

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (8K x 16)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c44-25i-pq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.1.3 OSCILLATOR START-UP TIMER (OST)

The Oscillator Start-up Timer (OST) provides a 1024 oscillator cycle (1024Tosc) delay after $\overline{\text{MCLR}}$ is detected high or a wake-up from SLEEP event occurs.

The OST time-out is invoked only for XT and LF oscillator modes on a Power-on Reset or a Wake-up from SLEEP.

The OST counts the oscillator pulses on the OSC1/CLKIN pin. The counter only starts incrementing after the amplitude of the signal reaches the oscillator input thresholds. This delay allows the crystal oscillator or resonator to stabilize before the device exits reset. The length of time-out is a function of the crystal/resonator frequency.

4.1.4 TIME-OUT SEQUENCE

On power-up the time-out sequence is as follows: First the internal POR signal goes high when the POR trip point is reached. If MCLR is high, then both the OST and PWRT timers start. In general the PWRT time-out is longer, except with low frequency crystals/resonators. The total time-out also varies based on oscillator configuration. Table 4-1 shows the times that are associated with the oscillator configuration. Figure 4-2 and Figure 4-3 display these time-out sequences.

If the device voltage is not within electrical specification at the end of a time-out, the $\overline{\text{MCLR}}/\text{VPP}$ pin must be held low until the voltage is within the device specification. The use of an external RC delay is sufficient for many of these applications.

TABLE 4-1:TIME-OUT IN VARIOUSSITUATIONS

Oscillator Configuration	Power-up	Wake up from SLEEP	MCLR Reset
XT, LF	Greater of: 96 ms or 1024Tosc	1024Tosc	—
EC, RC	Greater of: 96 ms or 1024Tosc		—

The time-out sequence begins from the first rising edge of $\overline{\text{MCLR}}$.

Table 4-3 shows the reset conditions for some special registers, while Table 4-4 shows the initialization conditions for all the registers. The shaded registers (in Table 4-4) are for all devices except the PIC17C42. In the PIC17C42, the PRODH and PRODL registers are general purpose RAM.

TABLE 4-2:STATUS BITS AND THEIR
SIGNIFICANCE

TO	PD	Event
1	1	Power-on Reset, MCLR Reset during normal operation, or CLRWDT instruction executed
1	0	MCLR Reset during SLEEP or interrupt wake-up from SLEEP
0	1	WDT Reset during normal operation
0	0	WDT Reset during SLEEP

In Figure 4-2, Figure 4-3 and Figure 4-4, TPWRT > TOST, as would be the case in higher frequency crystals. For lower frequency crystals, (i.e., 32 kHz) TOST would be greater.

TABLE 4-3: RESET CONDITION FOR THE PROGRAM COUNTER AND THE CPUSTA REGISTER

Event		PCH:PCL	CPUSTA	OST Active
Power-on Reset		0000h	11 11	Yes
MCLR Reset during normal ope	ration	0000h	11 11	No
MCLR Reset during SLEEP		0000h	11 10	Yes (2)
WDT Reset during normal operation	ation	0000h	11 01	No
WDT Reset during SLEEP (3)		0000h	11 00	Yes (2)
Interrupt wake-up from SLEEP	GLINTD is set	PC + 1	11 10	Yes (2)
	GLINTD is clear	PC + 1 ⁽¹⁾	10 10	Yes (2)

Legend: u = unchanged, x = unknown, - = unimplemented read as '0'.

Note 1: On wake-up, this instruction is executed. The instruction at the appropriate interrupt vector is fetched and then executed.

2: The OST is only active when the Oscillator is configured for XT or LF modes.

3: The Program Counter = 0, that is the device branches to the reset vector. This is different from the mid-range devices.

5.2 <u>Peripheral Interrupt Enable Register</u> (PIE)

This register contains the individual flag bits for the Peripheral interrupts.

FIGURE 5-3: PIE REGISTER (ADDRESS: 17h, BANK 1)

RBIE	0 R/W - 0 R/W TMR3IE TMR2IE TMR1IE CA2IE CA1IE TXIE R0	CIE R = Readable bit
bit7		bit0 W = Writable bit -n = Value at POR reset
bit 7:	RBIE : PORTB Interrupt on Change Enable bit 1 = Enable PORTB interrupt on change 0 = Disable PORTB interrupt on change	
bit 6:	TMR3IE : Timer3 Interrupt Enable bit 1 = Enable Timer3 interrupt 0 = Disable Timer3 interrupt	
bit 5:	TMR2IE : Timer2 Interrupt Enable bit 1 = Enable Timer2 interrupt 0 = Disable Timer2 interrupt	
bit 4:	TMR1IE : Timer1 Interrupt Enable bit 1 = Enable Timer1 interrupt 0 = Disable Timer1 interrupt	
bit 3:	CA2IE : Capture2 Interrupt Enable bit 1 = Enable Capture interrupt on RB1/CAP2 pin 0 = Disable Capture interrupt on RB1/CAP2 pin	
bit 2:	CA1IE : Capture1 Interrupt Enable bit 1 = Enable Capture interrupt on RB2/CAP1 pin 0 = Disable Capture interrupt on RB2/CAP1 pin	
bit 1:	TXIE : USART Transmit Interrupt Enable bit 1 = Enable Transmit buffer empty interrupt 0 = Disable Transmit buffer empty interrupt	
bit 0:	RCIE : USART Receive Interrupt Enable bit 1 = Enable Receive buffer full interrupt 0 = Disable Receive buffer full interrupt	

12.0 TIMER1, TIMER2, TIMER3, PWMS AND CAPTURES

The PIC17C4X has a wealth of timers and time-based functions to ease the implementation of control applications. These time-base functions include two PWM outputs and two Capture inputs.

Timer1 and Timer2 are two 8-bit incrementing timers, each with a period register (PR1 and PR2 respectively) and separate overflow interrupt flags. Timer1 and Timer2 can operate either as timers (increment on internal Fosc/4 clock) or as counters (increment on falling edge of external clock on pin RB4/TCLK12). They are also software configurable to operate as a single 16-bit timer. These timers are also used as the time-base for the PWM (pulse width modulation) module. Timer3 is a 16-bit timer/counter consisting of the TMR3H and TMR3L registers. This timer has four other associated registers. Two registers are used as a 16-bit period register or a 16-bit Capture1 register (PR3H/CA1H:PR3L/CA1L). The other two registers are strictly the Capture2 registers (CA2H:CA2L). Timer3 is the time-base for the two 16-bit captures.

TMR3 can be software configured to increment from the internal system clock or from an external signal on the RB5/TCLK3 pin.

Figure 12-1 and Figure 12-2 are the control registers for the operation of Timer1, Timer2, and Timer3, as well as PWM1, PWM2, Capture1, and Capture2.

FIGURE 12-1: TCON1 REGISTER (ADDRESS: 16h, BANK 3)

bit7	I CA2ED0 CA1ED1 CA1ED0 T16 TMR3CS TMR2CS TMR1CS bit0	R = Readable bit W = Writable bit -n = Value at POR reset
bit 7-6:	CA2ED1:CA2ED0 : Capture2 Mode Select bits 00 = Capture on every falling edge 01 = Capture on every rising edge 10 = Capture on every 4th rising edge 11 = Capture on every 16th rising edge	
bit 5-4:	CA1ED1:CA1ED0 : Capture1 Mode Select bits 00 = Capture on every falling edge 01 = Capture on every rising edge 10 = Capture on every 4th rising edge 11 = Capture on every 16th rising edge	
bit 3:	T16 : Timer1:Timer2 Mode Select bit 1 = Timer1 and Timer2 form a 16-bit timer 0 = Timer1 and Timer2 are two 8-bit timers	
bit 2:	TMR3CS : Timer3 Clock Source Select bit 1 = TMR3 increments off the falling edge of the RB5/TCLK3 pin 0 = TMR3 increments off the internal clock	
bit 1:	TMR2CS : Timer2 Clock Source Select bit 1 = TMR2 increments off the falling edge of the RB4/TCLK12 pin 0 = TMR2 increments off the internal clock	
bit 0:	TMR1CS : Timer1 Clock Source Select bit 1 = TMR1 increments off the falling edge of the RB4/TCLK12 pin 0 = TMR1 increments off the internal clock	

12.1 <u>Timer1 and Timer2</u>

12.1.1 TIMER1, TIMER2 IN 8-BIT MODE

Both Timer1 and Timer2 will operate in 8-bit mode when the T16 bit is clear. These two timers can be independently configured to increment from the internal instruction cycle clock or from an external clock source on the RB4/TCLK12 pin. The timer clock source is configured by the TMRxCS bit (x = 1 for Timer1 or = 2 for Timer2). When TMRxCS is clear, the clock source is internal and increments once every instruction cycle (Fosc/4). When TMRxCS is set, the clock source is the RB4/TCLK12 pin, and the timer will increment on every falling edge of the RB4/TCLK12 pin.

The timer increments from 00h until it equals the Period register (PRx). It then resets to 00h at the next increment cycle. The timer interrupt flag is set when the timer is reset. TMR1 and TMR2 have individual interrupt flag bits. The TMR1 interrupt flag bit is latched into TMR1IF, and the TMR2 interrupt flag bit is latched into TMR2IF.

Each timer also has a corresponding interrupt enable bit (TMRxIE). The timer interrupt can be enabled by setting this bit and disabled by clearing this bit. For peripheral interrupts to be enabled, the Peripheral Interrupt Enable bit must be enabled (PEIE is set) and global interrupts must be enabled (GLINTD is cleared).

The timers can be turned on and off under software control. When the Timerx On control bit (TMRxON) is set, the timer increments from the clock source. When TMRxON is cleared, the timer is turned off and cannot cause the timer interrupt flag to be set.

12.1.1.1 EXTERNAL CLOCK INPUT FOR TIMER1 OR TIMER2

When TMRxCS is set, the clock source is the RB4/TCLK12 pin, and the timer will increment on every falling edge on the RB4/TCLK12 pin. The TCLK12 input is synchronized with internal phase clocks. This causes a delay from the time a falling edge appears on TCLK12 to the time TMR1 or TMR2 is actually incremented. For the external clock input timing requirements, see the Electrical Specification section.

FIGURE 12-3: TIMER1 AND TIMER2 IN TWO 8-BIT TIMER/COUNTER MODE

12.1.3.3.1 MAX RESOLUTION/FREQUENCY FOR EXTERNAL CLOCK INPUT

The use of an external clock for the PWM time-base (Timer1 or Timer2) limits the PWM output to a maximum resolution of 8-bits. The PWxDCL<7:6> bits must be kept cleared. Use of any other value will distort the PWM output. All resolutions are supported when internal clock mode is selected. The maximum attainable frequency is also lower. This is a result of the timing requirements of an external clock input for a timer (see the Electrical Specification section). The maximum PWM frequency, when the timers clock source is the RB4/TCLK12 pin, is shown in Table 12-3 (standard resolution mode).

12.2 <u>Timer3</u>

Timer3 is a 16-bit timer consisting of the TMR3H and TMR3L registers. TMR3H is the high byte of the timer and TMR3L is the low byte. This timer has an associated 16-bit period register (PR3H/CA1H:PR3L/CA1L). This period register can be software configured to be a second 16-bit capture register.

When the TMR3CS bit (TCON1<2>) is clear, the timer increments every instruction cycle (Fosc/4). When TMR3CS is set, the timer increments on every falling edge of the RB5/TCLK3 pin. In either mode, the TMR3ON bit must be set for the timer to increment. When TMR3ON is clear, the timer will not increment or set the TMR3IF bit.

Timer3 has two modes of operation, depending on the CA1/PR3 bit (TCON2<3>). These modes are:

- · One capture and one period register mode
- Dual capture register mode

The PIC17C4X has up to two 16-bit capture registers that capture the 16-bit value of TMR3 when events are detected on capture pins. There are two capture pins (RB0/CAP1 and RB1/CAP2), one for each capture register. The capture pins are multiplexed with PORTB pins. An event can be:

- · a rising edge
- a falling edge
- every 4th rising edge
- every 16th rising edge

Each 16-bit capture register has an interrupt flag associated with it. The flag is set when a capture is made. The capture module is truly part of the Timer3 block. Figure 12-7 and Figure 12-8 show the block diagrams for the two modes of operation.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 3	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h, Bank 3	TCON2	CA2OVF	CA10VF	PWM2ON	PWM10N	CA1/PR3	TMR3ON	TMR2ON	TMR10N	0000 0000	0000 0000
10h, Bank 2	TMR1	Timer1 reg	ister							xxxx xxxx	uuuu uuuu
11h, Bank 2	TMR2	Timer2 reg	ister							XXXX XXXX	uuuu uuuu
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
07h, Unbanked	INTSTA	PEIF	T0CKIF	T0IF	INTF	PEIE	TOCKIE	TOIE	INTE	0000 0000	0000 0000
06h, Unbanked	CPUSTA	—	_	STKAV	GLINTD	TO	PD	—	_	11 11	11 qq
10h, Bank 3	PW1DCL	DC1	DC0	—	—	—			_	xx	uu
11h, Bank 3	PW2DCL	DC1	DC0	TM2PW2	_	—			_	xx0	uu0
12h, Bank 3	PW1DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	xxxx xxxx	uuuu uuuu
13h, Bank 3	PW2DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	XXXX XXXX	uuuu uuuu

TABLE 12-4: REGISTERS/BITS ASSOCIATED WITH PWM

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends on conditions, shaded cells are not used by PWM.

12.2.1 ONE CAPTURE AND ONE PERIOD REGISTER MODE

In this mode registers PR3H/CA1H and PR3L/CA1L constitute a 16-bit period register. A block diagram is shown in Figure 12-7. The timer increments until it equals the period register and then resets to 0000h. TMR3 Interrupt Flag bit (TMR3IF) is set at this point. This interrupt can be disabled by clearing the TMR3 Interrupt Enable bit (TMR3IE). TMR3IF must be cleared in software.

This mode is selected if control bit CA1/PR3 is clear. In this mode, the Capture1 register, consisting of high byte (PR3H/CA1H) and low byte (PR3L/CA1L), is configured as the period control register for TMR3. Capture1 is disabled in this mode, and the corresponding Interrupt bit CA1IF is never set. TMR3 increments until it equals the value in the period register and then resets to 0000h.

Capture2 is active in this mode. The CA2ED1 and CA2ED0 bits determine the event on which capture will occur. The possible events are:

- · Capture on every falling edge
- Capture on every rising edge
- · Capture every 4th rising edge
- · Capture every 16th rising edge

When a capture takes place, an interrupt flag is latched into the CA2IF bit. This interrupt can be enabled by setting the corresponding mask bit CA2IE. The Peripheral Interrupt Enable bit (PEIE) must be set and the Global Interrupt Disable bit (GLINTD) must be cleared for the interrupt to be acknowledged. The CA2IF interrupt flag bit must be cleared in software.

When the capture prescale select is changed, the prescaler is not reset and an event may be generated. Therefore, the first capture after such a change will be ambiguous. However, it sets the time-base for the next capture. The prescaler is reset upon chip reset. Capture pin RB1/CAP2 is a multiplexed pin. When used as a port pin, Capture2 is not disabled. However, the user can simply disable the Capture2 interrupt by clearing CA2IE. If RB1/CAP2 is used as an output pin, the user can activate a capture by writing to the port pin. This may be useful during development phase to emulate a capture interrupt.

The input on capture pin RB1/CAP2 is synchronized internally to internal phase clocks. This imposes certain restrictions on the input waveform (see the Electrical Specification section for timing).

The Capture2 overflow status flag bit is double buffered. The master bit is set if one captured word is already residing in the Capture2 register and another "event" has occurred on the RB1/CA2 pin. The new event will not transfer the Timer3 value to the capture register, protecting the previous unread capture value. When the user reads both the high and the low bytes (in any order) of the Capture2 register, the master overflow bit is transferred to the slave overflow bit (CA2OVF) and then the master bit is reset. The user can then read TCON2 to determine the value of CA2OVF.

The recommended sequence to read capture registers and capture overflow flag bits is shown in Example 12-1.

EXAMPLE 12-1: SEQUENCE TO READ CAPTURE REGISTERS

MOVLB 3	;Select Bank 3
MOVPF CA2L,LO_BYTE	;Read Capture2 low
	;byte, store in LO_BYTE
MOVPF CA2H, HI_BYTE	;Read Capture2 high
	;byte, store in HI_BYTE
MOVPF TCON2,STAT_VAL	;Read TCON2 into file
	;STAT_VAL

FIGURE 12-7: TIMER3 WITH ONE CAPTURE AND ONE PERIOD REGISTER BLOCK DIAGRAM

BAUD RATE	Fosc = 3	3 MHz	SPBRG value	Fosc = 2	5 MHz	SPBRG value	Fosc = 2	0 MHz	SPBRG value	Fosc = 1	6 MHz	SPBRG value
(K)	KBAUD	%ERROR	(decimal)									
0.3	NA	_	_	NA	_	_	NA	_	_	NA		_
1.2	NA	_	_									
2.4	NA	_	_	NA	_	_	NA	_	_	NA	—	_
9.6	NA	—	—									
19.2	NA	_	—	NA	—	—	19.53	+1.73	255	19.23	+0.16	207
76.8	77.10	+0.39	106	77.16	+0.47	80	76.92	+0.16	64	76.92	+0.16	51
96	95.93	-0.07	85	96.15	+0.16	64	96.15	+0.16	51	95.24	-0.79	41
300	294.64	-1.79	27	297.62	-0.79	20	294.1	-1.96	16	307.69	+2.56	12
500	485.29	-2.94	16	480.77	-3.85	12	500	0	9	500	0	7
HIGH	8250	_	0	6250	_	0	5000	_	0	4000	_	0
LOW	32.22	_	255	24.41	_	255	19.53	_	255	15.625	_	255

BAUD	Fosc = 10 M	= 10 MHz SPBRG value		Fosc = 7.159	FOSC = 7.159 MHz SPBRG			FOSC = 5.068 MHz		
RATE (K)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)	
0.3	NA	_	_	NA	_	_	NA	_	_	
1.2	NA	_	_	NA	_	_	NA	_	_	
2.4	NA	_	_	NA	_	_	NA	_	_	
9.6	9.766	+1.73	255	9.622	+0.23	185	9.6	0	131	
19.2	19.23	+0.16	129	19.24	+0.23	92	19.2	0	65	
76.8	75.76	-1.36	32	77.82	+1.32	22	79.2	+3.13	15	
96	96.15	+0.16	25	94.20	-1.88	18	97.48	+1.54	12	
300	312.5	+4.17	7	298.3	-0.57	5	316.8	+5.60	3	
500	500	0	4	NA	_	_	NA	_	_	
HIGH	2500	_	0	1789.8	_	0	1267	_	0	
LOW	9.766	—	255	6.991	—	255	4.950	—	255	
	Fosc = 3.579 MHz SPBRG		FOSC = 1 MHz SPBRG			Fosc = 32.76				
BAUD	FOSC = 3.579	MHZ			Z		030 = 32.70		SPBRG	
BAUD RATE (K)	KBAUD	MHZ %ERROR	SPBRG value (decimal)	KBAUD	2 %ERROR	SPBRG value (decimal)	KBAUD	%ERROR	SPBRG value (decimal)	
RATE			value			value			value	
RATE (K)	KBAUD		value	KBAUD		value	KBAUD	%ERROR	value (decimal)	
RATE (K) 0.3	KBAUD		value	KBAUD NA	%ERROR	value (decimal)	KBAUD 0.303	%ERROR +1.14	value (decimal) 26	
RATE (K) 0.3 1.2	KBAUD NA NA		value	KBAUD NA 1.202	%ERROR 	value (decimal) — 207	KBAUD 0.303 1.170	%ERROR +1.14	value (decimal) 26	
RATE (K) 0.3 1.2 2.4	KBAUD NA NA NA	%ERROR 	value (decimal) — — —	KBAUD NA 1.202 2.404	%ERROR +0.16 +0.16	value (decimal) 207 103	KBAUD 0.303 1.170 NA	%ERROR +1.14	value (decimal) 26	
RATE (K) 0.3 1.2 2.4 9.6	KBAUD NA NA NA 9.622	%ERROR — — +0.23	value (decimal) — — — 92	KBAUD NA 1.202 2.404 9.615	%ERROR +0.16 +0.16 +0.16	value (decimal) — 207 103 25	KBAUD 0.303 1.170 NA NA	%ERROR +1.14	value (decimal) 26	
RATE (K) 0.3 1.2 2.4 9.6 19.2	KBAUD NA NA 9.622 19.04	%ERROR — — +0.23 -0.83	value (decimal) — — 92 46	KBAUD NA 1.202 2.404 9.615 19.24	%ERROR +0.16 +0.16 +0.16 +0.16	value (decimal) — 207 103 25 12	KBAUD 0.303 1.170 NA NA NA	%ERROR +1.14	value (decimal) 26	
RATE (K) 0.3 1.2 2.4 9.6 19.2 76.8	KBAUD NA NA 9.622 19.04 74.57	%ERROR — — +0.23 -0.83 -2.90	value (decimal) — — — 92 46 11	KBAUD NA 1.202 2.404 9.615 19.24 83.34	%ERROR +0.16 +0.16 +0.16 +0.16	value (decimal) — 207 103 25 12	KBAUD 0.303 1.170 NA NA NA NA	%ERROR +1.14	value (decimal) 26	
RATE (K) 0.3 1.2 2.4 9.6 19.2 76.8 96	KBAUD NA NA 9.622 19.04 74.57 99.43	%ERROR — +0.23 -0.83 -2.90 _3.57	value (decimal) — — 92 46 11 8	KBAUD NA 1.202 2.404 9.615 19.24 83.34 NA	%ERROR +0.16 +0.16 +0.16 +0.16	value (decimal) — 207 103 25 12	KBAUD 0.303 1.170 NA NA NA NA NA	%ERROR +1.14	value (decimal) 26	
RATE (K) 0.3 1.2 2.4 9.6 19.2 76.8 96 300	KBAUD NA NA 9.622 19.04 74.57 99.43 298.3	%ERROR — +0.23 -0.83 -2.90 _3.57	value (decimal) — — 92 46 11 8	KBAUD NA 1.202 2.404 9.615 19.24 83.34 NA NA	%ERROR +0.16 +0.16 +0.16 +0.16	value (decimal) — 207 103 25 12	KBAUD 0.303 1.170 NA NA NA NA NA NA	%ERROR +1.14	value (decimal) 26	

14.0 SPECIAL FEATURES OF THE CPU

What sets a microcontroller apart from other processors are special circuits to deal with the needs of real time applications. The PIC17CXX family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- OSC selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- · Code protection

The PIC17CXX has a Watchdog Timer which can be shut off only through EPROM bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 96 ms (nominal) on power-up only, designed to keep the part in RESET while the power supply stabilizes. With these two timers on-chip, most applications need no external reset circuitry.

The SLEEP mode is designed to offer a very low current power-down mode. The user can wake from SLEEP through external reset, Watchdog Timer Reset or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LF crystal option saves power. Configuration bits are used to select various options. This configuration word has the format shown in Figure 14-1.

<u>R/P - 1</u> PM2 ⁽¹⁾	U - x	U - x	<u>U-x</u>	U - x	U - x	<u>U-x</u>	U - x	
bit15-7			_				bit0	
U - x	R/P - 1	U - x	<u>R/P - 1</u>	R/P - 1	R/P - 1	R/P - 1	R/P - 1	R = Readable bit
 bit15-7	PM1		PM0	WDTPS1	WDTPS0	FOSC1	FOSC0 bit0	P = Programmable bit $P = Programmable bit$ $U = Unimplemented$ $- n = Value for Erased Device$ $(x = unknown)$
bit 15-9:	Unimpler	nented: R	ead as a	'1'				
		rocontrolle ended mic de protect	er mode crocontrol ed microc	ontroller m	ode			
bit 7, 5:	Unimpler	nented: R	ead as a	'0'				
bit 3-2:	11 = WD 10 = WD 01 = WD	Γ enabled Γ enabled Γ enabled	, postscal , postscal , postscal	er = 256				
bit 1-0:	FOSC1:F 11 = EC (10 = XT (01 = RC (00 = LF (oscillator oscillator oscillator	scillator S	elect bits				

FIGURE 14-1: CONFIGURATION WORD

^{© 1996} Microchip Technology Inc.

14.4.2 MINIMIZING CURRENT CONSUMPTION

To minimize current consumption, all I/O pins should be either at VDD, or VSS, with no external circuitry drawing current from the I/O pin. I/O pins that are hi-impedance inputs should be pulled high or low externally to avoid switching currents caused by floating inputs. The TOCKI input should be at VDD or VSS. The contributions from on-chip pull-ups on PORTB should also be considered, and disabled when possible.

14.5 <u>Code Protection</u>

The code in the program memory can be protected by selecting the microcontroller in code protected mode (PM2:PM0 = '000').

Note:	PM2 d	oes not	exist on th	e PIC17C42. To
	select	code	protected	microcontroller
			10 = 00'.	

In this mode, instructions that are in the on-chip program memory space, can continue to read or write the program memory. An instruction that is executed outside of the internal program memory range will be inhibited from writing to or reading from program memory.

Note: Microchip does not recommend code protecting windowed devices.

If the code protection bit(s) have not been programmed, the on-chip program memory can be read out for verification purposes.

ADDLW	ADD Literal to WREG			
Syntax:	[label] A	DLW	k	
Operands:	$0 \le k \le 25$	55		
Operation:	(WREG) -	+ k \rightarrow (V	VREG)	
Status Affected:	OV, C, DC	C, Z		
Encoding:	1011	0001	kkkk	kkkk
Description: The contents of WREG are added to the 8-bit literal 'k' and the result is placed WREG.				
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3	3	Q4
Decode	Read literal 'k'	Execu		Vrite to WREG
Example:	ADDLW	0x15		
Before Instruc WREG =				

ADDWF	ADD WRE	EG to f		
Syntax:	[<i>label</i>] A[DDWF 1	f,d	
Operands:	$0 \le f \le 255$ $d \in [0,1]$	5		
Operation:	(WREG) +	- (f) \rightarrow (de	est)	
Status Affected:	OV, C, DC	, Z		
Encoding:	0000	111d	ffff	ffff
Description:	Add WREG to register 'f'. If 'd' is 0 the result is stored in WREG. If 'd' is 1 the result is stored back in register 'f'.			is 1 the
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read register 'f'	Execute	· ·	/rite to stination
Example:	ADDWF	REG, 0		
Before Instru WREG REG	iction = 0x17 = 0xC2			
After Instruct WREG REG	tion = 0xD9 = 0xC2			

After Instruction WREG = 0x25

CPFSEQ	Compare skip if f =	f with WREC WREG	Э,	CPF	SGT	Compare skip if f >	f with WRE WREG	G,
Syntax:	[label]	CPFSEQ f		Syn	tax:	[label]	CPFSGT f	
Operands:	$0 \le f \le 25$	$0 \le f \le 255$		Ope	rands:	$0 \le f \le 255$	5	
Operation:	(f) – (WRE) skip if (f) = (unsigned o			Ope	ration:	(f) – (WRE0 skip if (f) > (unsigned o		
Status Affected:	None			Stat	us Affected:	None		
Encoding:	0011	0001 fff	f ffff	Enc	oding:	0011	0010 ff:	ff ffff
Description:	location 'f' t performing If 'f' = WRE tion is disca	the contents of o the contents an unsigned s G then the fetc arded and an N ad making this	of WREG by ubtraction. hed instruc- IOP is exe-	Des	cription:	location 'f' t by performi If the conte WREG the discarded a instead ma	o the contents ng an unsigne nts of 'f' > the n the fetched in and an NOP is	nstruction is
Words:	1			14/0 -	de .	tion. 1		
Cycles:	1 (2)			Wor		-		
Q Cycle Activity:				Cyc		1 (2)		
Q1	Q2	Q3	Q4	QC	ycle Activity: Q1	Q2	Q3	Q4
Decode	Read register 'f'	Execute	NOP		Decode	Read	Execute	NOP
If skip:				lf sk	in:	register 'f'		
Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4
Forced NOP	NOP	Execute	NOP		Forced NOP	NOP	Execute	NOP
<u>Example</u> :	NEQUAL	CPFSEQ REG : :		<u>Exa</u>	mple:	HERE NGREATER GREATER	CPFSGT RE : :	G
Before Instru PC Addre					Before Instru	-	·	
WREG REG	ess = HE = ? = ?	RE			PC WREG		dress (HERE)	
After Instruct If REG PC If REG PC	= W = Ac ≠ W	REG; Idress (EQUAL REG; Idress (NEQUA			After Instruc If REG PC If REG PC	> Wi = Ad ≤ Wi	REG; Idress (GREAT REG; Idress (NGREZ	

IORWF	Inclusive		with f	LCALL	Long Cal	I	
Syntax:	[label]	ORWF f,d		Syntax:	[label]	LCALL k	
Operands:	$0 \le f \le 255$	5		Operands:	$0 \le k \le 25$	5	
	d ∈ [0,1]			Operation:	PC + 1 \rightarrow	TOS;	
Operation:	(WREG) .	$OR.\left(f ight) ightarrow\left(de ight)$	est)		$k \rightarrow PCL$,	(PCLATH) -	\rightarrow PCH
Status Affected:	Z			Status Affecte	d: None		
Encoding:	0000	100d ff:	ff ffff	Encoding:	1011	0111 kk	kk kkkk
Description:	'd' is 0 the r	R WREG with esult is placed esult is placed	0	Description:	tine call to gram mem First, the re	anywhere with ory space. eturn address	· · ·
Words:	1				•	to the stack. A ress is then lo	
Cycles:	1					ounter. The lo	
Q Cycle Activity:							s embedded in
Q1	Q2	Q3	Q4			om PC high h	er 8-bits of PC olding latch,
Decode	Read register 'f'	Execute	Write to destination		PCLATH.	Ū	0
	0		uestination	Words:	1		
Example:		ESULT, O		Cycles:	2		
Before Instru RESULT				Q Cycle Activi	ty:		
WREG	= 0x13 = 0x91			Q1	Q2	Q3	Q4
After Instruct RESULT				Decode	Read literal 'k'	Execute	Write register PCL
WREG	= 0x13 = 0x93			Forced NC	DP NOP	Execute	NOP
				Example:	MOVPF W	IGH(SUBROU REG, PCLAT OW(SUBROUT	Н

Before Instruction

SUBROUTINE	=	16-bit Address
PC	=	?
After Instruction		

PC = Address (S	UBROUTINE)
-----------------	------------

MOVFP	Move f to	р		MOVLB	Move Lite	eral to low i	nibble in BSR
Syntax:	[<i>label</i>] N	IOVFP f,p		Syntax:	[label]	MOVLB k	
Operands:	0 ≤ f ≤ 255	5		Operands:	$0 \le k \le 15$	5	
	$0 \le p \le 31$			Operation:	k ightarrow (BSR	(<3:0>)	
Operation:	$(f) \to (p)$			Status Affected:	None		
Status Affected:	None			Encoding:	1011	1000 ui	uuu kkkk
Encoding:	011p	pppp ff	ff ffff	Description:	The four bi	t literal 'k' is lo	baded in the
Description:	to data mer can be any	mory location ' where in the 2	nory location 'f' p'. Location 'f' 56 word data 'p' can be 00h		low 4-bits of are affected is unchang	of the Bank Se	
		'f' can be WR	EG (a useful	Words:	1		
	special situ	,	ful for transfer-	Cycles:	1		
			on to a periph-	Q Cycle Activity:			
			transmit buffer	Q1	Q2	Q3	Q4
	indirectly a	ort). Both 'f' an ddressed.	d p can be	Decode	Read	Execute	Write literal
Words:	1				literal 'u:k'		'k' to BSR<3:0>
Cycles:	1			Example:	MOVLB	0x5	
Q Cycle Activity	:			Before Instru	uction		
Q1	Q2	Q3	Q4	BSR reg	ister = 0x	:22	
Decode	Read register 'f'	Execute	Write register 'p'	After Instruc BSR reg		:25	
Example:	MOVFP I	REG1, REG2		Note: For th	ne PIC17C42	2, only the lo	ow four bits of
Before Insti REG1 REG2		33, 11			BSR registe ed. The uppe		sically imple- ead as '0'.
After Instru REG1		33,					

REG2

0x33

=

RET	URN	Return fi	rom Sub	routine	
Synt	ax:	[label]	RETUR	N	
Ope	rands:	None			
Ope	ration:	$TOS\toF$	PC;		
Stat	us Affected:	None			
Encoding:		0000	0000	0000	0010
Des	cription:	Return from popped and is loaded i	d the top	of the sta	ck (TOS)
Wor	ds:	1			
Cycl	es:	2			
QC	ycle Activity:				
	Q1	Q2	Q3	3	Q4
	Decode	Read register PCL*	Execu	ute	NOP
	Forced NOP	NOP	Execu	ute	NOP

* Remember reading PCL causes PCLATH to be updated. This will be the high address of where the RETURN instruction is located.

Example: RETURN

After Interrupt PC = TOS

RLCF	Rotate L	eft f throug	gh Carry
Syntax:	[label]	RLCF f,d	
Operands:	0 ≤ f ≤ 25 d ∈ [0,1]	55	
Operation:	$f < n > \rightarrow c$ $f < 7 > \rightarrow c$ $C \rightarrow d < 0$;	
Status Affected:	С		
Encoding:	0001	101d :	fff fff
Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0 the result is placed in WREG. If 'd' is 1 the result is stored back in register 'f'.		
Words:	1		
Cycles:	1		
Q Cycle Activity:			
Q1	Q2	Q3	Q4
Decode	Read register 'f'	Execute	Write to destination
Example:	RLCF	REG,	0
Example: Before Instru		REG,	0
			0
Before Instru REG	iction = 1110 (= 0		0
Before Instru REG C	iction = 1110 (= 0 tion = 1110 (0110	0

RLNCF	Rotate L	eft f (no car	ry)
Syntax:	[label]	RLNCF f,d	
Operands:	0 ≤ f ≤ 25 d ∈ [0,1]	55	
Operation:	$f < n > \rightarrow d$ $f < 7 > \rightarrow d$,	
Status Affected:	None		
Encoding:	0010	001d ff	ff ffff
Description:	one bit to	nts of register the left. If 'd' is WREG. If 'd' is k in register 'f' register	0 the result is 1 the result is
Words:	1		
Cycles:	1		
Q Cycle Activity:			
Q1	Q2	Q3	Q4
Decode	Read register 'f'	Execute	Write to destination
Example:	RLNCF	REG, 1	
Before Instr	uction		
C REG	= 0 = 1110 1	1011	
After Instruc	tion		

RRCF	Rotate Right f through Carry		
Syntax:	[<i>label</i>] RRCF f,d		
Operands:	$0 \le f \le 255$ d $\in [0,1]$		
Operation:			
Status Affected	С		
Encoding:	0001 100d ffff ffff		
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in WREG. If 'd' is 1 the result is placed back in register 'f'.		
Words:	1		
Cycles:	1		
Q Cycle Activit	:		
Q1	Q2 Q3 Q4		
Decode	Read Execute Write to register 'f' destination		
Example:	RRCF REG1,0		
Before Ins	uction		
REG1 C	= 1110 0110 = 0		
After Instr REG1 WREC C	ction = 1110 0110 = 0111 0011 = 0		

Applicable Devices 42 R42 42A 43 R43 44

17.2 DC CHARACTERISTICS:

PIC17C42-16 (Commercial, Industrial) PIC17C42-25 (Commercial, Industrial)

Standard Operating Conditions (unless otherwise stated) Operating temperature

DC CHARACTERISTICS

-40°C \leq TA \leq +85°C for industrial and $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial

Operating voltage VDD range as described in Section 17.1 Parameter No. Sym Characteristic Min Typ† Max Units Conditions Input Low Voltage VIL I/O ports D030 with TTL buffer Vss 0.8 V D031 with Schmitt Trigger buffer Vss 0.2VDD V _ D032 MCLR, OSC1 (in EC and RC Vss 0.2Vdd V Note1 _ mode) D033 OSC1 (in XT, and LF mode) 0.5VDD V _ Input High Voltage Vн I/O ports V D040 2.0 with TTL buffer _ Vdd D041 with Schmitt Trigger buffer 0.8VDD Vdd V _ D042 MCLR 0.8Vdd Vdd Note1 V D043 OSC1 (XT, and LF mode) 0.5VDD V D050 Hysteresis of 0.15VDD* VHYS V _ _ Schmitt Trigger inputs Input Leakage Current (Notes 2, 3) D060 lı∟ I/O ports (except RA2, RA3) $Vss \leq VPIN \leq VDD$, ±1 μΑ I/O Pin at hi-impedance PORTB weak pull-ups disabled MCLR D061 <u>+2</u> μA VPIN = Vss or VPIN = VDD D062 **RA2, RA3** ±2 μΑ $Vss \leq VRA2$, $VRA3 \leq 12V$ D063 OSC1, TEST ±1 μΑ $Vss \le VPIN \le VDD$

D070 IPURB PORTB weak pull-up current 60 These parameters are characterized but not tested.

MCLR

D064

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only t and are not tested.

200

10

400

μA

μΑ

These parameters are for design guidance only and are not tested, nor characterized. t

Design guidance to attain the AC timing specifications. These loads are not tested. ++

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC17CXX devices be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in: PIC17CXX Programming Specifications (Literature number DS30139).

5: The MCLR/Vpp pin may be kept in this range at times other than programming, but this is not recommended.

6: For TTL buffers, the better of the two specifications may be used.

VMCLR = VPP = 12V

(when not programming)

VPIN = Vss. $\overline{RBPU} = 0$

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 18-12: MAXIMUM IPD vs. VDD WATCHDOG ENABLED

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 20-4: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

TABLE 20-2: RC OSCILLATOR FREQUENCIES

Cext	Rext	Average Fosc @ 5V, 25°C		
22 pF	10k	3.33 MHz	± 12%	
	100k	353 kHz	± 13%	
100 pF	3.3k	3.54 MHz	± 10%	
	5.1k	2.43 MHz	± 14%	
	10k	1.30 MHz	± 17%	
	100k	129 kHz	± 10%	
300 pF	3.3k	1.54 MHz	± 14%	
	5.1k	980 kHz	± 12%	
	10k	564 kHz	± 16%	
	160k	35 kHz	± 18%	

PIC16C7X Family of Devices

E.5

Clock Memory Peripherals Features Features Clock Memory Peripherals Features Features Clock Memory Peripherals Features	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	TMR0 — — — 4 4 13 3.0-6.0 Yes — 18-pin DIP, SOIC	IMR0 4 4 13 3.0-6.0 Yes 18-pin DIP, SOIC; 20-pin SSOP 20-pin SSOP 20-pin SSOP 20-pin SSOP 20-pin SSOP	TMR0, 1 SPI/I ² C - 5 8 22 2.5-6.0 Yes 28-pin SDIP, SOIC, SSOP TMR1, TMR2 - 5 8 22 2.5-6.0 Yes 28-pin SDIP, SOIC, SSOP	TMR0, 2 SPI/I ² C, - 5 11 22 3.0-6.0 Yes - 28-pin SDIP, SOIC TMR1, TMR2 USART	TMR0, 2 SPI/I ² C, 5 11 22 2.5-6.0 Yes Yes 28-pin SDIP, SOIC TMR1, TMR2 USART	TMR0, 2 SPI/I ² C, Yes 8 12 33 3.0-6.0 Yes - 40-pin DIP; TMR1, TMR2 USART 12 33 3.0-6.0 Yes - 40-pin DIP;	TMR0, 2 SPI/I ² C, Yes 8 12 33 2.5-6.0 Yes 40-pin DIP; TMR1, TMR2 USART 12 33 2.5-6.0 Yes 44-pin PLCC, MQFP, TQFP	All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability.
TO LAND LOLD TO LOLD	TMR0	TMR0	TMR0	TMR0, TMR1, TM	TMR0, TMR1, TM	TMR0, TMR1, TM	TMR0, TMR1, TM	TMR0, TMR1, TM	All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable c capability.
10 TO LONG	36 044	36	89	128	192	192	192	192	y device
	512 512	ź	Ϋ́	2K	44 A	4 K	4K	4 K	⁷ Family
	20 10	20	20	20	20	20	20	20	C16/17 vility.
	PIC16C710	PIC16C71	PIC16C711	PIC16C72	PIC16C73	PIC16C73A ⁽¹⁾	PIC16C74	PIC16C74A ⁽¹⁾	All PIC16/ capability.

PIC17C4X Product Identification System

To order or to obtain information, e.g., on pricing or delivery, please use the listed part numbers, and refer to the factory or the listed sales offices.

PART NO. – XX X /XX XXX		Examples
Pattern:	QTP, SQTP, ROM Code (factory specified) or Special Requirements. Blank for OTP and Windowed devices	a) PIC17C42 – 16/P Commercial Temp., PDIP package,
Package:	P = PDIP JW = Windowed CERDIP P = PDIP (600 mil) PQ = MQFP PT = TQFP L = PLCC	16 MHZ, normal VDD limits b) PIC17LC44 – 08/PT Commercial Temp., TQFP package,
Temperature Range:	$\begin{array}{rcl} - & = 0 \ ^{\circ}C \ \text{to} \ +70 \ ^{\circ}C \\ \text{I} & = -40 \ ^{\circ}C \ \text{to} \ +85 \ ^{\circ}C \end{array}$	8MHz, extended VDD limits
Frequency Range:	08 = 8 MHz 16 = 16 MHz 25 = 25 Mhz 33 = 33 Mhz	c) PIC17C43 – 25I/P Industrial Temp., PDIP package,
Device:	PIC17C44 : Standard Vdd range PIC17C44T : (Tape and Reel) PIC17LC44 : Extended Vdd range	25 MHz, normal VDD limits

Sales and Support

Products supported by a preliminary Data Sheet may possibly have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office (see below)

2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277

3. The Microchip's Bulletin Board, via your local CompuServe number (CompuServe membership NOT required).

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

For latest version information and upgrade kits for Microchip Development Tools, please call 1-800-755-2345 or 1-602-786-7302.

^{© 1996} Microchip Technology Inc.