

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (8K x 16)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c44-25e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

7.1 <u>Table Writes to Internal Memory</u>

A table write operation to internal memory causes a long write operation. The long write is necessary for programming the internal EPROM. Instruction execution is halted while in a long write cycle. The long write will be terminated by any enabled interrupt. To ensure that the EPROM location has been well programmed, a minimum programming time is required (see specification #D114). Having only one interrupt enabled to terminate the long write ensures that no unintentional interrupts will prematurely terminate the long write.

The sequence of events for programming an internal program memory location should be:

- 1. Disable all interrupt sources, except the source to terminate EPROM program write.
- 2. Raise MCLR/VPP pin to the programming voltage.
- 3. Clear the WDT.
- 4. Do the table write. The interrupt will terminate the long write.
- 5. Verify the memory location (table read).
 - **Note:** Programming requirements must be met. See timing specification in electrical specifications for the desired device. Violating these specifications (including temperature) may result in EPROM locations that are not fully programmed and may lose their state over time.

7.1.1 TERMINATING LONG WRITES

An interrupt source or reset are the only events that terminate a long write operation. Terminating the long write from an interrupt source requires that the interrupt enable and flag bits are set. The GLINTD bit only enables the vectoring to the interrupt address.

If the TOCKI, RA0/INT, or TMR0 interrupt source is used to terminate the long write; the interrupt flag, of the highest priority enabled interrupt, will terminate the long write and automatically be cleared.

- **Note 1:** If an interrupt is pending, the TABLWT is aborted (an NOP is executed). The highest priority pending interrupt, from the TOCKI, RA0/INT, or TMR0 sources that is enabled, has its flag cleared.
- **Note 2:** If the interrupt is not being used for the program write timing, the interrupt should be disabled. This will ensure that the interrupt is not lost, nor will it terminate the long write prematurely.

If a peripheral interrupt source is used to terminate the long write, the interrupt enable and flag bits must be set. The interrupt flag will not be automatically cleared upon the vectoring to the interrupt vector address.

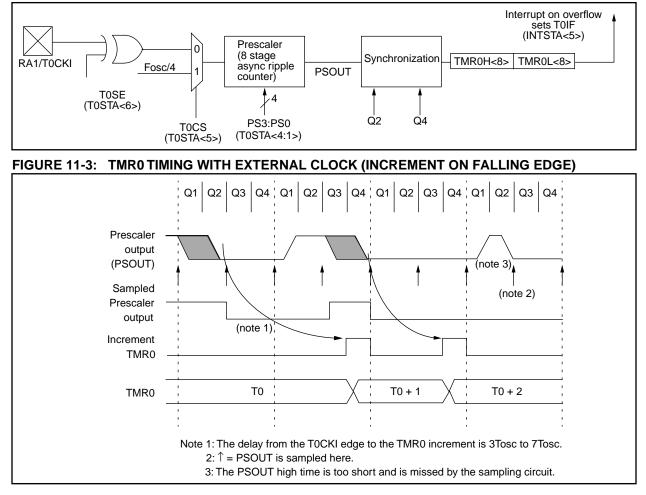
If the GLINTD bit is cleared prior to the long write, when the long write is terminated, the program will branch to the interrupt vector.

If the GLINTD bit is set prior to the long write, when the long write is terminated, the program will not vector to the interrupt address.

Interrupt Source	GLINTD	Enable Bit	Flag Bit	Action
RA0/INT, TMR0, T0CKI	0	1	1	Terminate long table write (to internal program memory), branch to interrupt vector (branch clears flag bit).
	0	1	0	None
	1	0	x	None
	1	1	1	Terminate table write, do not branch to interrupt vector (flag is automatically cleared).
Peripheral	0	1	1	Terminate table write, branch to interrupt vector.
	0	1	0	None
	1	0	x	None
	1	1	1	Terminate table write, do not branch to interrupt vector (flag is set).

TABLE 7-1: INTERRUPT - TABLE WRITE INTERACTION

11.1 <u>Timer0 Operation</u>


When the TOCS (TOSTA<5>) bit is set, TMR0 increments on the internal clock. When TOCS is clear, TMR0 increments on the external clock (RA1/T0CKI pin). The external clock edge can be configured in software. When the TOSE (TOSTA<6>) bit is set, the timer will increment on the rising edge of the RA1/T0CKI pin. When T0SE is clear, the timer will increment on the falling edge of the RA1/T0CKI pin. The prescaler can be programmed to introduce a prescale of 1:1 to 1:256. The timer increments from 0000h to FFFFh and rolls over to 0000h. On overflow, the TMR0 Interrupt Flag bit (T0IF) is set. The TMR0 interrupt can be masked by clearing the corresponding TMR0 Interrupt Enable bit (T0IE). The TMR0 Interrupt Flag bit (T0IF) is automatically cleared when vectoring to the TMR0 interrupt vector.

11.2 Using Timer0 with External Clock

When the external clock input is used for Timer0, it is synchronized with the internal phase clocks. Figure 11-3 shows the synchronization of the external clock. This synchronization is done after the prescaler. The output of the prescaler (PSOUT) is sampled twice in every instruction cycle to detect a rising or a falling edge. The timing requirements for the external clock are detailed in the electrical specification section for the desired device.

11.2.1 DELAY FROM EXTERNAL CLOCK EDGE

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time TMR0 is actually incremented. Figure 11-3 shows that this delay is between 3Tosc and 7Tosc. Thus, for example, measuring the interval between two edges (e.g. period) will be accurate within \pm 4Tosc (\pm 121 ns @ 33 MHz).

FIGURE 11-2: TIMER0 MODULE BLOCK DIAGRAM

11.3 Read/Write Consideration for TMR0

Although TMR0 is a 16-bit timer/counter, only 8-bits at a time can be read or written during a single instruction cycle. Care must be taken during any read or write.

11.3.1 READING 16-BIT VALUE

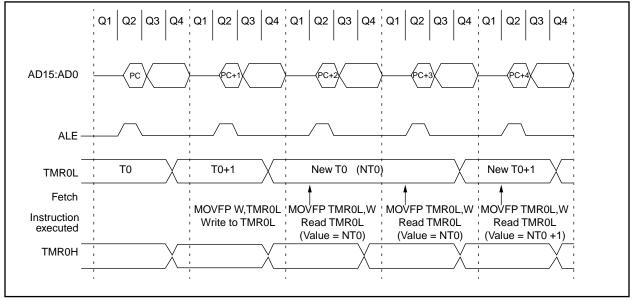
The problem in reading the entire 16-bit value is that after reading the low (or high) byte, its value may change from FFh to 00h.

Example 11-1 shows a 16-bit read. To ensure a proper read, interrupts must be disabled during this routine.

EXAMPLE 11-1: 16-BIT READ

MOVPF	TMROL,	TMPLO	;read low tmr0
MOVPF	TMROH,	TMPHI	;read high tmr0
MOVFP	TMPLO,	WREG	;tmplo -> wreg
CPFSLT	TMR0L		;tmr0l < wreg?
RETURN			;no then return
MOVPF	TMROL,	TMPLO	;read low tmr0
MOVPF	TMROH,	TMPHI	;read high tmr0
RETURN			;return

11.3.2 WRITING A 16-BIT VALUE TO TMR0


Since writing to either TMR0L or TMR0H will effectively inhibit increment of that half of the TMR0 in the next cycle (following write), but not inhibit increment of the other half, the user must write to TMR0L first and TMR0H next in two consecutive instructions, as shown in Example 11-2. The interrupt must be disabled. Any write to either TMR0L or TMR0H clears the prescaler.

EXAMPLE 11-2: 16-BIT WRITE

BSF CPUSTA, GLINTD ; Disable interrupt MOVFP RAM_L, TMROL ; MOVFP RAM_H, TMROH ; BCF CPUSTA, GLINTD ; Done, enable interrupt

11.4 Prescaler Assignments

Timer0 has an 8-bit prescaler. The prescaler assignment is fully under software control; i.e., it can be changed "on the fly" during program execution. When changing the prescaler assignment, clearing the prescaler is recommended before changing assignment. The value of the prescaler is "unknown," and assigning a value that is less then the present value makes it difficult to take this unknown time into account.

FIGURE 11-4: TMR0 TIMING: WRITE HIGH OR LOW BYTE

12.1.3.1 PWM PERIODS

The period of the PWM1 output is determined by Timer1 and its period register (PR1). The period of the PWM2 output can be software configured to use either Timer1 or Timer2 as the time-base. When TM2PW2 bit (PW2DCL<5>) is clear, the time-base is determined by TMR1 and PR1. When TM2PW2 is set, the time-base is determined by Timer2 and PR2.

Running two different PWM outputs on two different timers allows different PWM periods. Running both PWMs from Timer1 allows the best use of resources by freeing Timer2 to operate as an 8-bit timer. Timer1 and Timer2 can not be used as a 16-bit timer if either PWM is being used.

The PWM periods can be calculated as follows:

period of PWM1 =[(PR1) + 1] x 4Tosc

period of PWM2 =[(PR1) + 1] x 4Tosc or [(PR2) + 1] x 4Tosc

The duty cycle of PWMx is determined by the 10-bit value DCx<9:0>. The upper 8-bits are from register PWxDCH and the lower 2-bits are from PWxDCL<7:6> (PWxDCH:PWxDCL<7:6>). Table 12-3 shows the maximum PWM frequency (FPWM) given the value in the period register.

The number of bits of resolution that the PWM can achieve depends on the operation frequency of the device as well as the PWM frequency (FPWM).

Maximum PWM resolution (bits) for a given PWM frequency:

$$= \frac{\log\left(\frac{FOSC}{FPWM}\right)}{\log\left(2\right)} \quad \text{bits}$$

The PWMx duty cycle is as follows:

PWMx Duty Cycle = $(DCx) \times TOSC$

where DCx represents the 10-bit value from PWxDCH:PWxDCL.

If DCx = 0, then the duty cycle is zero. If PRx = PWxDCH, then the PWM output will be low for one to four Q-clock (depending on the state of the PWxDCL<7:6> bits). For a Duty Cycle to be 100%, the PWxDCH value must be greater then the PRx value.

The duty cycle registers for both PWM outputs are double buffered. When the user writes to these registers, they are stored in master latches. When TMR1 (or TMR2) overflows and a new PWM period begins, the master latch values are transferred to the slave latches and the PWMx pin is forced high.

Note:	For PW1DCH, PW1DCL, PW2DCH and
	PW2DCL registers, a write operation
	writes to the "master latches" while a read
	operation reads the "slave latches". As a
	result, the user may not read back what
	was just written to the duty cycle registers.

The user should also avoid any "read-modify-write" operations on the duty cycle registers, such as: ADDWF PW1DCH. This may cause duty cycle outputs that are unpredictable.

TABLE 12-3:	PWM FREQUENCY vs.
	RESOLUTION AT 25 MHz

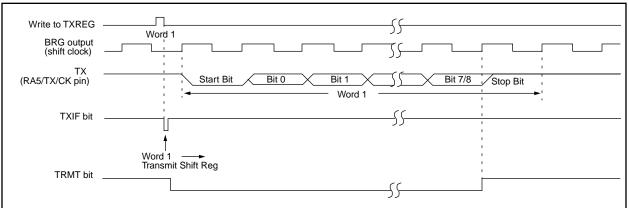
PWM	Frequency (kHz)								
Frequency	24.4	48.8	65.104	97.66	390.6				
PRx Value	0xFF	0x7F	0x5F	0x3F	0x0F				
High Resolution	10-bit	9-bit	8.5-bit	8-bit	6-bit				
Standard Resolution	8-bit	7-bit	6.5-bit	6-bit	4-bit				

12.1.3.2 PWM INTERRUPTS

The PWM module makes use of TMR1 or TMR2 interrupts. A timer interrupt is generated when TMR1 or TMR2 equals its period register and is cleared to zero. This interrupt also marks the beginning of a PWM cycle. The user can write new duty cycle values before the timer roll-over. The TMR1 interrupt is latched into the TMR1IF bit and the TMR2 interrupt is latched into the TMR2IF bit. These flags must be cleared in software.

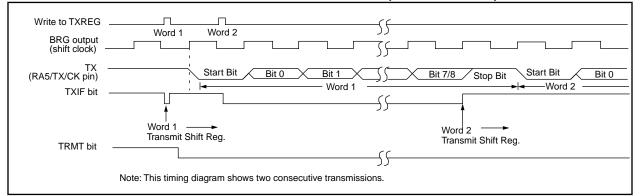
12.1.3.3 EXTERNAL CLOCK SOURCE

The PWMs will operate regardless of the clock source of the timer. The use of an external clock has ramifications that must be understood. Because the external TCLK12 input is synchronized internally (sampled once per instruction cycle), the time TCLK12 changes to the time the timer increments will vary by as much as TCY (one instruction cycle). This will cause jitter in the duty cycle as well as the period of the PWM output.


This jitter will be \pm TCY, unless the external clock is synchronized with the processor clock. Use of one of the PWM outputs as the clock source to the TCLKx input, will supply a synchronized clock.

In general, when using an external clock source for PWM, its frequency should be much less than the device frequency (Fosc).

BAUD	Fosc = 3	3 MHz	SPBRG	Fosc = 2	5 MHz	SPBRG	Fosc = 2	0 MHz	SPBRG	Fosc = 1	6 MHz	SPBRG
RATE (K)	KBAUD	%ERROR	value (decimal)									
0.3	NA	_	—	NA	_		NA	_	_	NA	_	-
1.2	NA	_	_	NA	_	_	1.221	+1.73	255	1.202	+0.16	207
2.4	2.398	-0.07	214	2.396	0.14	162	2.404	+0.16	129	2.404	+0.16	103
9.6	9.548	-0.54	53	9.53	-0.76	40	9.469	-1.36	32	9.615	+0.16	25
19.2	19.09	-0.54	26	19.53	+1.73	19	19.53	+1.73	15	19.23	+0.16	12
76.8	73.66	-4.09	6	78.13	+1.73	4	78.13	+1.73	3	83.33	+8.51	2
96	103.12	+7.42	4	97.65	+1.73	3	104.2	+8.51	2	NA	_	_
300	257.81	-14.06	1	390.63	+30.21	0	312.5	+4.17	0	NA	_	-
500	515.62	+3.13	0	NA	_	_	NA	_	_	NA	_	-
HIGH	515.62	_	0	_	_	0	312.5	_	0	250	_	0
LOW	2.014	—	255	1.53	—	255	1.221	—	255	0.977	_	255


TABLE 13-4: BAUD RATES FOR ASYNCHRONOUS MODE

BAUD RATE	Fosc = 10 MH	Iz	SPBRG value	Fosc = 7.159) MHz	SPBRG value	FOSC = 5.068	8 MHz	SPBRG value
(K)	KBAUD	%ERROR	(decimal)	KBAUD	%ERROR	(decimal)	KBAUD	%ERROR	(decimal)
0.3	NA	_	_	NA	_	_	0.31	+3.13	255
1.2	1.202	+0.16	129	1.203	_0.23	92	1.2	0	65
2.4	2.404	+0.16	64	2.380	-0.83	46	2.4	0	32
9.6	9.766	+1.73	15	9.322	-2.90	11	9.9	-3.13	7
19.2	19.53	+1.73	7	18.64	-2.90	5	19.8	+3.13	3
76.8	78.13	+1.73	1	NA	_	—	79.2	+3.13	0
96	NA	—	—	NA	—	—	NA	—	—
300	NA	_	—	NA	_	—	NA	_	_
500	NA	_	_	NA	_	_	NA	_	_
HIGH	156.3	_	0	111.9	_	0	79.2	_	0
LOW	0.610	—	255	0.437	—	255	0.309	_	2 55
BAUD	Fosc = 3.579	MHz	SPBRG	Fosc = 1 MH	z	SPBRG	FOSC = 32.76	8 kHz	SPBRG
RATE (K)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)
0.3	0.301	+0.23	185	0.300	+0.16	51	0.256	-14.67	1
1.2	1.190	-0.83	46	1.202	+0.16	12	NA	—	—
2.4	2.432	+1.32	22	2.232	-6.99	6	NA	—	—
9.6	9.322	-2.90	5	NA	_	_	NA	_	_
19.2	18.64	-2.90	2	NA	—	—	NA	—	—
76.8	NA	—	—	NA	—	—	NA	—	—
96	NA	_	_	NA	_	_	NA	_	_
300	NA	—	—	NA	—	—	NA	—	—
500	NA	—	—	NA	—	—	NA	—	—
HIGH	55.93	_	0	15.63	_	0	0.512	_	0
l mon									

FIGURE 13-5: ASYNCHRONOUS MASTER TRANSMISSION

FIGURE 13-6: ASYNCHRONOUS MASTER TRANSMISSION (BACK TO BACK)

TABLE 13-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
13h, Bank 0	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	x00- 0000	0000 -00u
16h, Bank 0	TXREG	Serial port	transmit re	egister						xxxx xxxx	uuuu uuuu
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	—	—	TRMT	TX9D	00001x	00001u
17h, Bank 0	SPBRG	Baud rate	generator	register						xxxx xxxx	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used for asynchronous transmission.

Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

14.4.2 MINIMIZING CURRENT CONSUMPTION

To minimize current consumption, all I/O pins should be either at VDD, or VSS, with no external circuitry drawing current from the I/O pin. I/O pins that are hi-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should be at VDD or VSS. The contributions from on-chip pull-ups on PORTB should also be considered, and disabled when possible.

14.5 <u>Code Protection</u>

The code in the program memory can be protected by selecting the microcontroller in code protected mode (PM2:PM0 = '000').

Note:	PM2 d	oes not	exist on th	e PIC17C42. To
	select	code	protected	microcontroller
			10 = 00'.	

In this mode, instructions that are in the on-chip program memory space, can continue to read or write the program memory. An instruction that is executed outside of the internal program memory range will be inhibited from writing to or reading from program memory.

Note: Microchip does not recommend code protecting windowed devices.

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

DCF	SNZ	Decreme	ent f, skij	o if no	ot O			
Synt	tax:	[<i>label</i>] D	CFSNZ	f,d				
Ope	rands:	0 ≤ f ≤ 25 d ∈ [0,1]	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \ [0,1] \end{array}$					
Ope	ration:	(f) – 1 \rightarrow skip if not	• • •					
Stat	us Affected:	None						
Enc	oding:	0010	011d	ffff	ffff			
Des	cription:	WREG. If ' back in reg If the resul which is al	'd' is 0 the d' is 1 the gister 'f'. t is not 0, t ready fetc DP is exec	e result result he nex hed, is uted in	is placed in is placed t instruction, discarded, stead mak-			
Wor	ds:	1						
Cycl	es:	1(2)						
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read register 'f'	Execu	ıte	Write to destination			
lf sk	ip:							
	Q1	Q2	Q3		Q4			
	Forced NOP	NOP	Execu	ute	NOP			
<u>Exa</u>	<u>mple</u> :	HERE ZERO NZERO	DCFSNZ : :	TEMP	P, 1			
	Before Instru TEMP_V		?					
	After Instruct TEMP_V If TEMP_ PC If TEMP_ PC	ALUE = VALUE = =	0; Addre: 0;	_VALU ss (ze ss (nz	RO)			

Syntax: Operand	de.	[label]	0010		
Operand	18.	$0 \le k \le 81$	~	i.	
			•		
Operatio	on:	k → PC<1 k<12:8> - PC<15:13	→ PCLA		,
Status A	Affected:	None			
Encodin	ig:	110k	kkkk	kkkk	kkkl
Descript		anywhere w The thirtee loaded into upper eigh PCLATH. o instruction.	n bit imm PC bits t bits of P 30T0 is a	ediate va <12:0>. 1 C are loa	alue is Then the aded into
Words:		1			
Cycles:		2			
Q Cycle	Activity:				
	Q1	Q2	Q3	5	Q4
C	Decode	Read literal 'k'<7:0>	Execu	ute	NOP
For	ced NOP	NOP	Execu	ute	NOP
Example	<u>e</u> :	GOTO THE	RE		
Afte	er Instruct	tion			
	PC =	Address (TH	HERE)		

INFSNZ	Incremer	nt f, skip	if not 0	
Syntax:	[<i>label</i>] II	NFSNZ	f,d	
Operands:	0 ≤ f ≤ 25 d ∈ [0,1]	5		
Operation:	(f) + 1 \rightarrow	(dest), s	kip if not	0
Status Affected:	None			
Encoding:	0010	010d	ffff	ffff
Description:	The conter mented. If WREG. If ' back in reg If the result which is all and an NO it a two-cyc	'd' is 0 the d' is 1 the jister 'f'. t is not 0, ready feto P is exect	e result is p result is p the next in ched, is dis uted instea	placed in blaced istruction, scarded,
Words:	1			
Cycles:	1(2)			
Q Cycle Activity:				
Q1	Q2	Q	3	Q4
Decode	Read register 'f'	Exect		Vrite to stination
lf skip:				
Q1	Q2	Q	3	Q4
Forced NOP	NOP	Exect	ute	NOP
Example:	HERE ZERO NZERO	INFSNZ	REG, 1	
Before Instru REG	uction = REG			
After Instruc REG If REG PC If REG PC	= REG + = 1; = Addres = 0;	1 s (zero s (nzero		

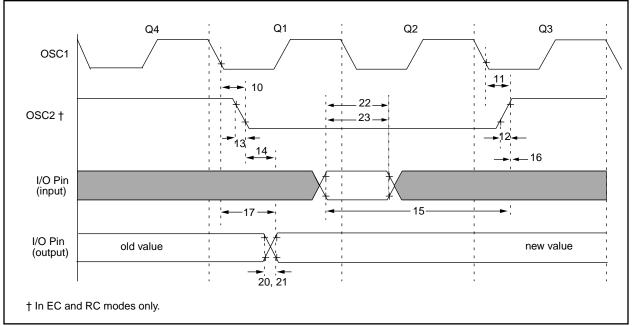
Current		[lahal]			
Synt	ax:	[label]	IORLW	К	
Ope	rands:	$0 \le k \le 25$	55		
Ope	ration:	(WREG)	.OR. (k)	\rightarrow (WR	EG)
State	us Affected:	Z			
Enco	oding:	1011	0011	kkkk	kkkk
Des	cription:	The conte the eight b placed in \	it literal 'k		
Wor	ds:	1			
Cycl	es:	1			
QC	ycle Activity:				
	Q1	Q2	Q	3	Q4
	Decode	Read literal 'k'	Exect	ute	Write to WREG
<u>Exa</u>	<u>mple</u> :	IORLW	0x35		
	Before Instru WREG	iction = 0x9A			
	After Instruct WREG	tion = 0xBF			

MOVLR	Move Literal to high nibble in BSR
Syntax:	[<i>label</i>] MOVLR k
Operands:	$0 \le k \le 15$
Operation:	$k \rightarrow (BSR < 7:4>)$
Status Affected:	None
Encoding:	1011 101x kkkk uuuu
Description:	The 4-bit literal 'k' is loaded into the most significant 4-bits of the Bank Select Register (BSR). Only the high 4-bits of the Bank Select Register are affected. The lower half of the BSR is unchanged. The assembler will encode the "u" fields as 0.
Words:	1
Cycles:	1
Q Cycle Activity:	
Q1	Q2 Q3 Q4
Decode	Read literal Execute Write 'k:u' literal 'k' to BSR<7:4>
Example:	MOVLR 5
Before Instruc BSR regis After Instructi	ster = 0x22
BSR regis	
	nstruction is not available in the C42 device.

MOVLW	Move Literal to WREG
Syntax:	[<i>label</i>] MOVLW k
Operands:	$0 \le k \le 255$
Operation:	$k \rightarrow (WREG)$
Status Affected:	None
Encoding:	1011 0000 kkkk kkkk
Description:	The eight bit literal 'k' is loaded into WREG.
Words:	1
Cycles:	1
Q Cycle Activity:	
Q1	Q2 Q3 Q4
Decode	Read Execute Write to literal 'k' WREG
Example:	MOVLW 0x5A
After Instruc WREG	

© 1996 Microchip Technology Inc.

SUBWF	Sub	otrac	t WREG	from	f		
Syntax:	[lab	oel]	SUBWF	f,d			-
Operands:	-	f ≤ 25 [0,1]	55				:
Operation:	(f) –	· (W)	\rightarrow (dest)			
Status Affected:	OV,	C, D	C, Z				(
Encoding:	00	00	010d	fff	f	ffff	:
Description:	com resu	pleme It is si	VREG fro ent metho tored in W tored bac	d). If ' /REG	d' is . If 'c	0 the I' is 1 the	
Words:	1						
Cycles:	1						,
Q Cycle Activity:							
Q1	Qź		Q3	3		Q4	
Decode	Rea registe		Execu	ute		Vrite to stination	
			DECI	1	ue	Sunation	
Example 1:	SUB	M F.	REG1,	T			
Before Instru REG1 WREG C	Iction = 3 = 2 = ?						<u> </u>
After Instruc REG1 WREG C Z	tion = 1 = 2 = 1 = 0	;	result is p	oositiv	е		
Example 2:							
Before Instru REG1 WREG C	uction = 2 = 2 = ?						<u> </u>
After Instruc REG1 WREG C Z	tion = 0 = 2 = 1 = 1	;	result is z	zero			
Example 3:							
Before Instru REG1 WREG C	uction = 1 = 2 = ?						ļ
After Instruc REG1 WREG C Z	tion = F = 2 = 0 = 0		result is r	negativ	ve		


SUBWFB			t WREG	from	n f w	vith
Syntax:		Borrow	SUBWF	Bfo	1	
Operands:		$0 \le f \le 2$, u		
Operands.		d ∈ [0,1]			
Operation:		(f) – (W)	$) - \overline{C} \rightarrow (0)$	dest)		
Status Affect	ed:	OV, C, E	DC, Z			
Encoding:		0000	001d	fff	f	ffff
Description:		(borrow) ment me stored in	WREG an from regis thod). If 'd' WREG. If ack in regis	ter 'f' is 0 tl 'd' is ´	(2's he r 1 the	comple- esult is
Words:		1				
Cycles:		1				
Q Cycle Activ	/ity:					
Q1		Q2	Q3			Q4
Decod	-	Read egister 'f'	Execu	ıte		Vrite to stination
Example 1:		SUBWFB	REG1,	1		
Before Ir	nstructio	on				
REG WRE C		0x19 0x0D 1	(0001 (0000		'	
After Ins	truction	1				
REG WRE C	EG = =	0x0C 0x0D 1	(0000 (0000 ; resul t	110	1)	e
Z	=	0				
Example2:		UBWFB	REG1,0			
Before Ir REG WRE C	61 =	0x1B	(0001 (0001		,	
After Ins	truction	1				
REG		0x1B	(0001	101	1)	
WRE C Z	EG = = =	0x00 1 1	; resul	t is ze	ro	
Example3:	S	UBWFB	REG1,1			
Before Ir		on				
REG WRE C		0x03 0x0E 1	(0000 (0000			
After Ins REG WRE C Z	61 =	0xF5 0x0E 0 0	(1111 (0000 ; resul t	110	1)	?'s comp] ve

TABLRD	Table R	ead	
Example1:	TABLRD	1, 1,	REG ;
Before Instruc	ction		
REG		=	0x53
TBLATH		=	0xAA
TBLATL		=	0x55
TBLPTR		=	
MEMORY	(TBLPTR)	=	0x1234
After Instruction	on (table v	write co	mpletion)
REG		=	0xAA
TBLATH		=	0x12
TBLATL		=	0x34
TBLPTR			0xA357
MEMORY	(TBLPTR)	=	0x5678
Example2:	TABLRD	0, 0,	REG ;
Before Instruc	ction		
REG		=	0x53
TBLATH		=	0xAA
TBLATL		=	0x55
TBLPTR		=	0xA356
MEMORY	(TBLPTR)	=	0x1234
After Instruction	on (table v	write co	mpletion)
REG		=	0x55
TBLATH		=	0x12
TBLATL		=	0x34
TBLPTR		=	0xA356
MEMORY	(TBLPTR)	=	0x1234

TABLWT	Table Write
Syntax:	[label] TABLWT t,i,f
Operands:	0 ≤ f ≤ 255 i ∈ [0,1] t ∈ [0,1]
Operation:	$f \in [0, 1]$ If $f = 0$,
e per au e m	$f \rightarrow TBLATL;$
	If t = 1, f \rightarrow TBLATH;
	TBLAT \rightarrow Prog Mem (TBLPTF
	If i = 1, TBLPTR + 1 \rightarrow TBLPTR
Status Affected:	None
Encoding:	1010 11ti ffff ffff
Description:	1. Load value in 'f' into 16-bit table
	latch (TBLAT) If t = 0: load into low byte;
	If t = 1: load into high byte
	2. The contents of TBLAT is written to the program memory location
	pointed to by TBLPTR
	If TBLPTR points to external program memory location, then
	the instruction takes two-cycle
	If TBLPTR points to an internal
	EPROM location, then the instruction is terminated when
	an interrupt is received.
	LR/VPP pin must be at the programmir for successful programming of intern
If MCLR	/VPP = VDD
	gramming sequence of internal memore executed, but will not be successf
(althoug	h the internal memory location may b
disturbe	-7
	 The TBLPTR can be automati- cally incremented
	If i = 0; TBLPTR is not
	incremented
Words:	
	incremented If i = 1; TBLPTR is incremented
Cycles:	incremented If i = 1; TBLPTR is incremented 1 2 (many if write is to on-chip
Words: Cycles: Q Cycle Activity: Q1	incremented If i = 1; TBLPTR is incremented 1 2 (many if write is to on-chip EPROM program memory) Q2 Q3 Q4
Cycles: Q Cycle Activity:	incremented If i = 1; TBLPTR is incremented 1 2 (many if write is to on-chip EPROM program memory) Q2 Q3 Q4 Read Execute Write
Cycles: Q Cycle Activity: Q1	incremented If i = 1; TBLPTR is incremented 1 2 (many if write is to on-chip EPROM program memory) Q2 Q3 Q4

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 17-3: CLKOUT AND I/O TIMING

TABLE 17-3: CLKOUT AND I/O TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
10	TosH2ckL	OSC1↑ to CLKOUT↓		15 ‡	30 ‡	ns	Note 1
11	TosH2ckH	OSC1↑ to CLKOUT↑	—	15‡	30 ‡	ns	Note 1
12	TckR	CLKOUT rise time	—	5‡	15 ‡	ns	Note 1
13	TckF	CLKOUT fall time	—	5‡	15 ‡	ns	Note 1
14	TckH2ioV	CLKOUT [↑] to Port out valid	—	—	0.5Tcy + 20‡	ns	Note 1
15	TioV2ckH	Port in valid before CLKOUT	0.25Tcy + 25 ‡	—	—	ns	Note 1
16	TckH2iol	Port in hold after CLKOUT	0 ‡	—	—	ns	Note 1
17	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid	—	—	100 ‡	ns	
20	TioR	Port output rise time	—	10 ‡	35 ‡	ns	
21	TioF	Port output fall time	—	10 ‡	35 ‡	ns	
22	TinHL	INT pin high or low time	25 *	—	—	ns	
23	TrbHL	RB7:RB0 change INT high or low time	25 *	—	—	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

Note 1: Measurements are taken in EC Mode where OSC2 output = 4 x Tosc = Tcy.

Applicable Devices 42 R42 42A 43 R43 44

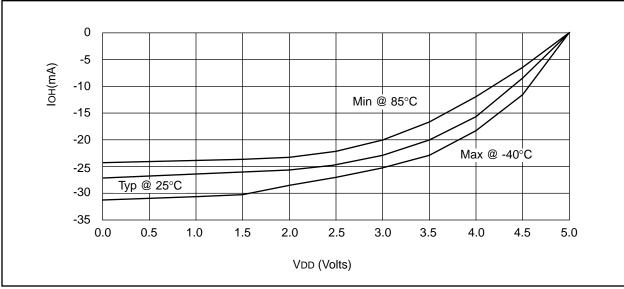
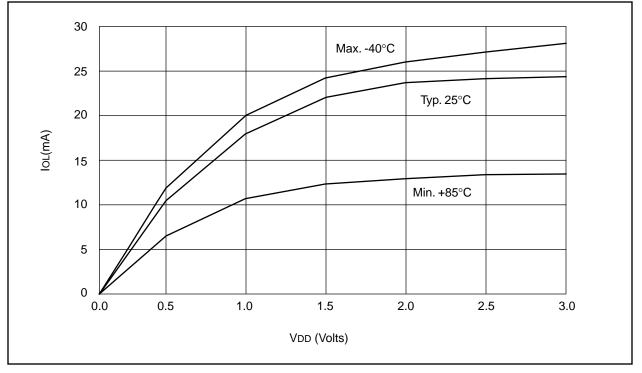
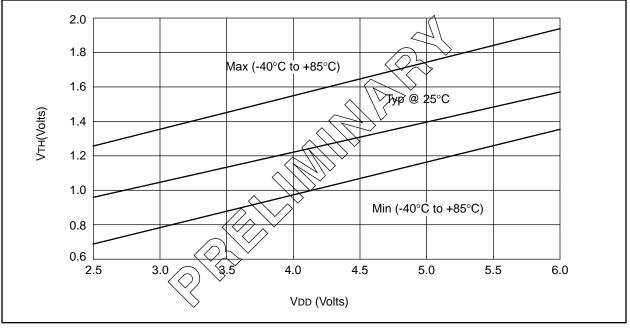
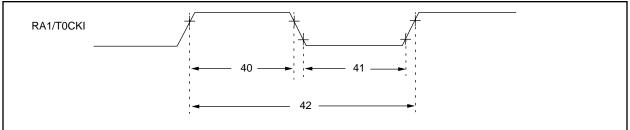



FIGURE 18-16: IOL vs. VOL, VDD = 3V



Applicable Devices 42 R42 42A 43 R43 44

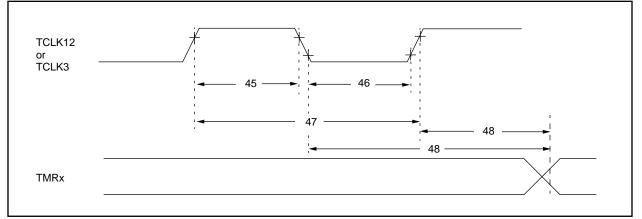
FIGURE 18-17: IOL vs. VOL, VDD = 5V



Applicable Devices 42 R42 42A 43 R43 44

FIGURE 19-5: TIMER0 CLOCK TIMINGS

TABLE 19-5: TIMER0 CLOCK REQUIREMENTS


Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5Tcy + 20 §	-	—	ns	
			With Prescaler	10*	-	_	ns	
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5TCY + 20 §	-	—	ns	
			With Prescaler	10*	-	—	ns	
42	Tt0P	T0CKI Period		Greater of: 20 ns or <u>Tcy + 40 §</u> N	-	_		N = prescale value (1, 2, 4,, 256)

* These parameters are characterized but not tested.

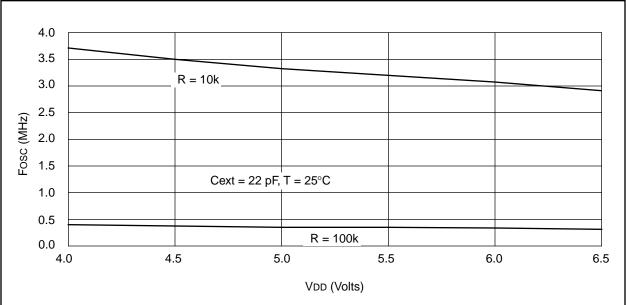
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

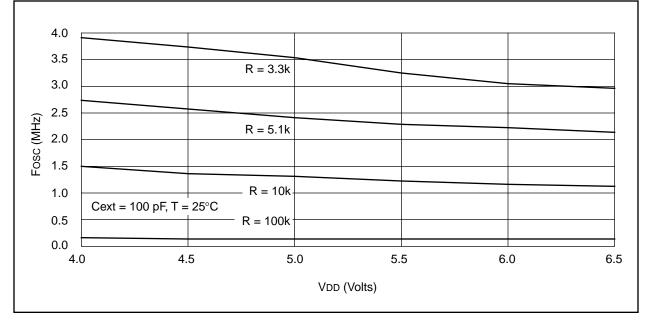
FIGURE 19-6: TIMER1, TIMER2, AND TIMER3 CLOCK TIMINGS

TABLE 19-6: TIMER1, TIMER2, AND TIMER3 CLOCK REQUIREMENTS

Parameter				Тур			
No.	Sym	Characteristic	Min	†	Max	Units	Conditions
45	Tt123H	TCLK12 and TCLK3 high time	0.5TCY + 20 §	-	—	ns	
46	Tt123L	TCLK12 and TCLK3 low time	0.5Tcy + 20 §	_	—	ns	
47	Tt123P	TCLK12 and TCLK3 input period	<u>Tcy + 40</u> § N		_		N = prescale value (1, 2, 4, 8)
48	TckE2tmrl	Delay from selected External Clock Edge to Timer increment	2Tosc §		6Tosc §		


* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.


§ This specification ensured by design.

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 20-2: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

FIGURE 20-3: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 20-13: WDT TIMER TIME-OUT PERIOD vs. VDD

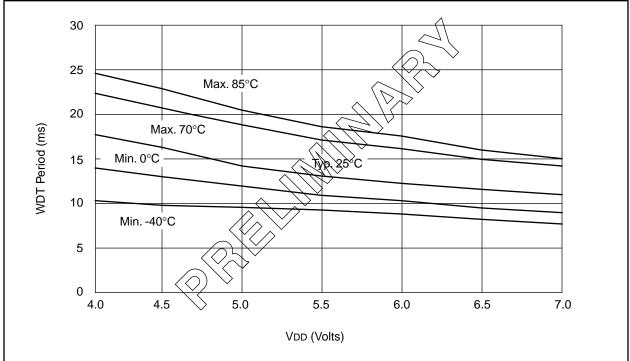
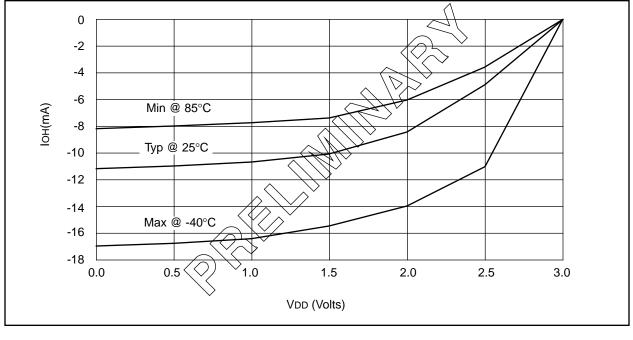



FIGURE 20-14: IOH vs. VOH, VDD = 3V

E.2 PIC16C5X Family of Devices

				0	Clock Mer	Memory	Perip	Peripherals	Features
				CAN USE	Course will a course of the co				
		1084 1	to Toliani			(s)		., N SOL	454
	Terry	UUNUUS	101.	Mr.	BOW SOUND SUNT		SUID OI	o sequent	Sebersed
PIC16C52	4	384		25	TMRO	12	2.5-6.25	33	18-pin DIP, SOIC
PIC16C54	20	512	I	25	TMR0	12	2.5-6.25	33	18-pin DIP, SOIC; 20-pin SSOP
PIC16C54A	20	512		25	TMR0	12	2.0-6.25	33	18-pin DIP, SOIC; 20-pin SSOP
PIC16CR54A	20	I	512	25	TMR0	12	2.0-6.25	33	18-pin DIP, SOIC; 20-pin SSOP
PIC16C55	20	512		24	TMR0	20	2.5-6.25	33	28-pin DIP, SOIC, SSOP
PIC16C56	20	¥		25	TMR0	12	2.5-6.25	33	18-pin DIP, SOIC; 20-pin SSOP
PIC16C57	20	2K		72	TMR0	20	2.5-6.25	33	28-pin DIP, SOIC, SSOP
PIC16CR57B	20	I	2K	72	TMR0	20	2.5-6.25	33	28-pin DIP, SOIC, SSOP
PIC16C58A	20	2K		73	TMR0	12	2.0-6.25	33	18-pin DIP, SOIC; 20-pin SSOP
PIC16CR58A	20		2K	73	TMR0	12	2.5-6.25	33	18-pin DIP, SOIC; 20-pin SSOP
All PIC16/17		devices	s have	Power-Or	n Reset, selectabl	e Watch	ndog Timer, s	selectab	-amily devices have Power-On Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability.

DS30412C-page 214

E.8 PIC17CXX Family of Devices

					Clock	Memory	lory		Pe	Peripherals	s				Features
				- 40,11,E 18 G	Solow stoller String soller	(s.								$\backslash \backslash$	
			J Tougno		A LIGHER N		6			I de la compañía de	Tidiji	sidn.	\~%).	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\$10137118U
	14	Y LUNUITO	10+ A3	NO2	The case in the case of the ca	100, 10	310100 0	Contraction of the state of the	NADON SAL	THE WALLS WITH	Contraction of the second seco	5 10 01 10 10 10 10 10 10 10 10 10 10 10	to the case of the of t	ANN	Refer of the second sec
PIC17C42	25	2K	Ι	232	TMR0,TMR1, TMR2,TMR3	7	7	Yes	Ι	Yes	7	33	4.5-5.5	55	40-pin DIP; 44-pin PLCC, MQFP
PIC17C42A	25	2K	Ι	232	TMR0,TMR1, TMR2,TMR3	N	2	Yes	Yes	Yes	5	33	2.5-6.0	58	40-pin DIP; 44-pin PLCC, TQFP, MQFP
PIC17CR42	25	Ι	2K	232	TMR0,TMR1, TMR2,TMR3	N	2	Yes	Yes	Yes	5	33	2.5-6.0	58	40-pin DIP; 44-pin PLCC, TQFP, MQFP
PIC17C43	25	¥	Ι	454	TMR0,TMR1, TMR2,TMR3	N	2	Yes	Yes	Yes	5	33	2.5-6.0	58	40-pin DIP; 44-pin PLCC, TQFP, MQFP
PIC17CR43	25	Ι	4K	454	TMR0,TMR1, TMR2,TMR3	2	2	Yes	Yes	Yes	11	33	2.5-6.0	58	40-pin DIP; 44-pin PLCC, TQFP, MQFP
PIC17C44	25	Ж Ж		454	TMR0,TMR1, TMR2,TMR3	2	5	Yes	Yes	Yes	11	33	2.5-6.0	58	40-pin DIP; 44-pin PLCC, TQFP, MQFP
AIIF	PIC16/1	7 Fan	nily de	vices hɛ	ave Power-on F	Reset	, sele	ectable V	Vatchc	log Tim	er, sel	ectabl	e code pro	otect a	All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability.