

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	33MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (8K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c44-33e-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Overview	5
2.0	PIC17C4X Device Varieties	7
3.0	Architectural Overview	9
4.0	Reset	15
5.0	Interrupts	21
6.0	Memory Organization	29
7.0	Table Reads and Table Writes	43
8.0	Hardware Multiplier	49
9.0	I/O Ports	53
10.0	Overview of Timer Resources	
11.0	Timer0	
12.0	Timer1, Timer2, Timer3, PWMs and Captures	
13.0	Universal Synchronous Asynchronous Receiver Transmitter (USART) Module	83
14.0	Special Features of the CPU	99
15.0	Instruction Set Summary	107
16.0	Development Support	143
17.0	PIC17C42 Electrical Characteristics	
18.0	PIC17C42 DC and AC Characteristics	
19.0	PIC17CR42/42A/43/R43/44 Electrical Characteristics	175
20.0	PIC17CR42/42A/43/R43/44 DC and AC Characteristics	
21.0	Packaging Information	205
111-	dix A: Modifications	
	dix B: Compatibility	
Appen	dix C: What's New	212
Appen	dix D: What's Changed	212
	dix E: PIC16/17 Microcontrollers	
	dix F: Errata for PIC17C42 Silicon	
PIC17	C4X Product Identification System	237

For register and module descriptions in this data sheet, device legends show which devices apply to those sections. For example, the legend below shows that some features of only the PIC17C43, PIC17C43, PIC17C44 are described in this section.

Applicable Devices 42 R42 42A 43 R43 44

To Our Valued Customers

We constantly strive to improve the quality of all our products and documentation. We have spent an exceptional amount of time to ensure that these documents are correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error from the previous version of the PIC17C4X Data Sheet (Literature Number DS30412B), please use the reader response form in the back of this data sheet to inform us. We appreciate your assistance in making this a better document.

To assist you in the use of this document, Appendix C contains a list of new information in this data sheet, while Appendix D contains information that has changed

1.0 OVERVIEW

This data sheet covers the PIC17C4X group of the PIC17CXX family of microcontrollers. The following devices are discussed in this data sheet:

- PIC17C42
- PIC17CR42
- PIC17C42A
- PIC17C43
- PIC17CR43
- PIC17C44

The PIC17CR42, PIC17C42A, PIC17C43, PIC17CR43, and PIC17C44 devices include architectural enhancements over the PIC17C42. These enhancements will be discussed throughout this data sheet.

The PIC17C4X devices are 40/44-Pin, EPROM/ROM-based members of the versatile PIC17CXX family of low-cost, high-performance, CMOS, fully-static, 8-bit microcontrollers.

All PIC16/17 microcontrollers employ an advanced RISC architecture. The PIC17CXX has enhanced core features, 16-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 16-bit wide instruction word with a separate 8-bit wide data. The two stage instruction pipeline allows all instructions to execute in a single cycle, except for program branches (which require two cycles). A total of 55 instructions (reduced instruction set) are available in the PIC17C42 and 58 instructions in all the other devices. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance. For mathematical intensive applications all devices, except the PIC17C42, have a single cycle 8 x 8 Hardware Multiplier.

PIC17CXX microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

PIC17C4X devices have up to 454 bytes of RAM and 33 I/O pins. In addition, the PIC17C4X adds several peripheral features useful in many high performance applications including:

- · Four timer/counters
- Two capture inputs
- Two PWM outputs
- A Universal Synchronous Asynchronous Receiver Transmitter (USART)

These special features reduce external components, thus reducing cost, enhancing system reliability and reducing power consumption. There are four oscillator options, of which the single pin RC oscillator provides a low-cost solution, the LF oscillator is for low frequency crystals and minimizes power consumption, XT is a standard crystal, and the EC is for external clock input. The SLEEP (power-down) mode offers additional power saving. The user can wake-up the chip from SLEEP through several external and internal interrupts and device resets.

There are four configuration options for the device operational modes:

- Microprocessor
- Microcontroller
- Extended microcontroller
- Protected microcontroller

The microprocessor and extended microcontroller modes allow up to 64K-words of external program memory.

A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software malfunction.

Table 1-1 lists the features of the PIC17C4X devices.

A UV-erasable CERDIP-packaged version is ideal for code development while the cost-effective One-Time Programmable (OTP) version is suitable for production in any volume.

The PIC17C4X fits perfectly in applications ranging from precise motor control and industrial process control to automotive, instrumentation, and telecom applications. Other applications that require extremely fast execution of complex software programs or the flexibility of programming the software code as one of the last steps of the manufacturing process would also be well suited. The EPROM technology makes customization of application programs (with unique security codes, combinations, model numbers, parameter storage, etc.) fast and convenient. Small footprint package options make the PIC17C4X ideal for applications with space limitations that require high performance. High speed execution, powerful peripheral features, flexible I/O, and low power consumption all at low cost make the PIC17C4X ideal for a wide range of embedded control applications.

1.1 Family and Upward Compatibility

Those users familiar with the PIC16C5X and PIC16CXX families of microcontrollers will see the architectural enhancements that have been implemented. These enhancements allow the device to be more efficient in software and hardware requirements. Please refer to Appendix A for a detailed list of enhancements and modifications. Code written for PIC16C5X or PIC16CXX can be easily ported to PIC17CXX family of devices (Appendix B).

1.2 Development Support

The PIC17CXX family is supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a universal programmer, a "C" compiler, and fuzzy logic support tools.

^{© 1996} Microchip Technology Inc.

NOTES:

6.4.1 INDIRECT ADDRESSING REGISTERS

The PIC17C4X has four registers for indirect addressing. These registers are:

- INDF0 and FSR0
- INDF1 and FSR1

Registers INDF0 and INDF1 are not physically implemented. Reading or writing to these registers activates indirect addressing, with the value in the corresponding FSR register being the address of the data. The FSR is an 8-bit register and allows addressing anywhere in the 256-byte data memory address range. For banked memory, the bank of memory accessed is specified by the value in the BSR.

If file INDF0 (or INDF1) itself is read indirectly via an FSR, all '0's are read (Zero bit is set). Similarly, if INDF0 (or INDF1) is written to indirectly, the operation will be equivalent to a NOP, and the status bits are not affected.

6.4.2 INDIRECT ADDRESSING OPERATION

The indirect addressing capability has been enhanced over that of the PIC16CXX family. There are two control bits associated with each FSR register. These two bits configure the FSR register to:

- Auto-decrement the value (address) in the FSR after an indirect access
- Auto-increment the value (address) in the FSR after an indirect access
- No change to the value (address) in the FSR after an indirect access

These control bits are located in the ALUSTA register. The FSR1 register is controlled by the FS3:FS2 bits and FSR0 is controlled by the FS1:FS0 bits.

When using the auto-increment or auto-decrement features, the effect on the FSR is not reflected in the ALUSTA register. For example, if the indirect address causes the FSR to equal '0', the Z bit will not be set.

If the FSR register contains a value of 0h, an indirect read will read 0h (Zero bit is set) while an indirect write will be equivalent to a NOP (status bits are not affected).

Indirect addressing allows single cycle data transfers within the entire data space. This is possible with the use of the MOVPF and MOVFP instructions, where either 'p' or 'f' is specified as INDF0 (or INDF1).

If the source or destination of the indirect address is in banked memory, the location accessed will be determined by the value in the BSR. A simple program to clear RAM from 20h - FFh is shown in Example 6-1.

EXAMPLE 6-1: INDIRECT ADDRESSING

	MOVLW	0x20	;	
	MOVWF	FSR0	; FSR0 = 20	h
	BCF	ALUSTA, FS1	; Increment	FSR
	BSF	ALUSTA, FSO	; after acc	ess
	BCF	ALUSTA, C	; C = 0	
	MOVLW	END_RAM + 1	;	
LP	CLRF	INDF0	; Addr(FSR)	= 0
	CPFSEQ	FSR0	; FSRO = EN	ID_RAM+1?
	GOTO	LP	; NO, clear	next
	:		; YES, All	RAM is
	:		; cleared	

6.5 <u>Table Pointer (TBLPTRL and</u> <u>TBLPTRH)</u>

File registers TBLPTRL and TBLPTRH form a 16-bit pointer to address the 64K program memory space. The table pointer is used by instructions TABLWT and TABLRD.

The TABLRD and the TABLWT instructions allow transfer of data between program and data space. The table pointer serves as the 16-bit address of the data word within the program memory. For a more complete description of these registers and the operation of Table Reads and Table Writes, see Section 7.0.

6.6 <u>Table Latch (TBLATH, TBLATL)</u>

The table latch (TBLAT) is a 16-bit register, with TBLATH and TBLATL referring to the high and low bytes of the register. It is not mapped into data or program memory. The table latch is used as a temporary holding latch during data transfer between program and data memory (see descriptions of instructions TABLRD, TABLWT, TLRD and TLWT). For a more complete description of these registers and the operation of Table Reads and Table Writes, see Section 7.0.

12.0 TIMER1, TIMER2, TIMER3, PWMS AND CAPTURES

The PIC17C4X has a wealth of timers and time-based functions to ease the implementation of control applications. These time-base functions include two PWM outputs and two Capture inputs.

Timer1 and Timer2 are two 8-bit incrementing timers, each with a period register (PR1 and PR2 respectively) and separate overflow interrupt flags. Timer1 and Timer2 can operate either as timers (increment on internal Fosc/4 clock) or as counters (increment on falling edge of external clock on pin RB4/TCLK12). They are also software configurable to operate as a single 16-bit timer. These timers are also used as the time-base for the PWM (pulse width modulation) module. Timer3 is a 16-bit timer/counter consisting of the TMR3H and TMR3L registers. This timer has four other associated registers. Two registers are used as a 16-bit period register or a 16-bit Capture1 register (PR3H/CA1H:PR3L/CA1L). The other two registers are strictly the Capture2 registers (CA2H:CA2L). Timer3 is the time-base for the two 16-bit captures.

TMR3 can be software configured to increment from the internal system clock or from an external signal on the RB5/TCLK3 pin.

Figure 12-1 and Figure 12-2 are the control registers for the operation of Timer1, Timer2, and Timer3, as well as PWM1, PWM2, Capture1, and Capture2.

FIGURE 12-1: TCON1 REGISTER (ADDRESS: 16h, BANK 3)

bit7	I CA2ED0 CA1ED1 CA1ED0 T16 TMR3CS TMR2CS TMR1CS bit0	R = Readable bit W = Writable bit -n = Value at POR reset
bit 7-6:	 CA2ED1:CA2ED0: Capture2 Mode Select bits 00 = Capture on every falling edge 01 = Capture on every rising edge 10 = Capture on every 4th rising edge 11 = Capture on every 16th rising edge 	
bit 5-4:	CA1ED1:CA1ED0 : Capture1 Mode Select bits 00 = Capture on every falling edge 01 = Capture on every rising edge 10 = Capture on every 4th rising edge 11 = Capture on every 16th rising edge	
bit 3:	T16 : Timer1:Timer2 Mode Select bit 1 = Timer1 and Timer2 form a 16-bit timer 0 = Timer1 and Timer2 are two 8-bit timers	
bit 2:	TMR3CS : Timer3 Clock Source Select bit 1 = TMR3 increments off the falling edge of the RB5/TCLK3 pin 0 = TMR3 increments off the internal clock	
bit 1:	TMR2CS : Timer2 Clock Source Select bit 1 = TMR2 increments off the falling edge of the RB4/TCLK12 pin 0 = TMR2 increments off the internal clock	
bit 0:	TMR1CS : Timer1 Clock Source Select bit 1 = TMR1 increments off the falling edge of the RB4/TCLK12 pin 0 = TMR1 increments off the internal clock	

FIGURE 12-2: TCON2 REGISTER (ADDRESS: 17h, BANK 3)

R - 0	R - 0 R/W - 0
	F CA10VF PWM20N PWM10N CA1/PR3 TMR30N TMR20N TMR10N R = Readable bit
bit7	bit0 W = Writable bit
	-n = Value at POR reset
bit 7:	 CA2OVF: Capture2 Overflow Status bit This bit indicates that the capture value had not been read from the capture register pair (CA2H:CA2L) before the next capture event occurred. The capture register retains the oldest unread capture value (last capture before overflow). Subsequent capture events will not update the capture register with the Timer3 value until the capture register has been read (both bytes). 1 = Overflow occurred on Capture2 register 0 = No overflow occurred on Capture2 register
bit 6:	CA1OVF : Capture1 Overflow Status bit This bit indicates that the capture value had not been read from the capture register pair (PR3H/CA2H:PR3L/CA2L) before the next capture event occurred. The capture register retains the old- est unread capture value (last capture before overflow). Subsequent capture events will not update the capture register with the TMR3 value until the capture register has been read (both bytes). 1 = Overflow occurred on Capture1 register 0 = No overflow occurred on Capture1 register
bit 5:	PWM2ON : PWM2 On bit 1 = PWM2 is enabled (The RB3/PWM2 pin ignores the state of the DDRB<3> bit) 0 = PWM2 is disabled (The RB3/PWM2 pin uses the state of the DDRB<3> bit for data direction)
bit 4:	PWM1ON : PWM1 On bit 1 = PWM1 is enabled (The RB2/PWM1 pin ignores the state of the DDRB<2> bit) 0 = PWM1 is disabled (The RB2/PWM1 pin uses the state of the DDRB<2> bit for data direction)
bit 3:	CA1/PR3 : CA1/PR3 Register Mode Select bit 1 = Enables Capture1 (PR3H/CA1H:PR3L/CA1L is the Capture1 register. Timer3 runs without a period register) 0 = Enables the Period register (PR3H/CA1H:PR3L/CA1L is the Period register for Timer3)
bit 2:	TMR3ON: Timer3 On bit 1 = Starts Timer3 0 = Stops Timer3
bit 1:	TMR2ON : Timer2 On bit This bit controls the incrementing of the Timer2 register. When Timer2:Timer1 form the 16-bit timer (T16 is set), TMR2ON must be set. This allows the MSB of the timer to increment. 1 = Starts Timer2 (Must be enabled if the T16 bit (TCON1<3>) is set) 0 = Stops Timer2
bit 0:	TMR1ON: Timer1 On bit <u>When T16 is set (in 16-bit Timer Mode)</u> 1 = Starts 16-bit Timer2:Timer1 0 = Stops 16-bit Timer2:Timer1
	<u>When T16 is clear (in 8-bit Timer Mode)</u> 1 = Starts 8-bit Timer1 0 = Stops 8-bit Timer1
	•

14.1 Configuration Bits

The PIC17CXX has up to seven configuration locations (Table 14-1). These locations can be programmed (read as '0') or left unprogrammed (read as '1') to select various device configurations. Any write to a configuration location, regardless of the data, will program that configuration bit. A TABLWT instruction is required to write to program memory locations. The configuration bits can be read by using the TABLRD instructions. Reading any configuration location between FE00h and FE07h will read the low byte of the configuration word (Figure 14-1) into the TABLATL register. The TABLATH register will be FFh. Reading a configuration location between FE08h and FE0Fh will read the high byte of the configuration word into the TABLATL register. The TABLATH register will be FFh.

Addresses FE00h thorough FE0Fh are only in the program memory space for microcontroller and code protected microcontroller modes. A device programmer will be able to read the configuration word in any processor mode. See programming specifications for more detail.

TABLE 14-1: CONFIGURATION LOCATIONS

Bit	Address
FOSC0	FE00h
FOSC1	FE01h
WDTPS0	FE02h
WDTPS1	FE03h
PM0	FE04h
PM1	FE06h
PM2 ⁽¹⁾	FE0Fh ⁽¹⁾

Note 1: This location does not exist on the PIC17C42.

Note:						
	tion locations, they must be programmed in					
	ascending order. Starting with address					
	FE00h.					

14.2 Oscillator Configurations

14.2.1 OSCILLATOR TYPES

The PIC17CXX can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1:FOSC0) to select one of these four modes:

- LF: Low Power Crystal
- XT: Crystal/Resonator
- EC: External Clock Input
- RC: Resistor/Capacitor

14.2.2 CRYSTAL OSCILLATOR / CERAMIC RESONATORS

In XT or LF modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 14-2). The PIC17CXX Oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency out of the crystal manufacturers specifications.

For frequencies above 20 MHz, it is common for the crystal to be an overtone mode crystal. Use of overtone mode crystals require a tank circuit to attenuate the gain at the fundamental frequency. Figure 14-3 shows an example of this.

FIGURE 14-2: CRYSTAL OR CERAMIC RESONATOR OPERATION (XT OR LF OSC CONFIGURATION)

Note 1: A series resistor may be required for AT strip cut crystals.

14.3 Watchdog Timer (WDT)

The Watchdog Timer's function is to recover from software malfunction. The WDT uses an internal free running on-chip RC oscillator for its clock source. This does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run, even if the clock on the OSC1/CLKIN and OSC2/CLK-OUT pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation and SLEEP mode, a WDT time-out generates a device RESET. The WDT can be permanently disabled by programming the configuration bits WDTPS1:WDTPS0 as '00' (Section 14.1).

Under normal operation, the WDT must be cleared on a regular interval. This time is less the minimum WDT overflow time. Not clearing the WDT in this time frame will cause the WDT to overflow and reset the device.

14.3.1 WDT PERIOD

The WDT has a nominal time-out period of 12 ms, (with postscaler = 1). The time-out periods vary with temperature, VDD and process variations from part to part (see DC specs). If longer time-out periods are desired, a postscaler with a division ratio of up to 1:256 can be assigned to the WDT. Thus, typical time-out periods up to 3.0 seconds can be realized.

The CLRWDT and SLEEP instructions clear the WDT and the postscaler (if assigned to the WDT) and prevent it from timing out thus generating a device RESET condition.

The $\overline{\text{TO}}$ bit in the CPUSTA register will be cleared upon a WDT time-out.

14.3.2 CLEARING THE WDT AND POSTSCALER

The WDT and postscaler are cleared when:

- The device is in the reset state
- A SLEEP instruction is executed
- A CLRWDT instruction is executed
- Wake-up from SLEEP by an interrupt

The WDT counter/postscaler will start counting on the first edge after the device exits the reset state.

14.3.3 WDT PROGRAMMING CONSIDERATIONS

It should also be taken in account that under worst case conditions (VDD = Min., Temperature = Max., max. WDT postscaler) it may take several seconds before a WDT time-out occurs.

The WDT and postscaler is the Power-up Timer during the Power-on Reset sequence.

14.3.4 WDT AS NORMAL TIMER

When the WDT is selected as a normal timer, the clock source is the device clock. Neither the WDT nor the postscaler are directly readable or writable. The overflow time is 65536 Tosc cycles. On overflow, the $\overline{\text{TO}}$ bit is cleared (device is not reset). The CLRWDT instruction can be used to set the $\overline{\text{TO}}$ bit. This allows the WDT to be a simple overflow timer. When in sleep, the WDT does not increment.

Table 15-2 lists the instructions recognized by the MPASM assembler.

Note 1:	Any unused opcode is Reserved. Use of
	any reserved opcode may cause unex-
	pected operation.

Note 2: The shaded instructions are not available in the PIC17C42

All instruction examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

To represent a binary number:

0000 0100b

where b signifies a binary string.

FIGURE 15-1: GENERAL FORMAT FOR INSTRUCTIONS

15.1 <u>Special Function Registers as</u> <u>Source/Destination</u>

The PIC17C4X's orthogonal instruction set allows read and write of all file registers, including special function registers. There are some special situations the user should be aware of:

15.1.1 ALUSTA AS DESTINATION

If an instruction writes to ALUSTA, the Z, C, DC and OV bits may be set or cleared as a result of the instruction and overwrite the original data bits written. For example, executing CLRF ALUSTA will clear register ALUSTA, and then set the Z bit leaving 0000 0100b in the register.

15.1.2 PCL AS SOURCE OR DESTINATION

Read, write or read-modify-write on PCL may have the following results:

Read PC:	$\text{PCH} \rightarrow \text{PCLATH}; \text{PCL} \rightarrow \text{dest}$
Write PCL:	PCLATH \rightarrow PCH; 8-bit destination value \rightarrow PCL
Read-Modify-Write:	$PCL \rightarrow ALU$ operand $PCLATH \rightarrow PCH$; 8-bit result $\rightarrow PCL$

Where PCH = program counter high byte (not an addressable register), PCLATH = Program counter high holding latch, dest = destination, WREG or f.

15.1.3 BIT MANIPULATION

All bit manipulation instructions are done by first reading the entire register, operating on the selected bit and writing the result back (read-modify-write). The user should keep this in mind when operating on special function registers, such as ports.

15.2 <u>Q Cycle Activity</u>

Each instruction cycle (Tcy) is comprised of four Q cycles (Q1-Q4). The Q cycles provide the timing/designation for the Decode, Read, Execute, Write etc., of each instruction cycle. The following diagram shows the relationship of the Q cycles to the instruction cycle.

The 4 Q cycles that make up an instruction cycle (Tcy) can be generalized as:

- Q1: Instruction Decode Cycle or forced NOP
- Q2: Instruction Read Cycle or NOP
- Q3: Instruction Execute
- Q4: Instruction Write Cycle or NOP

Each instruction will show the detailed Q cycle operation for the instruction.

FIGURE 15-2: Q CYCLE ACTIVITY

PIC17C4X

SWAPF	Swap f				
Syntax:	[label]	SWAPF	f,d		
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \ [0,1] \end{array}$	5			
Operation:		$\begin{array}{l} f{<}3:0{>}\rightarrow dest{<}7:4{>};\\ f{<}7:4{>}\rightarrow dest{<}3:0{>} \end{array}$			
Status Affected:	None				
Encoding:	0001	110d	ffff	ffff	
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0 the result is placed in WREG. If 'd' is 1 the result is placed in register 'f'.				
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q	3	Q4	
Decode	Read register 'f'	Exect		Vrite to stination	
Example:	SWAPF I	REG,	0		
Before Instruction REG = 0x53					
After Instruction REG = 0x35					

TABLRD	Table Rea	d			
Syntax:	[label]	FABLRD	t,i,f		
Operands:	$0 \le f \le 255$ $i \in [0,1]$ $t \in [0,1]$				
Operation:	If t = 1, TBLATH \rightarrow f; If t = 0, TBLATL \rightarrow f; Prog Mem (TBLPTR) \rightarrow TBLAT; If i = 1, TBLPTR + 1 \rightarrow TBLPTR				
Status Affected:	None				
Encoding:	1010	10ti	ffff	ffff	
Description:	 A byte of the table latch (TBLAT) is moved to register file 'f'. If t = 0: the high byte is moved; If t = 1: the low byte is moved 				
	 Then the contents of the program memory location pointed to by the 16-bit Table Pointer (TBLPTR) is loaded into the 16-bit Table Latch (TBLAT). If i = 1: TBLPTR is incremented; If i = 0: TBLPTR is not 				
		increme	ented		
Words:	1				
Cycles:	2 (3 cycle	if f = PC	L)		
Q Cycle Activity:	Q Cycle Activity:				
Q1	Q2 Q3		Q4		
Decode	Read register TBLATH or TBLATL	Execu		Write gister 'f'	

FIGURE 17-7: CAPTURE TIMINGS

TABLE 17-7: CAPTURE REQUIREMENTS

Parameter							
No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
50	TccL	Capture1 and Capture2 input low time	10 *	—	—	ns	
51	TccH	Capture1 and Capture2 input high time	10 *	—	_	ns	
52	TccP	Capture1 and Capture2 input period	<u>2 Tcy</u> § N	—	—	ns	N = prescale value (4 or 16)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

FIGURE 17-8: PWM TIMINGS

TABLE 17-8: PWM REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
53	TccR	PWM1 and PWM2 output rise time	_	10 *	35 *§	ns	
54	TccF	PWM1 and PWM2 output fall time	—	10 *	35 *§	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

TABLE 19-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)		100 *	_	_	ns	VDD = 5V
31	Twdt	Watchdog Timer Time-out Period (Prescale = 1)		5 *	12	25 *	ms	VDD = 5V
32	Tost	Oscillation Start-up Timer Period		_	1024Tosc§	_	ms	Tosc = OSC1 period
33	Tpwrt	Power-up Timer Period		40 *	96	200 *	ms	VDD = 5V
35	TmcL2adl	MCLR to System Inter- face bus (AD15:AD0>)	PIC17CR42/42A/ 43/R43/44	—	_	100 *	ns	
			PIC17LCR42/ 42A/43/R43/44	—	—	120 *	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

§ This specification ensured by design.

TABLE 19-12: MEMORY INTERFACE READ REQUIREMENTS (NOT SUPPORTED IN PIC17LC4X DEVICES)

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
150	TadV2alL	AD15:AD0 (address) valid to ALE↓ (address setup time)	0.25Tcy - 10	_	_	ns	
151	TalL2adl	ALE↓ to address out invalid (address hold time)	5*		_	ns	
160	TadZ2oeL	AD15:AD0 hi-impedance to $\overline{\text{OE}}\downarrow$	0*	_	—	ns	
161	ToeH2adD	OE↑ to AD15:AD0 driven	0.25Tcy - 15	_	_	ns	
162	TadV2oeH	Data in valid before OE↑ (data setup time)	35	_	_	ns	
163	ToeH2adI	OE [↑] to data in invalid (data hold time)	0	_	_	ns	
164	TalH	ALE pulse width	—	0.25Tcy §	—	ns	
165	ToeL	OE pulse width	0.5Tcy - 35 §	_	_	ns	
166	TalH2alH	ALE↑ to ALE↑(cycle time)	—	TCY §	_	ns	
167	Тасс	Address access time	_	_	0.75Tcy - 30	ns	
168	Тое	Output enable access time (OE low to Data Valid)	_	_	0.5Tcy - 45	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

*

NOTES:

FIGURE 20-6: TRANSCONDUCTANCE (gm) OF XT OSCILLATOR vs. VDD

FIGURE 20-17: IOL vs. VOL, VDD = 5V

FIGURE 20-18: VTH (INPUT THRESHOLD VOLTAGE) OF I/O PINS (TTL) VS. VDD

APPENDIX A: MODIFICATIONS

The following is the list of modifications over the PIC16CXX microcontroller family:

- Instruction word length is increased to 16-bit. This allows larger page sizes both in program memory (8 Kwords verses 2 Kwords) and register file (256 bytes versus 128 bytes).
- 2. Four modes of operation: microcontroller, protected microcontroller, extended microcontroller, and microprocessor.
- 22 new instructions. The MOVF, TRIS and OPTION instructions have been removed.
- 4. 4 new instructions for transferring data between data memory and program memory. This can be used to "self program" the EPROM program memory.
- Single cycle data memory to data memory transfers possible (MOVPF and MOVFP instructions). These instructions do not affect the Working register (WREG).
- 6. W register (WREG) is now directly addressable.
- 7. A PC high latch register (PCLATH) is extended to 8-bits. The PCLATCH register is now both readable and writable.
- 8. Data memory paging is redefined slightly.
- 9. DDR registers replaces function of TRIS registers.
- 10. Multiple Interrupt vectors added. This can decrease the latency for servicing the interrupt.
- 11. Stack size is increased to 16 deep.
- 12. BSR register for data memory paging.
- 13. Wake up from SLEEP operates slightly differently.
- 14. The Oscillator Start-Up Timer (OST) and Power-Up Timer (PWRT) operate in parallel and not in series.
- 15. PORTB interrupt on change feature works on all eight port pins.
- 16. TMR0 is 16-bit plus 8-bit prescaler.
- 17. Second indirect addressing register added (FSR1 and FSR2). Configuration bits can select the FSR registers to auto-increment, auto-decrement, remain unchanged after an indirect address.
- 18. Hardware multiplier added (8 x 8 \rightarrow 16-bit) (PIC17C43 and PIC17C44 only).
- 19. Peripheral modules operate slightly differently.
- 20. Oscillator modes slightly redefined.
- 21. Control/Status bits and registers have been placed in different registers and the control bit for globally enabling interrupts has inverse polarity.
- 22. Addition of a test mode pin.
- 23. In-circuit serial programming is not implemented.

APPENDIX B: COMPATIBILITY

To convert code written for PIC16CXX to PIC17CXX, the user should take the following steps:

- 1. Remove any TRIS and OPTION instructions, and implement the equivalent code.
- 2. Separate the interrupt service routine into its four vectors.
- 3. Replace:

4.

<pre>MOVF REG1, W with: MOVFP REG1, WREG Replace: MOVF REG1, W MOVWF REG2 with: MOVPF REG1, REG2 ; Addr(REG1)<20h or MOVFP REG1, REG2 ; Addr(REG2)<20h</pre>			
MOVFP REG1, WREG Replace: MOVF REG1, W MOVWF REG2 with: MOVPF REG1, REG2 ; Addr(REG1)<20h or	MOVF	REG1,	W
Replace: MOVF REG1, W MOVWF REG2 with: MOVPF REG1, REG2 ; Addr(REG1)<20h or	with:		
MOVF REG1, W MOVWF REG2 with: MOVPF REG1, REG2 ; Addr(REG1)<20h Or	MOVFP	REG1,	WREG
MOVWF REG2 with: MOVPF REG1, REG2 ; Addr(REG1)<20h Or	Replace:		
with: MOVPF REG1, REG2 ; Addr(REG1)<20h or	MOVF	REG1,	W
MOVPF REG1, REG2 ; Addr(REG1)<20h or	MOVWF	REG2	
or	with:		
	MOVPF	REG1,	REG2 ; Addr(REG1)<20h
MOVFP REG1, REG2 ; Addr(REG2)<20h	or		
	MOVFP	REG1,	REG2 ; Addr(REG2)<20h

Note: If REG1 and REG2 are both at addresses greater then 20h, two instructions are required. MOVFP REG1, WREG ; MOVPF WREG, REG2 ;

- 5. Ensure that all bit names and register names are updated to new data memory map location.
- 6. Verify data memory banking.
- 7. Verify mode of operation for indirect addressing.
- 8. Verify peripheral routines for compatibility.
- 9. Weak pull-ups are enabled on reset.

To convert code from the PIC17C42 to all the other PIC17C4X devices, the user should take the following steps.

- 1. If the hardware multiply is to be used, ensure that any variables at address 18h and 19h are moved to another address.
- 2. Ensure that the upper nibble of the BSR was not written with a non-zero value. This may cause unexpected operation since the RAM bank is no longer 0.
- 3. The disabling of global interrupts has been enhanced so there is no additional testing of the GLINTD bit after a BSF CPUSTA, GLINTD instruction.

^{© 1996} Microchip Technology Inc.

PIC17C4X

Figure 19-2:	External Clock Timing 184				
Figure 19-3:	CLKOUT and I/O Timing 185				
Figure 19-4:	Reset, Watchdog Timer,				
riguio io 4.	Oscillator Start-Up Timer, and				
-	Power-Up Timer Timing				
Figure 19-5:	Timer0 Clock Timings 187				
Figure 19-6:	Timer1, Timer2, and Timer3 Clock				
	Timings				
Figure 19-7:	Capture Timings 188				
Figure 19-8:	PWM Timings				
Figure 19-9:	USART Module: Synchronous				
rigule 13-3.					
E'	Transmission (Master/Slave) Timing 189				
Figure 19-10:	USART Module: Synchronous				
	Receive (Master/Slave) Timing 189				
Figure 19-11:	Memory Interface Write Timing				
	(Not Supported in PIC17LC4X Devices) 190				
Figure 19-12:	Memory Interface Read Timing				
J	(Not Supported in PIC17LC4X Devices) 191				
Figure 20-1:	Typical RC Oscillator Frequency vs.				
rigule 20-1.					
F : 00.0	Temperature				
Figure 20-2:	Typical RC Oscillator Frequency				
	vs. VDD				
Figure 20-3:	Typical RC Oscillator Frequency				
	vs. VDD				
Figure 20-4:	Typical RC Oscillator Frequency				
J	vs. VDD				
Figure 20-5:	Transconductance (gm) of LF Oscillator				
1 igule 20-5.					
	vs. VDD				
Figure 20-6:	Transconductance (gm) of XT Oscillator				
	vs. VDD196				
Figure 20-7:	Typical IDD vs. Frequency (External				
	Clock 25°C) 197				
Figure 20-8:	Maximum IDD vs. Frequency (External				
J	Clock 125°C to -40°C) 197				
Figure 20-9:	Typical IPD vs. VDD Watchdog				
riguie 20 5.					
Einung 00 40.	Disabled 25°C				
Figure 20-10:	Maximum IPD vs. VDD Watchdog				
	Disabled198				
Figure 20-11:	Typical IPD vs. VDD Watchdog				
	Enabled 25°C 199				
Figure 20-12:	Maximum IPD vs. VDD Watchdog				
0	Enabled199				
Figure 20-13:	WDT Timer Time-Out Period vs. VDD 200				
Figure 20-14:	IOH vs. VOH, VDD = 3V				
Figure 20-15:	IOH vs. VOH, VDD = 5V				
Figure 20-16:	IOL vs. VOL, VDD = 3V				
Figure 20-17:	IOL vs. VOL, VDD = 5V				
Figure 20-18:	Vтн (Input Threshold Voltage) of				
	I/O Pins (TTL) vs. VDD				
Figure 20-19:	VTH, VIL of I/O Pins (Schmitt Trigger)				
g <u>-</u> 00.	vs. VDD				
Figure 20-20:	VTH (Input Threshold Voltage) of OSC1				
i iyule 20-20.					
	Input (In XT and LF Modes) vs. VDD 203				
LIST OF TABLES					
Table 1-1:	PIC17CXX Family of Devices 6				
Table 3-1:	Pinout Descriptions12				
Table 4-1:	Time-Out in Various Situations				
Table 4-2:	STATUS Bits and Their Significance				

Mode Memory Access 30

Initialization Conditions For Special

Table 6-2:	EPROM Memory Access Time
	Ordering Suffix
Table 6-3:	Special Function Registers34
Table 7-1:	Interrupt - Table Write Interaction45
Table 8-1:	Performance Comparison49
Table 9-1:	PORTA Functions
Table 9-2:	Registers/Bits Associated with PORTA54
Table 9-3:	PORTB Functions
Table 9-4: Table 9-5:	Registers/Bits Associated with PORTB57 PORTC Functions
Table 9-5: Table 9-6:	Registers/Bits Associated with PORTC59
Table 9-0. Table 9-7:	PORTD Functions
Table 9-8:	Registers/Bits Associated with PORTD61
Table 9-9:	PORTE Functions
Table 9-10:	Registers/Bits Associated with PORTE63
Table 11-1:	Registers/Bits Associated with Timer070
Table 12-1:	Turning On 16-bit Timer74
Table 12-2:	Summary of Timer1 and Timer2
	Registers
Table 12-3:	PWM Frequency vs. Resolution at
	25 MHz
Table 12-4:	Registers/Bits Associated with PWM77
Table 12-5:	Registers Associated with Capture79
Table 12-6:	Summary of TMR1, TMR2, and TMR3
	Registers81
Table 13-1:	Baud Rate Formula86
Table 13-2:	Registers Associated with Baud Rate
	Generator86
Table 13-3:	Baud Rates for Synchronous Mode87
Table 13-4:	Baud Rates for Asynchronous Mode88
Table 13-5:	Registers Associated with Asynchronous
	Transmission90
Table 13-6:	Registers Associated with Asynchronous
	Reception92
Table 13-7:	Registers Associated with Synchronous
	Master Transmission
Table 13-8:	Registers Associated with Synchronous
T 40.0	Master Reception
Table 13-9:	Registers Associated with Synchronous
Table 40.40	Slave Transmission
Table 13-10:	Registers Associated with Synchronous
Table 14-1:	Slave Reception
Table 14-1. Table 14-2:	Capacitor Selection for Ceramic
	Resonators
Table 14-3:	Capacitor Selection for Crystal
Table 14-5.	OscillatoR
Table 14-4:	Registers/Bits Associated with the
	Watchdog Timer
Table 15-1:	Opcode Field Descriptions
Table 15-2:	PIC17CXX Instruction Set110
Table 16-1:	development tools from microchip146
Table 17-1:	Cross Reference of Device Specs for
	Oscillator Configurations and Frequencies
	of Operation (Commercial Devices)148
Table 17-2:	External Clock Timing Requirements155
Table 17-3:	CLKOUT and I/O Timing Requirements156
Table 17-4:	Reset, Watchdog Timer,
	Oscillator Start-Up Timer and
	Power-Up Timer Requirements157
Table 17-5:	Timer0 Clock Requirements158
Table 17-6:	Timer1, Timer2, and Timer3 Clock
	Requirements158
Table 17-7:	Capture Requirements
Table 17-8:	PWM Requirements159

Table 4-3:

Table 4-4:

Table 5-1:

Table 6-1: