	—	1,000	ns	- PIC17C42-25
			500	—	—	ns	LF osc mode
2	Тсү	Instruction Cycle Time (Note 1)	160	4/Fosc	DC	ns	
3	TosL,	Clock in (OSC1) High or Low Time	10 ‡	—	—	ns	EC oscillator
	TosH						
4	TosR,	Clock in (OSC1) Rise or Fall Time	—	—	5‡	ns	EC oscillator
	IOSE						

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

Note 1: Instruction cycle period (Tcγ) equals four times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1 pin. When an external clock input is used, the "Max." cycle time limit is "DC" (no clock) for all devices.

Applicable Devices 42 R42 42A 43 R43 44

19.1 DC CHARACTERISTICS:

PIC17CR42/42A/43/R43/44-16 (Commercial, Industrial) PIC17CR42/42A/43/R43/44-25 (Commercial, Industrial) PIC17CR42/42A/43/R43/44-33 (Commercial, Industrial)

	FRISTI	~s	Standard Operating	l Opera g tempe	ating C erature	ondition	s (unless otherwise stated)
						-40°C	\leq TA \leq +85°C for industrial and
						0°C	\leq TA \leq +70°C for commercial
Parameter							
No.	Sym	Characteristic	Min	Typ†	Max	Units	Conditions
D001	Vdd	Supply Voltage	4.5	—	6.0	V	
D002	Vdr	RAM Data Retention Voltage (Note 1)	1.5 *	_	—	V	Device in SLEEP mode
D003	VPOR	VDD start voltage to ensure internal Power-on Reset signal	_	Vss	_	V	See section on Power-on Reset for details
D004	SVDD	VDD rise rate to ensure internal Power-on Reset signal	0.060 *	_	_	mV/ms	See section on Power-on Reset for details
D010	IDD	Supply Current	_	3	6	mA	Fosc = 4 MHz (Note 4)
D011		(Note 2)	-	6	12 *	mA	Fosc = 8 MHz
D012			-	11	24 *	mA	Fosc = 16 MHz
D013			-	19	38	mA	Fosc = 25 MHz
D015			-	25	50	mA	Fosc = 33 MHz
D014			-	95	150	μA	Fosc = 32 kHz,
							WDT enabled (EC osc configuration)
D020	IPD	Power-down	_	10	40	μA	VDD = 5.5V, WDT enabled
D021		Current (Note 3)	-	< 1	5	μA	VDD = 5.5V, WDT disabled

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD or VSS, T0CKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.

Current consumed from the oscillator and I/O's driving external capacitive or resistive loads needs to be considered.

For the RC oscillator, the current through the external pull-up resistor (R) can be estimated as: $VDD / (2 \bullet R)$. For capacitive loads, the current can be estimated (for an individual I/O pin) as (CL • VDD) • f

CL = Total capacitive load on the I/O pin; f = average frequency the I/O pin switches.

The capacitive currents are most significant when the device is configured for external execution (includes extended microcontroller mode).

- 3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VbD and Vss.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula IR = VDD/2Rext (mA) with Rext in kOhm.

Applicable Devices	42	R42	42A	43	R43	44

			Standard C	perating	Conditio	ons (ur	nless otherwise stated)
DC CHARA	CTERI	STICS	operating to	Inperatu	-40°C	S ≤ TA	≤ +40°C
			Operating v	oltage VD	D range a	is desc	ribed in Section 19.1
Parameter							
No.	Sym	Characteristic	Min	Typ†	Max	Units	Conditions
		Internal Program Memory Programming Specs (Note 4)					
D110 D111	Vpp Vddp	Voltage on MCLR/VPP pin Supply voltage during programming	12.75 4.75	_ 5.0	13.25 5.25	V V	Note 5
D112 D113	Ipp Iddp	Current into MCLR/VPP pin Supply current during programming		25 ‡ _	50 ‡ 30 ‡	mA mA	
D114	TPROG	Programming pulse width	10	100	1000	μs	Terminated via internal/ external interrupt or a reset

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC17CXX devices be driven with external clock in RC mode.

The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in: PIC17CXX Programming Specifications (Literature number DS30139).

5: The MCLR/VPP pin may be kept in this range at times other than programming, but is not recommended.

6: For TTL buffers, the better of the two specifications may be used.

Note: When using the Table Write for internal programming, the device temperature must be less than 40°C.

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 20-9: TYPICAL IPD vs. VDD WATCHDOG DISABLED 25°C

FIGURE 20-10: MAXIMUM IPD vs. VDD WATCHDOG DISABLED

E.4 PIC16C6X Family of Devices

					Clock M	lemo	≥		<u>م</u>	eriphe	erals	F		Features
			ToL BIT		FLO (SQ 10, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5,			AND OF OF	THOMAS	TAX HOLD			(SHOT)	63111111183601d 1833
	Carlor I	XI LENDER		HOL	NN FOLIDIAN RECOVERED	CC SON	solute Col	STIDD T	ale ale	S ANIHO	Suiton Suite	Se age	Silouits	SWILL COLOGE
PIC16C62	20	2K	Ι	128	TMR0, TMR1, TMR2	,	SPI/I ² C	Ι	7	22	3.0-6.0	Yes	Ι	28-pin SDIP, SOIC, SSOP
PIC16C62A ⁽¹⁾	20	2K	Ι	128	TMR0, TMR1, TMR2	~	SPI/I ² C	I	7	22	2.5-6.0	Yes	Yes	28-pin SDIP, SOIC, SSOP
PIC16CR62 ⁽¹⁾	20	Ι	2K	128	TMR0, TMR1, TMR2	-	SPI/I ² C	I	7	22	2.5-6.0	Yes	Yes	28-pin SDIP, SOIC, SSOP
PIC16C63	20	4K	Ι	192	TMR0, TMR1, TMR2	2 6	sPI/I ² C, JSART	I	10	22	2.5-6.0	Yes	Yes	28-pin SDIP, SOIC
PIC16CR63 ⁽¹⁾	20	Ι	4 X	192	TMR0, TMR1, TMR2	2	sPI/I ² C, JSART	I	10	22	2.5-6.0	Yes	Yes	28-pin SDIP, SOIC
PIC16C64	20	2K	Ι	128	TMR0, TMR1, TMR2	~	SPI/I ² C	Yes	æ	33	3.0-6.0	Yes	I	40-pin DIP; 44-pin PLCC, MQFP
PIC16C64A ⁽¹⁾	20	2K	Ι	128	TMR0, TMR1, TMR2	~	SPI/I ² C	Yes	æ	33	2.5-6.0	Yes	Yes	40-pin DIP; 44-pin PLCC, MQFP, TQFP
PIC16CR64 ⁽¹⁾	20	Ι	2K	128	TMR0, TMR1, TMR2	~	SPI/I ² C	Yes	æ	33	2.5-6.0	Yes	Yes	40-pin DIP; 44-pin PLCC, MQFP, TQFP
PIC16C65	20	44 A	Ι	192	TMR0, TMR1, TMR2	2	sPI/I ² C, JSART	Yes	11	33	3.0-6.0	Yes		40-pin DIP; 44-pin PLCC, MQFP
PIC16C65A ⁽¹⁾	20	4K	Ι	192	TMR0, TMR1, TMR2	2	sPI/I ² C, JSART	Yes	11	33	2.5-6.0	Yes	Yes	40-pin DIP; 44-pin PLCC, MQFP, TQFP
PIC16CR65 ⁽¹⁾	20		4K	192	TMR0, TMR1, TMR2	2 5	sPI/I²C, JSART	Yes	11	33	2.5-6.0	Yes	Yes	40-pin DIP; 44-pin PLCC, MQFP, TQFP
All PI All PI	C16/17 C16C6	^r family	y devic ilv devi	ces hav ices us	e Power-on Rese e serial program	et, se mina	ectable with close	Watch ck pin I	dog Ti RB6 a	mer, s nd dat	electable c	id abo	otect,	and high I/O current capability.

All PIC16C6X family devices use serial programming with clock pin RB6 and data pin Note 1: Please contact your local sales office for availability of these devices. NOTES:

NOTES: