

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (8K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c44-25-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.1.3 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle (1024Tosc) delay after $\overline{\text{MCLR}}$ is detected high or a wake-up from SLEEP event occurs.

The OST time-out is invoked only for XT and LF oscillator modes on a Power-on Reset or a Wake-up from SLEEP.

The OST counts the oscillator pulses on the OSC1/CLKIN pin. The counter only starts incrementing after the amplitude of the signal reaches the oscillator input thresholds. This delay allows the crystal oscillator or resonator to stabilize before the device exits reset. The length of time-out is a function of the crystal/resonator frequency.

4.1.4 TIME-OUT SEQUENCE

On power-up the time-out sequence is as follows: First the internal POR signal goes high when the POR trip point is reached. If MCLR is high, then both the OST and PWRT timers start. In general the PWRT time-out is longer, except with low frequency crystals/resonators. The total time-out also varies based on oscillator configuration. Table 4-1 shows the times that are associated with the oscillator configuration. Figure 4-2 and Figure 4-3 display these time-out sequences.

If the device voltage is not within electrical specification at the end of a time-out, the $\overline{\text{MCLR}}/\text{VPP}$ pin must be held low until the voltage is within the device specification. The use of an external RC delay is sufficient for many of these applications.

TABLE 4-1:TIME-OUT IN VARIOUSSITUATIONS

Oscillator Configuration	Power-up	Wake up from SLEEP	MCLR Reset
XT, LF	Greater of: 96 ms or 1024Tosc	1024Tosc	—
EC, RC	Greater of: 96 ms or 1024Tosc		—

The time-out sequence begins from the first rising edge of $\overline{\text{MCLR}}$.

Table 4-3 shows the reset conditions for some special registers, while Table 4-4 shows the initialization conditions for all the registers. The shaded registers (in Table 4-4) are for all devices except the PIC17C42. In the PIC17C42, the PRODH and PRODL registers are general purpose RAM.

TABLE 4-2:STATUS BITS AND THEIR
SIGNIFICANCE

TO	PD	Event
1	1	Power-on Reset, MCLR Reset during normal operation, or CLRWDT instruction executed
1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP
0	1	WDT Reset during normal operation
0	0	WDT Reset during SLEEP

In Figure 4-2, Figure 4-3 and Figure 4-4, TPWRT > TOST, as would be the case in higher frequency crystals. For lower frequency crystals, (i.e., 32 kHz) TOST would be greater.

TABLE 4-3: RESET CONDITION FOR THE PROGRAM COUNTER AND THE CPUSTA REGISTER

Event		PCH:PCL	CPUSTA	OST Active
Power-on Reset		0000h	11 11	Yes
MCLR Reset during normal ope	ration	0000h	11 11	No
MCLR Reset during SLEEP		0000h	11 10	Yes (2)
WDT Reset during normal operation	ation	0000h	11 01	No
WDT Reset during SLEEP ⁽³⁾		0000h	11 00	Yes (2)
Interrupt wake-up from SLEEP	GLINTD is set	PC + 1	11 10	Yes (2)
	GLINTD is clear	PC + 1 ⁽¹⁾	10 10	Yes (2)

Legend: u = unchanged, x = unknown, - = unimplemented read as '0'.

Note 1: On wake-up, this instruction is executed. The instruction at the appropriate interrupt vector is fetched and then executed.

2: The OST is only active when the Oscillator is configured for XT or LF modes.

3: The Program Counter = 0, that is the device branches to the reset vector. This is different from the mid-range devices.

6.0 MEMORY ORGANIZATION

There are two memory blocks in the PIC17C4X; program memory and data memory. Each block has its own bus, so that access to each block can occur during the same oscillator cycle.

The data memory can further be broken down into General Purpose RAM and the Special Function Registers (SFRs). The operation of the SFRs that control the "core" are described here. The SFRs used to control the peripheral modules are described in the section discussing each individual peripheral module.

6.1 Program Memory Organization

PIC17C4X devices have a 16-bit program counter capable of addressing a 64K x 16 program memory space. The reset vector is at 0000h and the interrupt vectors are at 0008h, 0010h, 0018h, and 0020h (Figure 6-1).

6.1.1 PROGRAM MEMORY OPERATION

The PIC17C4X can operate in one of four possible program memory configurations. The configuration is selected by two configuration bits. The possible modes are:

- Microprocessor
- Microcontroller
- Extended Microcontroller
- Protected Microcontroller

The microcontroller and protected microcontroller modes only allow internal execution. Any access beyond the program memory reads unknown data. The protected microcontroller mode also enables the code protection feature.

The extended microcontroller mode accesses both the internal program memory as well as external program memory. Execution automatically switches between internal and external memory. The 16-bits of address allow a program memory range of 64K-words.

The microprocessor mode only accesses the external program memory. The on-chip program memory is ignored. The 16-bits of address allow a program memory range of 64K-words. Microprocessor mode is the default mode of an unprogrammed device.

The different modes allow different access to the configuration bits, test memory, and boot ROM. Table 6-1 lists which modes can access which areas in memory. Test Memory and Boot Memory are not required for normal operation of the device. Care should be taken to ensure that no unintended branches occur to these areas.

FIGURE 6-1: PROGRAM MEMORY MAP AND STACK

	AND STACK	
	PC<15:0>]
CALL,	RETURN 1 16	1
RETFI		
	Stack Level 1	1
	:	1
	• Stack Level 16	-
	Stack Level 10]
T T	Reset Vector] 0000h
	INT Pin Interrupt Vector	0008h
	Timer0 Interrupt Vector	0010h
	T0CKI Pin Interrupt Vector	0018h
	Peripheral Interrupt Vector	0020h
		0021h
		7FFh (PIC17C42,
<u>></u>		PIC17CR42,
User Memory Space (1)		PIC17C42A)
ace		FFFh
Spe		(PIC17C43
n ∣		PIC17CR43)
		1FFFh (PIC17C44)
		(FIC17C44)
		l
<u>+</u>	FOSC0	FDFFh
> [FOSC0	FE00h FE01h
Jor	WDTPS0	FE02h
len	WDTPS1	FE03h
≥ e	PM0	FE04h
pac	Reserved	FE05h
S IB	PM1	FE06h
figu	Reserved	FE07h
Configuration Memory Space	Reserved	FE08h
		FE0Eh
📕	PM2 ⁽²⁾	FE0Fh
	Test EPROM	FE10h FF5Fh
		FF60h
	Boot ROM	
		FFFFh
Note 1: U	ser memory space may be inter	nal, external, or
	oth. The memory configuration of	
	rocessor mode.	,
	his location is reserved on the F	PIC17C42.
1		

6.2 Data Memory Organization

Data memory is partitioned into two areas. The first is the General Purpose Registers (GPR) area, while the second is the Special Function Registers (SFR) area. The SFRs control the operation of the device.

Portions of data memory are banked, this is for both areas. The GPR area is banked to allow greater than 232 bytes of general purpose RAM. SFRs are for the registers that control the peripheral functions. Banking requires the use of control bits for bank selection. These control bits are located in the Bank Select Register (BSR). If an access is made to a location outside this banked region, the BSR bits are ignored. Figure 6-5 shows the data memory map organization for the PIC17C42 and Figure 6-6 for all of the other PIC17C4X devices.

Instructions MOVPF and MOVFP provide the means to move values from the peripheral area ("P") to any location in the register file ("F"), and vice-versa. The definition of the "P" range is from 0h to 1Fh, while the "F" range is 0h to FFh. The "P" range has six more locations than peripheral registers (eight locations for the PIC17C42 device) which can be used as General Purpose Registers. This can be useful in some applications where variables need to be copied to other locations in the general purpose RAM (such as saving status information during an interrupt).

The entire data memory can be accessed either directly or indirectly through file select registers FSR0 and FSR1 (Section 6.4). Indirect addressing uses the appropriate control bits of the BSR for accesses into the banked areas of data memory. The BSR is explained in greater detail in Section 6.8.

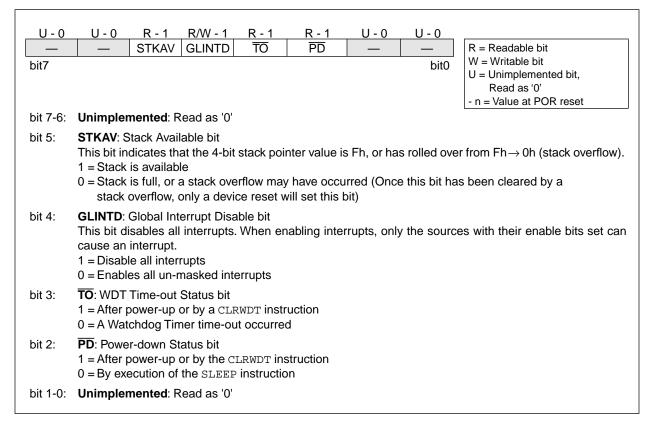
6.2.1 GENERAL PURPOSE REGISTER (GPR)

All devices have some amount of GPR area. The GPRs are 8-bits wide. When the GPR area is greater than 232, it must be banked to allow access to the additional memory space.

Only the PIC17C43 and PIC17C44 devices have banked memory in the GPR area. To facilitate switching between these banks, the MOVLR bank instruction has been added to the instruction set. GPRs are not initialized by a Power-on Reset and are unchanged on all other resets.

6.2.2 SPECIAL FUNCTION REGISTERS (SFR)

The SFRs are used by the CPU and peripheral functions to control the operation of the device (Figure 6-5 and Figure 6-6). These registers are static RAM.


The SFRs can be classified into two sets, those associated with the "core" function and those related to the peripheral functions. Those registers related to the "core" are described here, while those related to a peripheral feature are described in the section for each peripheral feature.

The peripheral registers are in the banked portion of memory, while the core registers are in the unbanked region. To facilitate switching between the peripheral banks, the MOVLB bank instruction has been provided.

6.2.2.2 CPU STATUS REGISTER (CPUSTA)

The CPUSTA register contains the status and control bits for the CPU. This register is used to globally enable/disable interrupts. If only a specific interrupt is desired to be enabled/disabled, please refer to the INTerrupt STAtus (INTSTA) register and the Peripheral Interrupt Enable (PIE) register. This register also indicates if the stack is available and contains the Power-down (PD) and Time-out (TO) bits. The TO, PD, and STKAV bits are not writable. These bits are set and cleared according to device logic. Therefore, the result of an instruction with the CPUSTA register as destination may be different than intended.

FIGURE 6-8: CPUSTA REGISTER (ADDRESS: 06h, UNBANKED)

Example 9-1 shows the instruction sequence to initialize PORTB. The Bank Select Register (BSR) must be selected to Bank 0 for the port to be initialized.

EXAMPLE 9-1: INITIALIZING PORTB

MOVLB	0	;	Select Bank 0
CLRF	PORTB	;	Initialize PORTB by clearing
		;	output data latches
MOVLW	0xCF	;	Value used to initialize
		;	data direction
MOVWF	DDRB	;	Set RB<3:0> as inputs
		;	RB<5:4> as outputs
		;	RB<7:6> as inputs

Name	Bit	Buffer Type	Function
RB0/CAP1	bit0	ST	Input/Output or the RB0/CAP1 input pin. Software programmable weak pull- up and interrupt on change features.
RB1/CAP2	bit1	ST	Input/Output or the RB1/CAP2 input pin. Software programmable weak pull- up and interrupt on change features.
RB2/PWM1	bit2	ST	Input/Output or the RB2/PWM1 output pin. Software programmable weak pull-up and interrupt on change features.
RB3/PWM2	bit3	ST	Input/Output or the RB3/PWM2 output pin. Software programmable weak pull-up and interrupt on change features.
RB4/TCLK12	bit4	ST	Input/Output or the external clock input to Timer1 and Timer2. Software pro- grammable weak pull-up and interrupt on change features.
RB5/TCLK3	bit5	ST	Input/Output or the external clock input to Timer3. Software programmable weak pull-up and interrupt on change features.
RB6	bit6	ST	Input/Output pin. Software programmable weak pull-up and interrupt on change features.
RB7	bit7	ST	Input/Output pin. Software programmable weak pull-up and interrupt on change features.

TABLE 9-3: PORTB FUNCTIONS

Legend: ST = Schmitt Trigger input.

TABLE 9-4: REGISTERS/BITS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
12h, Bank 0	PORTB	PORTB d	ata latch							xxxx xxxx	uuuu uuuu
11h, Bank 0	DDRB	Data dired	ction registe	er for PORTE	5					1111 1111	1111 1111
10h, Bank 0	PORTA	RBPU	_	RA5	RA4	RA3	RA2	RA1/T0CKI	RA0/INT	0-xx xxxx	0-uu uuuu
06h, Unbanked	CPUSTA	_	_	STKAV	GLINTD	TO	PD	_	_	11 11	11 qq
07h, Unbanked	INTSTA	PEIF	T0CKIF	T0IF	INTF	PEIE	T0CKIE	T0IE	INTE	0000 0000	0000 0000
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
16h, Bank 3	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h, Bank 3	TCON2	CA2OVF	CA10VF	PWM2ON	PWM10N	CA1/PR3	TMR3ON	TMR2ON	TMR10N	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = Value depends on condition.

Shaded cells are not used by PORTB.

Note 1: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

TABLE 9-5: PORTC FUNCTIONS

Name	Bit	Buffer Type	Function
RC0/AD0	bit0	TTL	Input/Output or system bus address/data pin.
RC1/AD1	bit1	TTL	Input/Output or system bus address/data pin.
RC2/AD2	bit2	TTL	Input/Output or system bus address/data pin.
RC3/AD3	bit3	TTL	Input/Output or system bus address/data pin.
RC4/AD4	bit4	TTL	Input/Output or system bus address/data pin.
RC5/AD5	bit5	TTL	Input/Output or system bus address/data pin.
RC6/AD6	bit6	TTL	Input/Output or system bus address/data pin.
RC7/AD7	bit7	TTL	Input/Output or system bus address/data pin.

Legend: TTL = TTL input.

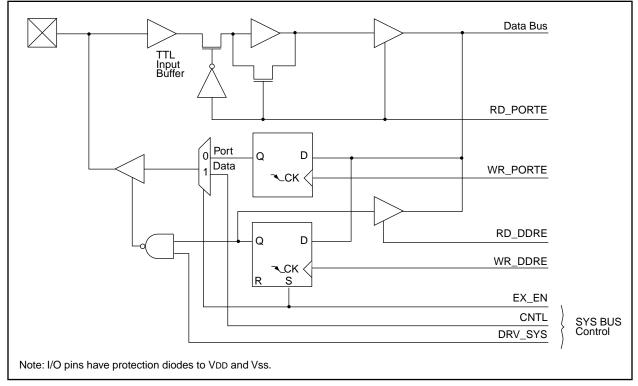
TABLE 9-6: REGISTERS/BITS ASSOCIATED WITH PORTC

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
11h, Bank 1	PORTC	RC7/ AD7	RC6/ AD6	RC5/ AD5	RC4/ AD4	RC3/ AD3	RC2/ AD2	RC1/ AD1	RC0/ AD0	xxxx xxxx	uuuu uuuu
10h, Bank 1	DDRC	Data dired	ata direction register for PORTC						1111 1111	1111 1111	

Legend: x = unknown, u = unchanged.

Note 1: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

9.4.1 PORTE AND DDRE REGISTER


PORTE is a 3-bit bi-directional port. The corresponding data direction register is DDRE. A '1' in DDRE configures the corresponding port pin as an input. A '0' in the DDRE register configures the corresponding port pin as an output. Reading PORTE reads the status of the pins, whereas writing to it will write to the port latch. PORTE is multiplexed with the system bus. When operating as the system bus, PORTE contains the control signals for the address/data bus (AD15:AD0). These control signals are Address Latch Enable (ALE), Output Enable (\overline{OE}), and Write (\overline{WR}). The control signals \overline{OE} and \overline{WR} are active low signals. The timing for the system bus is shown in the Electrical Characteristics section.

Note: This port is configured as the system bus when the device's configuration bits are selected to Microprocessor or Extended Microcontroller modes. In the two other microcontroller modes, this port is a general purpose I/O. Example 9-4 shows the instruction sequence to initialize PORTE. The Bank Select Register (BSR) must be selected to Bank 1 for the port to be initialized.

EXAMPLE 9-4: INITIALIZING PORTE

MOVLB	1	;	Select Bank 1
CLRF	PORTE	;	Initialize PORTE data
		;	latches before setting
		;	the data direction
		;	register
MOVLW	0x03	;	Value used to initialize
		;	data direction
MOVWF	DDRE	;	Set RE<1:0> as inputs
		;	RE<2> as outputs
		;	RE<7:3> are always
		;	read as '0'

FIGURE 9-8: PORTE BLOCK DIAGRAM (IN I/O PORT MODE)

12.1.3.1 PWM PERIODS

The period of the PWM1 output is determined by Timer1 and its period register (PR1). The period of the PWM2 output can be software configured to use either Timer1 or Timer2 as the time-base. When TM2PW2 bit (PW2DCL<5>) is clear, the time-base is determined by TMR1 and PR1. When TM2PW2 is set, the time-base is determined by Timer2 and PR2.

Running two different PWM outputs on two different timers allows different PWM periods. Running both PWMs from Timer1 allows the best use of resources by freeing Timer2 to operate as an 8-bit timer. Timer1 and Timer2 can not be used as a 16-bit timer if either PWM is being used.

The PWM periods can be calculated as follows:

period of PWM1 =[(PR1) + 1] x 4Tosc

period of PWM2 =[(PR1) + 1] x 4Tosc or [(PR2) + 1] x 4Tosc

The duty cycle of PWMx is determined by the 10-bit value DCx<9:0>. The upper 8-bits are from register PWxDCH and the lower 2-bits are from PWxDCL<7:6> (PWxDCH:PWxDCL<7:6>). Table 12-3 shows the maximum PWM frequency (FPWM) given the value in the period register.

The number of bits of resolution that the PWM can achieve depends on the operation frequency of the device as well as the PWM frequency (FPWM).

Maximum PWM resolution (bits) for a given PWM frequency:

$$= \frac{\log\left(\frac{FOSC}{FPWM}\right)}{\log\left(2\right)} \quad \text{bits}$$

The PWMx duty cycle is as follows:

PWMx Duty Cycle = $(DCx) \times TOSC$

where DCx represents the 10-bit value from PWxDCH:PWxDCL.

If DCx = 0, then the duty cycle is zero. If PRx = PWxDCH, then the PWM output will be low for one to four Q-clock (depending on the state of the PWxDCL<7:6> bits). For a Duty Cycle to be 100%, the PWxDCH value must be greater then the PRx value.

The duty cycle registers for both PWM outputs are double buffered. When the user writes to these registers, they are stored in master latches. When TMR1 (or TMR2) overflows and a new PWM period begins, the master latch values are transferred to the slave latches and the PWMx pin is forced high.

Note:	For PW1DCH, PW1DCL, PW2DCH and
	PW2DCL registers, a write operation
	writes to the "master latches" while a read
	operation reads the "slave latches". As a
	result, the user may not read back what
	was just written to the duty cycle registers.

The user should also avoid any "read-modify-write" operations on the duty cycle registers, such as: ADDWF PW1DCH. This may cause duty cycle outputs that are unpredictable.

TABLE 12-3:	PWM FREQUENCY vs.
	RESOLUTION AT 25 MHz

PWM	Frequency (kHz)								
Frequency	24.4	48.8	65.104	97.66	390.6				
PRx Value	0xFF	0x7F	0x5F	0x3F	0x0F				
High Resolution	10-bit	9-bit	8.5-bit	8-bit	6-bit				
Standard Resolution	8-bit	7-bit	6.5-bit	6-bit	4-bit				

12.1.3.2 PWM INTERRUPTS

The PWM module makes use of TMR1 or TMR2 interrupts. A timer interrupt is generated when TMR1 or TMR2 equals its period register and is cleared to zero. This interrupt also marks the beginning of a PWM cycle. The user can write new duty cycle values before the timer roll-over. The TMR1 interrupt is latched into the TMR1IF bit and the TMR2 interrupt is latched into the TMR2IF bit. These flags must be cleared in software.

12.1.3.3 EXTERNAL CLOCK SOURCE

The PWMs will operate regardless of the clock source of the timer. The use of an external clock has ramifications that must be understood. Because the external TCLK12 input is synchronized internally (sampled once per instruction cycle), the time TCLK12 changes to the time the timer increments will vary by as much as TCY (one instruction cycle). This will cause jitter in the duty cycle as well as the period of the PWM output.

This jitter will be \pm TCY, unless the external clock is synchronized with the processor clock. Use of one of the PWM outputs as the clock source to the TCLKx input, will supply a synchronized clock.

In general, when using an external clock source for PWM, its frequency should be much less than the device frequency (Fosc).

12.1.3.3.1 MAX RESOLUTION/FREQUENCY FOR EXTERNAL CLOCK INPUT

The use of an external clock for the PWM time-base (Timer1 or Timer2) limits the PWM output to a maximum resolution of 8-bits. The PWxDCL<7:6> bits must be kept cleared. Use of any other value will distort the PWM output. All resolutions are supported when internal clock mode is selected. The maximum attainable frequency is also lower. This is a result of the timing requirements of an external clock input for a timer (see the Electrical Specification section). The maximum PWM frequency, when the timers clock source is the RB4/TCLK12 pin, is shown in Table 12-3 (standard resolution mode).

12.2 <u>Timer3</u>

Timer3 is a 16-bit timer consisting of the TMR3H and TMR3L registers. TMR3H is the high byte of the timer and TMR3L is the low byte. This timer has an associated 16-bit period register (PR3H/CA1H:PR3L/CA1L). This period register can be software configured to be a second 16-bit capture register.

When the TMR3CS bit (TCON1<2>) is clear, the timer increments every instruction cycle (Fosc/4). When TMR3CS is set, the timer increments on every falling edge of the RB5/TCLK3 pin. In either mode, the TMR3ON bit must be set for the timer to increment. When TMR3ON is clear, the timer will not increment or set the TMR3IF bit.

Timer3 has two modes of operation, depending on the CA1/PR3 bit (TCON2<3>). These modes are:

- · One capture and one period register mode
- Dual capture register mode

The PIC17C4X has up to two 16-bit capture registers that capture the 16-bit value of TMR3 when events are detected on capture pins. There are two capture pins (RB0/CAP1 and RB1/CAP2), one for each capture register. The capture pins are multiplexed with PORTB pins. An event can be:

- · a rising edge
- a falling edge
- every 4th rising edge
- every 16th rising edge

Each 16-bit capture register has an interrupt flag associated with it. The flag is set when a capture is made. The capture module is truly part of the Timer3 block. Figure 12-7 and Figure 12-8 show the block diagrams for the two modes of operation.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 3	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h, Bank 3	TCON2	CA2OVF	CA10VF	PWM2ON	PWM10N	CA1/PR3	TMR3ON	TMR2ON	TMR10N	0000 0000	0000 0000
10h, Bank 2	TMR1	Timer1 reg	ister							xxxx xxxx	uuuu uuuu
11h, Bank 2	TMR2	Timer2 reg	ister							XXXX XXXX	uuuu uuuu
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
07h, Unbanked	INTSTA	PEIF	T0CKIF	T0IF	INTF	PEIE	TOCKIE	TOIE	INTE	0000 0000	0000 0000
06h, Unbanked	CPUSTA	—	_	STKAV	GLINTD	TO	PD	—	_	11 11	11 qq
10h, Bank 3	PW1DCL	DC1	DC0	—	—	—			_	xx	uu
11h, Bank 3	PW2DCL	DC1	DC0	TM2PW2	_	—			_	xx0	uu0
12h, Bank 3	PW1DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	xxxx xxxx	uuuu uuuu
13h, Bank 3	PW2DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	XXXX XXXX	uuuu uuuu

TABLE 12-4: REGISTERS/BITS ASSOCIATED WITH PWM

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends on conditions, shaded cells are not used by PWM.

12.2.1 ONE CAPTURE AND ONE PERIOD REGISTER MODE

In this mode registers PR3H/CA1H and PR3L/CA1L constitute a 16-bit period register. A block diagram is shown in Figure 12-7. The timer increments until it equals the period register and then resets to 0000h. TMR3 Interrupt Flag bit (TMR3IF) is set at this point. This interrupt can be disabled by clearing the TMR3 Interrupt Enable bit (TMR3IE). TMR3IF must be cleared in software.

This mode is selected if control bit CA1/PR3 is clear. In this mode, the Capture1 register, consisting of high byte (PR3H/CA1H) and low byte (PR3L/CA1L), is configured as the period control register for TMR3. Capture1 is disabled in this mode, and the corresponding Interrupt bit CA1IF is never set. TMR3 increments until it equals the value in the period register and then resets to 0000h.

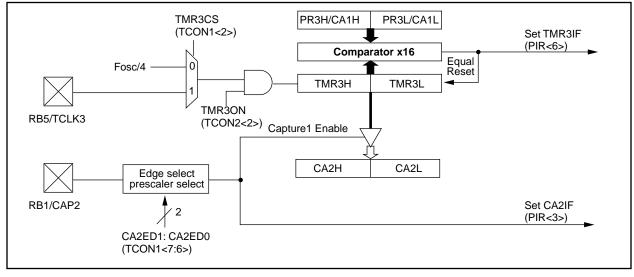
Capture2 is active in this mode. The CA2ED1 and CA2ED0 bits determine the event on which capture will occur. The possible events are:

- · Capture on every falling edge
- Capture on every rising edge
- · Capture every 4th rising edge
- · Capture every 16th rising edge

When a capture takes place, an interrupt flag is latched into the CA2IF bit. This interrupt can be enabled by setting the corresponding mask bit CA2IE. The Peripheral Interrupt Enable bit (PEIE) must be set and the Global Interrupt Disable bit (GLINTD) must be cleared for the interrupt to be acknowledged. The CA2IF interrupt flag bit must be cleared in software.

When the capture prescale select is changed, the prescaler is not reset and an event may be generated. Therefore, the first capture after such a change will be ambiguous. However, it sets the time-base for the next capture. The prescaler is reset upon chip reset. Capture pin RB1/CAP2 is a multiplexed pin. When used as a port pin, Capture2 is not disabled. However, the user can simply disable the Capture2 interrupt by clearing CA2IE. If RB1/CAP2 is used as an output pin, the user can activate a capture by writing to the port pin. This may be useful during development phase to emulate a capture interrupt.

The input on capture pin RB1/CAP2 is synchronized internally to internal phase clocks. This imposes certain restrictions on the input waveform (see the Electrical Specification section for timing).


The Capture2 overflow status flag bit is double buffered. The master bit is set if one captured word is already residing in the Capture2 register and another "event" has occurred on the RB1/CA2 pin. The new event will not transfer the Timer3 value to the capture register, protecting the previous unread capture value. When the user reads both the high and the low bytes (in any order) of the Capture2 register, the master overflow bit is transferred to the slave overflow bit (CA2OVF) and then the master bit is reset. The user can then read TCON2 to determine the value of CA2OVF.

The recommended sequence to read capture registers and capture overflow flag bits is shown in Example 12-1.

EXAMPLE 12-1: SEQUENCE TO READ CAPTURE REGISTERS

MOVLB 3	;Select Bank 3
MOVPF CA2L,LO_BYTE	;Read Capture2 low
	;byte, store in LO_BYTE
MOVPF CA2H, HI_BYTE	;Read Capture2 high
	;byte, store in HI_BYTE
MOVPF TCON2,STAT_VAL	;Read TCON2 into file
	;STAT_VAL

FIGURE 12-7: TIMER3 WITH ONE CAPTURE AND ONE PERIOD REGISTER BLOCK DIAGRAM

PIC17C4X

ADDLW	ADD Lite	ADD Literal to WREG							
Syntax:	[label] A	DLW	k						
Operands:	$0 \le k \le 25$	$0 \le k \le 255$							
Operation:	(WREG) -	+ k \rightarrow (V	VREG)						
Status Affected:	OV, C, DC	C, Z							
Encoding:	1011	0001	kkkk	kkkk					
Description:			ded to the placed in						
Words:	1								
Cycles:	1								
Q Cycle Activity:									
Q1	Q2	Q3	3	Q4					
Decode	Read literal 'k'	Execu		Vrite to WREG					
Example: ADDLW 0x15									
Before Instruc WREG =									

ADDWF	ADD WRE	EG to f							
Syntax:	[<i>label</i>] A[DDWF 1	f,d						
Operands:	$0 \le f \le 255$ $d \in [0,1]$	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \ [0,1] \end{array}$							
Operation:	(WREG) +	- (f) \rightarrow (de	est)						
Status Affected:	OV, C, DC	OV, C, DC, Z							
Encoding:	0000	111d	ffff	ffff					
Description:	Add WREG to register 'f'. If 'd' is 0 the result is stored in WREG. If 'd' is 1 the result is stored back in register 'f'.								
Words:	1								
Cycles:	1								
Q Cycle Activity:									
Q1	Q2	Q3		Q4					
Decode	Read register 'f'	Execute	· ·	/rite to stination					
Example:	ADDWF	REG, 0							
Before Instru WREG REG	iction = 0x17 = 0xC2								
After Instruct WREG REG	tion = 0xD9 = 0xC2								

After Instruction WREG = 0x25

MULLW	Multiply I	_iteral with V	VREG	MULWF	Multiply V	VREG with	f					
Syntax:	[label]	MULLW k		Syntax:	[label]	MULWF f						
Operands:	$0 \le k \le 25$	5		Operands:	$0 \le f \le 25$	5						
Operation:	(k x WRE	G) \rightarrow PRODI	H:PRODL	Operation:	(WREG x	$(WREG x f) \to PRODH:PRODL$						
Status Affected:	None			Status Affected	Status Affected: None							
Encoding:	1011	1100 kk	kk kkkk	Encoding:	0011	0100 ff	Ef ffff					
Description:	out betwee and the 8-b result is pla register pai high byte. WREG is u None of the Note that n is possible	bit literal 'k'. The aced in PRODI ir. PRODH con Inchanged. e status flags a	tents of WREGout between the content'. The 16-bitand the register file locaCODH:PRODL16-bit result is stored inI contains thePRODH:PRODL registerI.Both WREG and 'f' areags are affected.None of the status flagsrflow nor carryNote that neither overfloeeration. A zerois possible in this operation		Description: An unsigned multiplication out between the contents or and the register file location 16-bit result is stored in the PRODH: PRODL register properties of the status flags and Note that neither overflow is possible in this operation result is possible but not different to the status flags and the status flag		and the register file loca 16-bit result is stored in PRODH:PRODL registe PRODH contains the hi Both WREG and 'f' are None of the status flags Note that neither overflo is possible in this opera		out between the contents and the register file location 16-bit result is stored in the PRODH:PRODL register PRODH contains the high Both WREG and 'f' are un None of the status flags a Note that neither overflow is possible in this operation		tts of WREG ation 'f'. The the er pair. gh byte. unchanged. s are affected. ow nor carry tion. A zero	
Words:	1			Words:	1							
Cycles:	1			Cycles:	1							
Q Cycle Activity:				Q Cycle Activity	:							
Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4					
Decode	Read literal 'k'	Execute	Write registers PRODH: PRODL	Decode	Read register 'f'	Execute	Write registers PRODH: PRODL					
Example:	MULLW	0xC4		Example:	MULWF	REG	1					
Before Instru WREG PRODH PRODL After Instruct	= 0> = ? = ?	Æ2		Before Inst WREG REG PRODI PRODI	= 0x = 0x H = ?	(C4 (B5						
WREG PRODH PRODL	= 0> = 0> = 0>	(C4 (AD (08 is not avail	able in the	After Instru WREG REG PRODI PRODI	$\begin{array}{rcl} = & 0 \\ = & 0 \\ + & = & 0 \end{array}$	xC4 xB5 x8A x94						
PIC17	C42 device				instruction 17C42 device		lable in th					

SLEEP	SLEEP Enter SLEEP mode							
Syntax:	[label]	SLEEP						
Operands:	None							
Operation:	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Status Affected	I: TO, PD							
Encoding:	0000	0000	0000	0011				
Description: The power down status bit (PD) is cleared. The time-out status bit (TO) set. Watchdog Timer and its prescal are cleared. The processor is put into SLEEP mode with the oscillator stopped.								
Words:	1							
Cycles:	1							
Q Cycle Activit	y:							
Q1	Q2	Q3		Q4				
Decode	Read register PCLATH	Execute	e	NOP				
Example:	SLEEP							
Before Instruction TO = ? PD = ?								
After Instru TO = PD = † If WDT caus	uction 1 † 0 ses wake-up, t	his bit is c	leared					

† If WDT causes wake-up, this bit is cleared

SUE	BLW	S	Subtract WREG from Literal					
Synt	tax:	[labe	/] :	SUBLW	k		
Ope	rands:	0	$\leq k$	≤ 2	55			
Ope	ration:	k	– (V	VRE	$\Xi G) \rightarrow (N)$	VRE	G)	
Stat	us Affected:	C	DV, C	, D	C, Z			
Enc	oding:	Γ	101	1	0010	kkł	k	kkkk
Description:				k'. T	subtracte he result			e eight bit ⊢in
Wor	ds:	1						
Cycl	les:	1						
QC	ycle Activity:							
	Q1		Q2		Q3			Q4
	Decode	-	Read eral 'k	۲'	Execu	ite		Vrite to WREG
Exa	<u>mple 1</u> :	S	UBLW	1 (Ox02			
	Before Instru WREG C After Instruct WREG	= =	ר 1 ? 1					
<u>Exa</u>	C Z mple <u>2</u> :	=	1 0	; re	esult is po	ositive		
	Before Instru WREG C	ictior = =	ר 2 ?					
<u>Exa</u>	After Instruct WREG C Z mple <u>3</u> :	tion = = =	0 1 1	; re	esult is ze	ero		
	Before Instru WREG C	ictior = =	ר 3 ?					
	After Instruct WREG C Z	tion = = =	FF 0 1		's comple esult is ne		·	

	Standard Operating Conditions (unless otherwise stated)									
			Operating	tempera						
DC CHARA	CTERI	STICS	$-40^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial and							
					· ·		$TA \leq +70^{\circ}C$ for commercial			
			Operating	voltage \	VDD rang	e as de	escribed in Section 17.1			
Parameter										
No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions			
		Output Low Voltage								
D080	VOL	I/O ports (except RA2 and RA3)	_	_	0.1VDD	V	IOL = 4 mA			
D081		with TTL buffer	_	_	0.4	V	IOL = 6 mA, VDD = 4.5V			
							Note 6			
D082		RA2 and RA3	_	_	3.0	V	IOL = 60.0 mA, VDD = 5.5V			
D083		OSC2/CLKOUT	_	_	0.4	V	IOL = 2 mA, VDD = 4.5 V			
		(RC and EC osc modes)								
		Output High Voltage (Note 3)								
D090	Vон	I/O ports (except RA2 and RA3)	0.9Vdd	_	_	V	ЮН = -2 mA			
D091		with TTL buffer	2.4	_	_	V	Юн = -6.0 mA, VDD = 4.5V			
							Note 6			
D092		RA2 and RA3	_	_	12	V	Pulled-up to externally applied			
							voltage			
D093		OSC2/CLKOUT	2.4	_	_	V	Юн = -5 mA, VDD = 4.5V			
		(RC and EC osc modes)								
		Capacitive Loading Specs on								
		Output Pins								
D100	Cosc ₂	OSC2 pin	_	_	25 ††	pF	In EC or RC osc modes when			
							OSC2 pin is outputting			
							CLKOUT.			
							External clock is used to drive			
							OSC1.			
D101	Cio	All I/O pins and OSC2	-	-	50 ††	pF				
		(in RC mode)								
D102	CAD	System Interface Bus	-	-	100 ††	pF	In Microprocessor or			
		(PORTC, PORTD and PORTE)					Extended Microcontroller			
							mode			

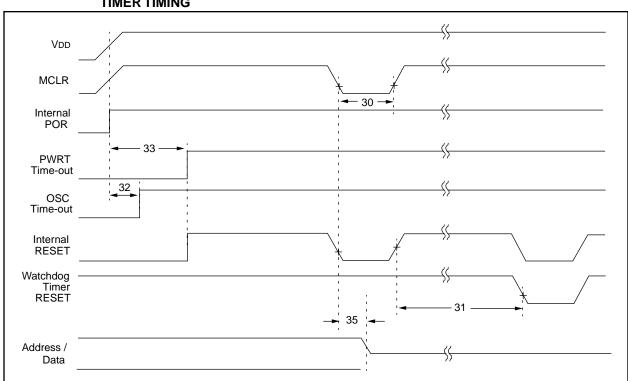
These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

the Design guidance to attain the AC timing specifications. These loads are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC17CXX devices be driven with external clock in RC mode.


2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in: PIC17CXX Programming Specifications (Literature number DS30139).

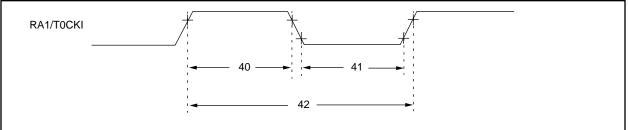
5: The MCLR/Vpp pin may be kept in this range at times other than programming, but this is not recommended.

6: For TTL buffers, the better of the two specifications may be used.

FIGURE 17-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 17-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	100 *	_		ns	
31	Twdt	Watchdog Timer Time-out Period (Prescale = 1)	5 *	12	25 *	ms	
32	Tost	Oscillation Start-up Timer Period		1024 Tosc §		ms	Tosc = OSC1 period
33	Tpwrt	Power-up Timer Period	40 *	96	200 *	ms	
35	TmcL2adI	MCLR to System Interface bus (AD15:AD0) invalid	_	—	100 *	ns	


* These parameters are characterized but not tested.

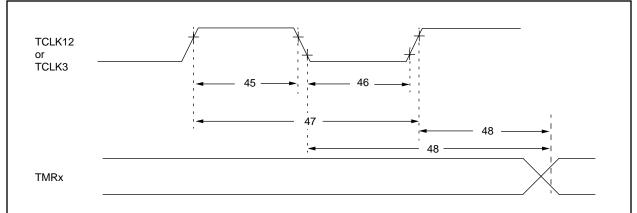
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

§ This specification ensured by design.

FIGURE 17-5: TIMER0 CLOCK TIMINGS

TABLE 17-5: TIMER0 CLOCK REQUIREMENTS


Parameter No.	Sum	Characteristic		Min	Tunt	Мах	Unito	Conditions
NO.	Sym	Characteristic		IVIIII	Typ†	IVIAX	Units	Conditions
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5TCY + 20 §	_	_	ns	
			With Prescaler	10*	—	—	ns	
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5Tcy + 20 §	—	—	ns	
			With Prescaler	10*	—	—	ns	
42	Tt0P	T0CKI Period	•	<u>Tcy + 40</u> §	—	—	ns	N = prescale value
				N				(1, 2, 4,, 256)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

FIGURE 17-6: TIMER1, TIMER2, AND TIMER3 CLOCK TIMINGS

TABLE 17-6: TIMER1, TIMER2, AND TIMER3 CLOCK REQUIREMENTS

Parameter				Тур			
No.	Sym	Characteristic	Min	†	Max	Units	Conditions
45	Tt123H	TCLK12 and TCLK3 high time	0.5 TCY + 20 §		_	ns	
46	Tt123L	TCLK12 and TCLK3 low time	0.5 TCY + 20 §			ns	
47	Tt123P	TCLK12 and TCLK3 input period	<u>Tcy + 40</u> § N			ns	N = prescale value (1, 2, 4, 8)
48	TckE2tmrl	Delay from selected External Clock Edge to Timer increment	2Tosc §		6 Tosc §	_	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

NOTES:

19.3 DC CHARACTERISTICS:

PIC17CR42/42A/43/R43/44-16 (Commercial, Industrial) PIC17CR42/42A/43/R43/44-25 (Commercial, Industrial) PIC17CR42/42A/43/R43/44-33 (Commercial, Industrial) PIC17LCR42/42A/43/R43/44-08 (Commercial, Industrial)

Standard Operating Conditions (unless otherwise stated) Operating temperature

DC CHARACTERISTICS

-40°C \leq TA \leq +85°C for industrial and 0°C \leq TA \leq +70°C for commercial

	$0^{\circ}C = TA \le +70^{\circ}C$ for commercial Operating voltage VDD range as described in Section 19.1						
Parameter	1			ollage vi	D lange a		
No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
		Input Low Voltage					
	VIL	I/O ports					
D030		with TTL buffer	Vss	_	0.8	V	$4.5V \le VDD \le 5.5V$
			Vss	_	0.2Vdd	V	$2.5V \le VDD \le 4.5V$
D031		with Schmitt Trigger buffer	Vss	-	0.2Vdd	V	
D032		MCLR, OSC1 (in EC and RC mode)	Vss	-	0.2Vdd	V	Note1
D033		OSC1 (in XT, and LF mode)	-	0.5Vdd	_	V	
		Input High Voltage					
	VIH	I/O ports					
D040		with TTL buffer	2.0	-	Vdd	V	$4.5V \le VDD \le 5.5V$
			1 + 0.2VDD	-	Vdd	V	$2.5V \le VDD \le 4.5V$
D041		with Schmitt Trigger buffer	0.8Vdd	-	Vdd	V	
D042		MCLR	0.8Vdd	_	Vdd	V	Note1
D043		OSC1 (XT, and LF mode)	-	0.5Vdd	_	V	
D050	VHYS	Hysteresis of Schmitt Trigger inputs	0.15Vdd *	-	-	V	
		Input Leakage Current (Notes 2, 3)					
D060	lı∟	I/O ports (except RA2, RA3)	_	_	±1	μA	Vss ≤ VPIN ≤ VDD, I/O Pin at hi-impedance PORTB weak pull-ups disabled
D061		MCLR	_	-	±2	μA	VPIN = Vss or VPIN = VDD
D062		RA2, RA3			±2	μΑ	$Vss \le Vra2$, $Vra3 \le 12V$
D063		OSC1, TEST (EC, RC modes)	-	_	±1	μΑ	$Vss \le VPIN \le VDD$
D063B		OSC1, TEST (XT, LF modes)	-	-	VPIN	μA	RF ≥ 1 MΩ, see Figure 14.2
D064		MCLR	-	-	10	μA	VMCLR = VPP = 12V (when not programming)
D070	IPURB	PORTB weak pull-up current	60	200	400	μA	VPIN = VSS, $\overline{\text{RBPU}} = 0$ 4.5V \leq VDD \leq 6.0V

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC17CXX devices be driven with external clock in RC mode.

The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 Negative current is defined as coming out of the pin.

3: Negative current is defined as coming out of the pin.

4: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in: PIC17CXX Programming Specifications (Literature number DS30139).

5: The MCLR/VPP pin may be kept in this range at times other than programming, but is not recommended.

6: For TTL buffers, the better of the two specifications may be used.

PIC17C4X

MP-C C Compiler	145
MPSIM Software Simulator	
MULLW	129
Multiply Examples	
16 x 16 Routine	50
16 x 16 Signed Routine	51
8 x 8 Routine	49
8 x 8 Signed Routine	49
MULWF	129

Ν

NEGW)
NOP 130	`
NOP	'

0

OERR	
Opcode Field Descriptions	
OSC Selection	
Oscillator	
Configuration	
Crystal	
External Clock	
External Crystal Circuit	
External Parallel Resonant Crystal Circuit	
External Series Resonant Crystal Circuit	
RC	
RC Frequencies	165, 195
Oscillator Start-up Time (Figure)	
Oscillator Start-up Timer (OST)	15, 99
OST	
OV	
Overflow (OV)	9

Ρ

Package Marking Information	
Packaging Information	
Parameter Measurement Information	
PC (Program Counter)	
PCH	
PCL	34, 41, 108
PCLATH	
PD	
PEIE	
PEIF	
Peripheral Bank	
Peripheral Interrupt Enable	23
Peripheral Interrupt Request (PIR)	24
PICDEM-1 Low-Cost PIC16/17 Demo Board	143, 144
PICDEM-2 Low-Cost PIC16CXX Demo Board	143, 144
PICDEM-3 Low-Cost PIC16C9XXX Demo Boar	
PICMASTER [®] RT In-Circuit Emulator	
PICSTART [®] Low-Cost Development System	
PIE	34, 92, 96, 98
Pin Compatible Devices	
PIR	34, 92, 96, 98
PM0	
PM1	
POP	
POR	
PORTA	19, 34, 53
PORTB	19, 34, 55
PORTC	19, 34, 58

PORTD			
PORTE	19,	34,	62
Power-down Mode		1	05
Power-on Reset (POR)		15,	99
Power-up Timer (PWRT)			
PR1			
PR2			
PR3/CA1H			
PR3/CA1L			
PR3H/CA1H			
PR3L/CA1L			
Prescaler Assignments			
PRO MATE [®] Universal Programmer		·····	42
PRODH			
PRODL			
Program Counter (PC)		•••••	41
Program Memory			
External Access Waveforms			
External Connection Diagram			
Мар			29
Modes			
Extended Microcontroller			29
Microcontroller			29
Microprocessor			29
Protected Microcontroller			29
Operation			29
Organization			29
Transfers from Data Memory			43
Protected Microcontroller			
PS0			
PS1			
PS2			
PS3			
PUSH			
PW1DCH			
PW1DCL			
PW2DCH			
PW2DCL			
PW2DCL			
Duty Cycle			
External Clock Source			
Frequency vs. Resolution			
Interrupts		•••••	10
Max Resolution/Frequency for External			
Clock Input			
Output			
Periods			-
PWM1			
PWM1ON			
PWM2			72
PWM2ON		72,	75
PWRT		15,	99

R

RA1/T0CKI pin	
RBIE	
RBIF	
RBPU	
RC Oscillator	
RC Oscillator Frequencies	
RCIE	
RCIF	
RCREG	19, 34, 91, 92, 96, 97
RCSTA	
Reading 16-bit Value	
0	

PIC17C4X

Figure 19-2:	External Clock Timing 184
Figure 19-3:	CLKOUT and I/O Timing 185
Figure 19-4:	Reset, Watchdog Timer,
riguio io 4.	Oscillator Start-Up Timer, and
-	Power-Up Timer Timing
Figure 19-5:	Timer0 Clock Timings 187
Figure 19-6:	Timer1, Timer2, and Timer3 Clock
	Timings 187
Figure 19-7:	Capture Timings 188
Figure 19-8:	PWM Timings
Figure 19-9:	USART Module: Synchronous
rigule 13-3.	
E'	Transmission (Master/Slave) Timing 189
Figure 19-10:	USART Module: Synchronous
	Receive (Master/Slave) Timing 189
Figure 19-11:	Memory Interface Write Timing
	(Not Supported in PIC17LC4X Devices) 190
Figure 19-12:	Memory Interface Read Timing
J	(Not Supported in PIC17LC4X Devices) 191
Figure 20-1:	Typical RC Oscillator Frequency vs.
rigule 20-1.	
F : 00.0	Temperature
Figure 20-2:	Typical RC Oscillator Frequency
	vs. VDD
Figure 20-3:	Typical RC Oscillator Frequency
	vs. VDD
Figure 20-4:	Typical RC Oscillator Frequency
J	vs. VDD
Figure 20-5:	Transconductance (gm) of LF Oscillator
1 igule 20-5.	
	vs. VDD
Figure 20-6:	Transconductance (gm) of XT Oscillator
	vs. VDD196
Figure 20-7:	Typical IDD vs. Frequency (External
	Clock 25°C) 197
Figure 20-8:	Maximum IDD vs. Frequency (External
J	Clock 125°C to -40°C) 197
Figure 20-9:	Typical IPD vs. VDD Watchdog
riguie 20 5.	
Einung 00 40.	Disabled 25°C
Figure 20-10:	Maximum IPD vs. VDD Watchdog
	Disabled198
Figure 20-11:	Typical IPD vs. VDD Watchdog
	Enabled 25°C 199
Figure 20-12:	Maximum IPD vs. VDD Watchdog
0	Enabled199
Figure 20-13:	WDT Timer Time-Out Period vs. VDD 200
Figure 20-14:	IOH vs. VOH, $VDD = 3V$
Figure 20-15:	IOH vs. VOH, VDD = 5V
Figure 20-16:	IOL vs. VOL, VDD = 3V
Figure 20-17:	IOL vs. VOL, VDD = 5V
Figure 20-18:	Vтн (Input Threshold Voltage) of
	I/O Pins (TTL) vs. VDD
Figure 20-19:	VTH, VIL of I/O Pins (Schmitt Trigger)
ga.o _o .o.	vs. VDD
Figure 20-20:	VTH (Input Threshold Voltage) of OSC1
1 igule 20-20.	
	Input (In XT and LF Modes) vs. VDD 203
LIST OF TAE	
LIST OF TAE	
Table 1-1:	PIC17CXX Family of Devices 6
Table 3-1:	Pinout Descriptions12
Table 4-1:	Time-Out in Various Situations
Table 4-2:	STATUS Bits and Their Significance

Mode Memory Access 30

Initialization Conditions For Special

Table 6-2:	EPROM Memory Access Time
	Ordering Suffix
Table 6-3:	Special Function Registers34
Table 7-1:	Interrupt - Table Write Interaction45
Table 8-1:	Performance Comparison49
Table 9-1:	PORTA Functions
Table 9-2:	Registers/Bits Associated with PORTA54
Table 9-3:	PORTB Functions
Table 9-4: Table 9-5:	Registers/Bits Associated with PORTB57 PORTC Functions
Table 9-5: Table 9-6:	Registers/Bits Associated with PORTC59
Table 9-0. Table 9-7:	PORTD Functions
Table 9-8:	Registers/Bits Associated with PORTD61
Table 9-9:	PORTE Functions
Table 9-10:	Registers/Bits Associated with PORTE63
Table 11-1:	Registers/Bits Associated with Timer070
Table 12-1:	Turning On 16-bit Timer74
Table 12-2:	Summary of Timer1 and Timer2
	Registers
Table 12-3:	PWM Frequency vs. Resolution at
	25 MHz
Table 12-4:	Registers/Bits Associated with PWM77
Table 12-5:	Registers Associated with Capture79
Table 12-6:	Summary of TMR1, TMR2, and TMR3
	Registers81
Table 13-1:	Baud Rate Formula86
Table 13-2:	Registers Associated with Baud Rate
	Generator86
Table 13-3:	Baud Rates for Synchronous Mode87
Table 13-4:	Baud Rates for Asynchronous Mode88
Table 13-5:	Registers Associated with Asynchronous
	Transmission90
Table 13-6:	Registers Associated with Asynchronous
	Reception92
Table 13-7:	Registers Associated with Synchronous
	Master Transmission
Table 13-8:	Registers Associated with Synchronous
T 40.0	Master Reception
Table 13-9:	Registers Associated with Synchronous
Table 40.40	Slave Transmission
Table 13-10:	Registers Associated with Synchronous
Table 14-1:	Slave Reception
Table 14-1. Table 14-2:	Capacitor Selection for Ceramic
	Resonators
Table 14-3:	Capacitor Selection for Crystal
Table 14-5.	OscillatoR
Table 14-4:	Registers/Bits Associated with the
	Watchdog Timer
Table 15-1:	Opcode Field Descriptions
Table 15-2:	PIC17CXX Instruction Set110
Table 16-1:	development tools from microchip146
Table 17-1:	Cross Reference of Device Specs for
	Oscillator Configurations and Frequencies
	of Operation (Commercial Devices)148
Table 17-2:	External Clock Timing Requirements155
Table 17-3:	CLKOUT and I/O Timing Requirements156
Table 17-4:	Reset, Watchdog Timer,
	Oscillator Start-Up Timer and
	Power-Up Timer Requirements157
Table 17-5:	Timer0 Clock Requirements158
Table 17-6:	Timer1, Timer2, and Timer3 Clock
	Requirements158
Table 17-7:	Capture Requirements
Table 17-8:	PWM Requirements159

Table 4-3:

Table 4-4:

Table 5-1:

Table 6-1: