

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	33MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (8K x 16)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c44-33e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

Register	Address	Power-on Reset	MCLR Reset WDT Reset	Wake-up from SLEEP through interrupt
Unbanked			L	
INDF0	00h	0000 0000	0000 0000	0000 0000
FSR0	01h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PCL	02h	0000h	0000h	PC + 1 ⁽²⁾
PCLATH	03h	0000 0000	0000 0000	uuuu uuuu
ALUSTA	04h	1111 xxxx	1111 uuuu	1111 uuuu
TOSTA	05h	0000 000-	0000 000-	0000 000-
CPUSTA ⁽³⁾	06h	11 11	11 qq	uu qq
INTSTA	07h	0000 0000	0000 0000	uuuu uuuu ⁽¹⁾
INDF1	08h	0000 0000	0000 0000	uuuu uuuu
FSR1	09h	xxxx xxxx	uuuu uuuu	uuuu uuuu
WREG	0Ah	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR0L	0Bh	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR0H	0Ch	xxxx xxxx	uuuu uuuu	uuuu uuuu
TBLPTRL ⁽⁴⁾	0Dh	xxxx xxxx	uuuu uuuu	uuuu uuuu
TBLPTRH ⁽⁴⁾	0Eh	xxxx xxxx	uuuu uuuu	uuuu uuuu
TBLPTRL ⁽⁵⁾	0Dh	0000 0000	0000 0000	uuuu uuuu
TBLPTRH ⁽⁵⁾	0Eh	0000 0000	0000 0000	uuuu uuuu
BSR	0Fh	0000 0000	0000 0000	uuuu uuuu
Bank 0				
PORTA	10h	0-xx xxxx	0-uu uuuu	uuuu uuuu
DDRB	11h	1111 1111	1111 1111	uuuu uuuu
PORTB	12h	xxxx xxxx	uuuu uuuu	uuuu uuuu
RCSTA	13h	0000 -00x	0000 -00u	uuuu -uuu
RCREG	14h	xxxx xxxx	uuuu uuuu	uuuu uuuu
TXSTA	15h	00001x	0000lu	uuuuuu
TXREG	16h	XXXX XXXX	uuuu uuuu	uuuu uuuu
SPBRG	17h	XXXX XXXX	uuuu uuuu	นนนน นนนน
Bank 1				
DDRC	10h	1111 1111	1111 1111	uuuu uuuu
PORTC	11h	xxxx xxxx	uuuu uuuu	uuuu uuuu
DDRD	12h	1111 1111	1111 1111	uuuu uuuu
PORTD	13h	XXXX XXXX	นนนน นนนน	uuuu uuuu
DDRE	14h	111	111	uuu
PORTE	15h	xxx	uuu	uuu
PIR	16h	0000 0010	0000 0010	uuuu uuuu ⁽¹⁾
PIE	17h	0000 0000	0000 0000	นนนน นนนน

TABLE 4-4: INITIALIZATION CONDITIONS FOR SPECIAL FUNCTION REGISTER	TABLE 4-4:	INITIALIZATION CONDITIONS FOR SPECIAL FUNCTION REGISTERS
--	------------	--

Legend: u = unchanged, x = unknown, - = unimplemented read as '0', q = value depends on condition. Note 1: One or more bits in INTSTA, PIR will be affected (to cause wake-up).

When the wake-up is due to an interrupt and the GLINTD bit is cleared, the PC is loaded with the interrupt vector.

3: See Table 4-3 for reset value of specific condition.

4: Only applies to the PIC17C42.

5: Does not apply to the PIC17C42.

6.2.2.2 CPU STATUS REGISTER (CPUSTA)

The CPUSTA register contains the status and control bits for the CPU. This register is used to globally enable/disable interrupts. If only a specific interrupt is desired to be enabled/disabled, please refer to the INTerrupt STAtus (INTSTA) register and the Peripheral Interrupt Enable (PIE) register. This register also indicates if the stack is available and contains the Power-down (PD) and Time-out (TO) bits. The TO, PD, and STKAV bits are not writable. These bits are set and cleared according to device logic. Therefore, the result of an instruction with the CPUSTA register as destination may be different than intended.

FIGURE 6-8: CPUSTA REGISTER (ADDRESS: 06h, UNBANKED)

FIGURE 7-4: TABLRD INSTRUCTION OPERATION

Example 8-3 shows the sequence to do a 16 x 16 unsigned multiply. Equation 8-1 shows the algorithm that is used. The 32-bit result is stored in 4 registers RES3:RES0.

EQUATION 8-1: 16 x 16 UNSIGNED MULTIPLICATION ALGORITHM

=

- ARG1H:ARG1L * ARG2H:ARG2L RES3:RES0 =
 - (ARG1H * ARG2H * 2¹⁶) +

(ARG1H * ARG2L * 2⁸) +

(ARG1L * ARG2H * 2⁸) (ARG1L * ARG2L)

+

EXAMPLE 8-3: 16 x 16 MULTIPLY ROUTINE

	MOVFP	ARG1L, WREG		
	MULWF	ARG2L	;	ARG1L * ARG2L ->
			;	PRODH:PRODL
	MOVPF	PRODH, RES1	;	
	MOVPF	PRODL, RESO	;	
;				
	MOVFP	ARG1H, WREG		
	MULWF	ARG2H	;	ARG1H * ARG2H ->
			;	PRODH:PRODL
	MOVPF	PRODH, RES3	;	
	MOVPF	PRODL, RES2	;	
;				
	MOVFP	ARG1L, WREG		
	MULWF	ARG2H	;	ARG1L * ARG2H ->
			;	PRODH:PRODL
	MOVFP	PRODL, WREG	;	
	ADDWF	RES1, F	;	Add cross
	MOVFP	PRODH, WREG	;	products
	ADDWFC	RES2, F	;	
		WIDEG E		
	CLRF	WREG, F	;	
	CLRF ADDWFC	RES3, F	; ;	
;	CLRF ADDWFC	RES3, F	; ;	
;	CLRF ADDWFC MOVFP	RES3, F ARG1H, WREG	; ; ;	
;	CLRF ADDWFC MOVFP MULWF	RES3, F RES3, F ARG1H, WREG ARG2L	; ; ; ;	ARG1H * ARG2L ->
;	CLRF ADDWFC MOVFP MULWF	RES3, F RES3, F ARG1H, WREG ARG2L	;;;;;;	ARG1H * ARG2L -> PRODH:PRODL
;	CLRF ADDWFC MOVFP MULWF	WREG, F RES3, F ARG1H, WREG ARG2L	;;;;;	ARG1H * ARG2L -> PRODH:PRODL
;	CLRF ADDWFC MOVFP MULWF MOVFP	WREG, F RES3, F ARG1H, WREG ARG2L PRODL, WREG	;;;;;;;	ARG1H * ARG2L -> PRODH:PRODL
;	CLRF ADDWFC MOVFP MULWF MOVFP ADDWF	WREG, F RES3, F ARG1H, WREG ARG2L PRODL, WREG RES1, F	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	ARG1H * ARG2L -> PRODH:PRODL Add cross
;	CLRF ADDWFC MOVFP MULWF MOVFP ADDWF MOVFP	WREG, F RES3, F ARG1H, WREG ARG2L PRODL, WREG RES1, F PRODH, WREG	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	ARG1H * ARG2L -> PRODH:PRODL Add cross products
;	CLRF ADDWFC MOVFP MULWF MOVFP ADDWF MOVFP ADDWFC	WREG, F RES3, F ARG1H, WREG ARG2L PRODL, WREG RES1, F PRODH, WREG RES2, F	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	ARG1H * ARG2L -> PRODH:PRODL Add cross products
;	CLRF ADDWFC MOVFP MULWF MOVFP ADDWF MOVFP ADDWFC CLRF	WREG, F RES3, F ARG1H, WREG ARG2L PRODL, WREG RES1, F PRODH, WREG RES2, F WREG, F	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	ARG1H * ARG2L -> PRODH:PRODL Add cross products

TABLE 9-7: PORTD FUNCTIONS

Name	Bit	Buffer Type	Function
RD0/AD8	bit0	TTL	Input/Output or system bus address/data pin.
RD1/AD9	bit1	TTL	Input/Output or system bus address/data pin.
RD2/AD10	bit2	TTL	Input/Output or system bus address/data pin.
RD3/AD11	bit3	TTL	Input/Output or system bus address/data pin.
RD4/AD12	bit4	TTL	Input/Output or system bus address/data pin.
RD5/AD13	bit5	TTL	Input/Output or system bus address/data pin.
RD6/AD14	bit6	TTL	Input/Output or system bus address/data pin.
RD7/AD15	bit7	TTL	Input/Output or system bus address/data pin.

Legend: TTL = TTL input.

TABLE 9-8: REGISTERS/BITS ASSOCIATED WITH PORTD

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
13h, Bank 1	PORTD	RD7/ AD15	RD6/ AD14	RD5/ AD13	RD4/ AD12	RD3/ AD11	RD2/ AD10	RD1/ AD9	RD0/ AD8	xxxx xxxx	uuuu uuuu
12h, Bank 1	DDRD	Data dired	Data direction register for PORTD							1111 1111	1111 1111

Legend: x = unknown, u = unchanged.

Note 1: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

12.0 TIMER1, TIMER2, TIMER3, PWMS AND CAPTURES

The PIC17C4X has a wealth of timers and time-based functions to ease the implementation of control applications. These time-base functions include two PWM outputs and two Capture inputs.

Timer1 and Timer2 are two 8-bit incrementing timers, each with a period register (PR1 and PR2 respectively) and separate overflow interrupt flags. Timer1 and Timer2 can operate either as timers (increment on internal Fosc/4 clock) or as counters (increment on falling edge of external clock on pin RB4/TCLK12). They are also software configurable to operate as a single 16-bit timer. These timers are also used as the time-base for the PWM (pulse width modulation) module. Timer3 is a 16-bit timer/counter consisting of the TMR3H and TMR3L registers. This timer has four other associated registers. Two registers are used as a 16-bit period register or a 16-bit Capture1 register (PR3H/CA1H:PR3L/CA1L). The other two registers are strictly the Capture2 registers (CA2H:CA2L). Timer3 is the time-base for the two 16-bit captures.

TMR3 can be software configured to increment from the internal system clock or from an external signal on the RB5/TCLK3 pin.

Figure 12-1 and Figure 12-2 are the control registers for the operation of Timer1, Timer2, and Timer3, as well as PWM1, PWM2, Capture1, and Capture2.

FIGURE 12-1: TCON1 REGISTER (ADDRESS: 16h, BANK 3)

R/W - 0 CA2ED1	R/W - 0 R/W - 0 <t< th=""><th>R = Readable bit</th></t<>	R = Readable bit
bit7	bit0	-n = Value at POR reset
bit 7-6:	CA2ED1:CA2ED0 : Capture2 Mode Select bits 00 = Capture on every falling edge 01 = Capture on every rising edge 10 = Capture on every 4th rising edge 11 = Capture on every 16th rising edge	
bit 5-4:	 CA1ED1:CA1ED0: Capture1 Mode Select bits 00 = Capture on every falling edge 01 = Capture on every rising edge 10 = Capture on every 4th rising edge 11 = Capture on every 16th rising edge 	
bit 3:	T16 : Timer1:Timer2 Mode Select bit 1 = Timer1 and Timer2 form a 16-bit timer 0 = Timer1 and Timer2 are two 8-bit timers	
bit 2:	TMR3CS : Timer3 Clock Source Select bit 1 = TMR3 increments off the falling edge of the RB5/TCLK3 pin 0 = TMR3 increments off the internal clock	
bit 1:	TMR2CS : Timer2 Clock Source Select bit 1 = TMR2 increments off the falling edge of the RB4/TCLK12 pin 0 = TMR2 increments off the internal clock	
bit 0:	TMR1CS : Timer1 Clock Source Select bit 1 = TMR1 increments off the falling edge of the RB4/TCLK12 pin 0 = TMR1 increments off the internal clock	

13.3.2 USART SYNCHRONOUS MASTER RECEPTION

Once synchronous mode is selected, reception is enabled by setting either the SREN (RCSTA<5>) bit or the CREN (RCSTA<4>) bit. Data is sampled on the RA4/RX/DT pin on the falling edge of the clock. If SREN is set, then only a single word is received. If CREN is set, the reception is continuous until CREN is reset. If both bits are set, then CREN takes precedence. After clocking the last bit, the received data in the Receive Shift Register (RSR) is transferred to RCREG (if it is empty). If the transfer is complete, the interrupt bit RCIF (PIR<0>) is set. The actual interrupt can be enabled/disabled by setting/clearing the RCIE (PIE<0>) bit. RCIF is a read only bit which is RESET by the hardware. In this case it is reset when RCREG has been read and is empty. RCREG is a double buffered register; i.e., it is a two deep FIFO. It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting into the RSR. On the clocking of the last bit of the third byte, if RCREG is still full, then the overrun error bit OERR (RCSTA<1>) is set. The word in the RSR will be lost. RCREG can be read twice to retrieve the two bytes in the FIFO. The OERR bit has to be cleared in software. This is done by clearing the CREN bit. If OERR bit is set, transfers from RSR to RCREG are inhibited, so it is essential to clear OERR bit if it is set. The 9th receive bit is buffered the same way as the receive data. Reading the RCREG register will allow the RX9D and FERR bits to be loaded with values for the next received data: therefore, it is essential for the user to read the RCSTA register before reading RCREG in order not to lose the old FERR and RX9D information.

Steps to follow when setting up a Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate. See Section 13.1 for details.
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.
- 3. If interrupts are desired, then set the RCIE bit.
- 4. If 9-bit reception is desired, then set the RX9 bit.
- 5. If a single reception is required, set bit SREN. For continuous reception set bit CREN.
- 6. The RCIF bit will be set when reception is complete and an interrupt will be generated if the RCIE bit was set.
- 7. Read RCSTA to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading RCREG.
- 9. If any error occurred, clear the error by clearing CREN.

Note: To terminate a reception, either clear the SREN and CREN bits, or the SPEN bit. This will reset the receive logic, so that it will be in the proper state when receive is re-enabled.

FIGURE 13-11: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

14.2.4 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with series resonance, or one with parallel resonance.

Figure 14-5 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometer biases the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 14-5: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

Figure 14-6 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 14-6: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

14.2.5 RC OSCILLATOR

For timing insensitive applications, the RC device option offers additional cost savings. RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 14-6 shows how the R/C combination is connected to the PIC17CXX. For Rext values below 2.2 kQ, the oscillator operation may become unstable, or stop completely. For very high Rext values (e.g. 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend to keep Rext between 3 $k\Omega$ and 100 $k\Omega$.

Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With little or no external capacitance, oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

See Section 18.0 for RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

See Section 18.0 for variation of oscillator frequency due to VDD for given Rext/Cext values as well as frequency variation due to operating temperature for given R, C, and VDD values.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin, and can be used for test purposes or to synchronize other logic (see Figure 3-2 for waveform).

FIGURE 14-7: RC OSCILLATOR MODE

WFC	ADD WRE	G and C	Carry bit	to f					
ax:	[<i>label</i>] A[DWFC	f,d						
rands:	0 ≤ f ≤ 255 d ∈ [0,1]	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \left[0,1 \right] \end{array}$							
ration:	(WREG) +	$(WREG) + (f) + C \rightarrow (dest)$							
us Affected:	OV, C, DC	, Z							
oding:	0001	000d	ffff	ffff					
cription:	Add WREG memory loc placed in W placed in da	, the Carr ation 'f'. If REG. If 'c ata memo	y Flag and 'd' is 0, th l' is 1, the ry locatior	d data e result is result is n 'f'.					
ds:	1								
es:	1								
vcle Activity:									
Q1	Q2	Q3		Q4					
Decode	Read register 'f'	Execut	te W des	rite to tination					
mple:	ADDWFC	REG	0						
Before Instru Carry bit REG WREG After Instruct Carry bit REG WREG	$ \begin{array}{rcl} = & 1 \\ = & 0x02 \\ = & 0x4D \\ $								
	wFC ax: rands: ration: us Affected: oding: cription: ds: es: vcle Activity: Q1 Decode mple: Before Instru Carry bit REG WREG After Instruct Carry bit REG WREG	WFCADD WREax: $[label] AErands:0 \le f \le 255d \in [0,1]ration:(WREG) +us Affected:OV, C, DCboding:0001cription:Add WREGmemory locplaced in Wplaced in WWREG = 0x02WREG = 0x02WREG = 0x50$	WFCADD WREG and Cax:[label] ADDWFCrands: $0 \le f \le 255$ d $\in [0,1]$ ration:(WREG) + (f) + C -us Affected:OV, C, DC, Zoding: 0001 cription:Add WREG, the Carrmemory location 'f'. Ifplaced in WREG. If 'cplaced in data memoryds:1es:1vcle Activity:Q1Q2Q3DecodeRead register 'f'ExecutionCarry bit =1REG =0x02WREG =0x4DAfter Instruction Carry bit =Carry bit =0REG =0x02WREG =0x202WREG =0x202WREG =0x202WREG =0x50	WFCADD WREG and Carry bitax: $[label]$ ADDWFC f,drands: $0 \le f \le 255$ $d \in [0,1]$ ration: $(WREG) + (f) + C \rightarrow (dest)$ us Affected: OV, C, DC, Z bding: 0001 0001 $000d$ ffffcription:Add WREG, the Carry Flag and memory location 'f'. If 'd' is 0, th placed in WREG. If 'd' is 1, the placed in data memory location'ds:1es:1vcle Activity:Q1Q1Q2Q3Read register 'f'Effore Instruction Carry bit = 1 REG = 0x02 WREG = 0x4DAfter Instruction Carry bit = 0 REG = 0x02 WREG = 0x50					

	N	Α	nd Lite	ral with	WRE	G	
Syntax	:	[label] A	NDLW	k		
Operar	nds:	0	$\leq k \leq 25$	55			
Operat	tion:	(\	VREG)	.AND. (k	$) \rightarrow ($	WR	EG)
Status	Affected:	Z					
Encodi	ing:		1011	0101	kkł	ĸk	kkkk
Descrij	ption:	The contents of WREG are AND'ed w the 8-bit literal 'k'. The result is placed WREG.					D'ed with placed in
Words	:	1					
Cycles	:	1					
Q Cycl	e Activity:						
	Q1		Q2	Q	3		Q4
	Decode	Re	ad literal 'k'	Exec	ute	v v	Vrite to VREG
<u>Examp</u>	ole:	AI	NDLW	0x5F			
Be	efore Instru WREG	ictio =	n 0xA3				
Af	ter Instruc WREG	tion =	0x03				

CLR	WDT	Time	r					
Synt	ax:	[label]	С	LRWD	Т			
Ope	rands:	None						
Ope	ration:	$\begin{array}{l} 00h \rightarrow V\\ 0 \rightarrow WE\\ 1 \rightarrow \overline{TO}\\ 1 \rightarrow \overline{PD} \end{array}$	$\begin{array}{l} 00h \rightarrow WDT \\ 0 \rightarrow WDT \text{ postscaler,} \\ 1 \rightarrow \overline{TO} \\ 1 \rightarrow \overline{PD} \end{array}$					
State	us Affected:	to, PD						
Enco	oding:	0000		0000	000	00	0100	
Des	cription:	CLRWDT timer. It a WDT. Sta	inst also atus	truction resets bits TC	resets the pro and I	the vesca	watchdog ler of the re set.	
Wor	ds:	1						
Cycl	es:	1						
QC	ycle Activity:							
	Q1	Q2		Q	3		Q4	
	Decode	Read register ALUSTA		Exec	ute		NOP	
<u>Exa</u>	<u>mple</u> :	CLRWDT						
Before Instruction WDT counter			=	?				
	After Instruct	ion						
	WDT cou	nter	=	0x00				
		stscaler	=	0				
			=	י 1				
	· -			•				

COMF	Complem	nent f		
Syntax:	[label]	COMF	f,d	
Operands:	0 ≤ f ≤ 255 d ∈ [0,1]	5		
Operation:	$(\overline{f}) \rightarrow (d$	lest)		
Status Affected:	Z			
Encoding:	0001	001d	ffff	ffff
Description:	The conten mented. If ' WREG. If 'c back in reg	its of regi d' is 0 the d' is 1 the ister 'f'.	ster 'f' are e result is result is	e comple- stored in stored
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3	3	Q4
Decode	Read register 'f'	Execu	ute re	Write egister 'f'
Example:	COMF	REG	1,0	
Before Instru REG1	ction = 0x13			
After Instruct REG1 WREG	ion = 0x13 = 0xEC			

MOVFP	Move f to	р		MOVLB	Move Lite	eral to low n	ibble in BSR	
Syntax:	[<i>label</i>] N	IOVFP f,p		Syntax:	[label]	MOVLB k		
Operands:	$0 \le f \le 255$	5		Operands:	$0 \le k \le 15$			
	$0 \le p \le 31$			Operation:	$k \rightarrow (BSR)$	<3:0>)		
Operation:	$(f) \to (p)$			Status Affected:	None			
Status Affected:	None			Encoding:	1011	1000 uu	uu kkkk	
Encoding:	011p	pppp ff:	ff ffff	Description:	The four bit	literal 'k' is lo	aded in the	
Description:	cription: Move data from data memory location 'f' to data memory location 'p'. Location 'f' can be anywhere in the 256 word data space (00h to FFh) while 'p' can be 00h to 1Fh.				Bank Select low 4-bits of are affected is unchange encode the	Bank Select Register (BSR). Only the low 4-bits of the Bank Select Register are affected. The upper half of the BSR is unchanged. The assembler will encode the "u" fields as '0'.		
	Either 'p' or	'f' can be WR	EG (a useful	Words:	1			
	Special situ	ation). articularly use	ful for transfer-	Cycles:	1			
	ring a data	memory locati	on to a periph-	Q Cycle Activity:				
	eral registe	r (such as the	transmit buffer	Q1	Q2	Q3	Q4	
	indirectly a	ddressed.	d p can be	Decode	Read	Execute	Write literal	
Words:	1				literal u:k		BSR<3:0>	
Cycles:	1			Example:	MOVLB	0x5	·	
Q Cycle Activity:				Before Instru	uction			
Q1	Q2	Q3	Q4	BSR regi	ister = 0x	22		
Decode	Read register 'f'	Execute	Write register 'p'	After Instruc BSR regi	tion ister = 0x	25		
Example:	MOVFP	REG1, REG2		Note: For th	ne PIC17C42	, only the lo	w four bits of	
Before Instru	ction	22		the E mente	BSR registe ed. The uppe	r are phys r nibble is re	ad as '0'.	
REG2	= 0x = 0x	33, 11						
After Instruct REG1	ion = 0x	33,						

REG2

0x33

=

Applicable Devices 42 R42 42A 43 R43 44

17.2 DC CHARACTERISTICS:

PIC17C42-16 (Commercial, Industrial) PIC17C42-25 (Commercial, Industrial)

Standard Operating Conditions (unless otherwise stated) Operating temperature

DC CHARACTERISTICS

-40°C \leq TA \leq +85°C for industrial and $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial

Operating voltage VDD range as described in Section 17.1 Parameter No. Sym Characteristic Min Typ† Max Units Conditions Input Low Voltage VIL I/O ports D030 with TTL buffer Vss 0.8 V D031 with Schmitt Trigger buffer Vss 0.2VDD V _ D032 MCLR, OSC1 (in EC and RC Vss 0.2Vdd V Note1 _ mode) D033 OSC1 (in XT, and LF mode) 0.5VDD V _ Input High Voltage Vн I/O ports V D040 2.0 with TTL buffer _ Vdd D041 with Schmitt Trigger buffer 0.8VDD Vdd V _ D042 MCLR 0.8Vdd Vdd Note1 V D043 OSC1 (XT, and LF mode) 0.5VDD V D050 Hysteresis of 0.15VDD* VHYS V _ _ Schmitt Trigger inputs Input Leakage Current (Notes 2, 3) D060 lı∟ I/O ports (except RA2, RA3) $Vss \leq VPIN \leq VDD$, ±1 μΑ I/O Pin at hi-impedance PORTB weak pull-ups disabled MCLR D061 <u>+2</u> μA VPIN = Vss or VPIN = VDD D062 **RA2, RA3** ±2 μΑ $Vss \leq VRA2$, $VRA3 \leq 12V$ D063 OSC1, TEST ±1 μΑ $Vss \le VPIN \le VDD$ MCLR D064 VMCLR = VPP = 12V 10 μA

IPURB PORTB weak pull-up current These parameters are characterized but not tested.

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only t and are not tested.

200

400

μΑ

60

These parameters are for design guidance only and are not tested, nor characterized. t

Design guidance to attain the AC timing specifications. These loads are not tested. ++

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC17CXX devices be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in: PIC17CXX Programming Specifications (Literature number DS30139).

5: The MCLR/Vpp pin may be kept in this range at times other than programming, but this is not recommended.

6: For TTL buffers, the better of the two specifications may be used.

D070

(when not programming)

VPIN = Vss. $\overline{RBPU} = 0$

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 17-3: CLKOUT AND I/O TIMING

TABLE 17-3: CLKOUT AND I/O TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
10	TosH2ckL	OSC1↑ to CLKOUT↓		15‡	30 ‡	ns	Note 1
11	TosH2ckH	OSC1↑ to CLKOUT↑	—	15 ‡	30 ‡	ns	Note 1
12	TckR	CLKOUT rise time	—	5‡	15 ‡	ns	Note 1
13	TckF	CLKOUT fall time	—	5‡	15 ‡	ns	Note 1
14	TckH2ioV	CLKOUT [↑] to Port out valid	—	_	0.5TCY + 20‡	ns	Note 1
15	TioV2ckH	Port in valid before CLKOUT	0.25TCY + 25 ‡	_	_	ns	Note 1
16	TckH2ioI	Port in hold after CLKOUT	0 ‡	_	_	ns	Note 1
17	TosH2ioV	OSC1 [↑] (Q1 cycle) to Port out valid	—	_	100 ‡	ns	
20	TioR	Port output rise time	—	10‡	35 ‡	ns	
21	TioF	Port output fall time	—	10‡	35 ‡	ns	
22	TinHL	INT pin high or low time	25 *	-	—	ns	
23	TrbHL	RB7:RB0 change INT high or low time	25 *	_	—	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

‡ These parameters are for design guidance only and are not tested, nor characterized.

Note 1: Measurements are taken in EC Mode where OSC2 output = 4 x Tosc = Tcy.

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 17-7: CAPTURE TIMINGS

TABLE 17-7: CAPTURE REQUIREMENTS

Parameter	_						
No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
50	TccL	Capture1 and Capture2 input low time	10 *	—	_	ns	
51	TccH	Capture1 and Capture2 input high time	10 *	—	_	ns	
52	TccP	Capture1 and Capture2 input period	<u>2 Tcy</u> § N	—	—	ns	N = prescale value (4 or 16)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

FIGURE 17-8: PWM TIMINGS

TABLE 17-8: PWM REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
53	TccR	PWM1 and PWM2 output rise time		10 *	35 *§	ns	
54	TccF	PWM1 and PWM2 output fall time	—	10 *	35 *§	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

Applicable Devices 42 R42 42A 43 R43 44

19.2 **DC CHARACTERISTICS:**

PIC17LC42A/43/LC44 (Commercial, Industrial) PIC17LCR42/43 (Commercial, Industrial)

DC CHARA Parameter No.	Operating	g tempe	erature Max	-40°C 0°C Units	\leq TA \leq +85°C for industrial and \leq TA \leq +70°C for commercial Conditions		
D001	VDD	Supply Voltage	2.5	_	6.0	V	
D002	Vdr	RAM Data Retention Voltage (Note 1)	1.5 *	-	_	V	Device in SLEEP mode
D003	VPOR	VDD start voltage to ensure internal Power-on Reset signal	_	Vss	_	V	See section on Power-on Reset for details
D004	SVDD	VDD rise rate to ensure internal Power-on Reset signal	0.060 *	-	-	mV/ms	See section on Power-on Reset for details
D010 D011 D014	IDD	Supply Current (Note 2)	_ _ _	3 6 95	6 12 * 150	mA mA μA	Fosc = 4 MHz (Note 4) Fosc = 8 MHz Fosc = 32 kHz, WDT disabled (EC osc configuration)
D020 D021	IPD	Power-down Current (Note 3)	-	10 < 1	40 5	μA μA	VDD = 5.5V, WDT enabled VDD = 5.5V, WDT disabled

These parameters are characterized but not tested.

+ Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1=external square wave, from rail to rail; all I/O pins tristated, pulled to VDD or VSS, TOCKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.

Current consumed from the oscillator and I/O's driving external capacitive or resistive loads needs to be considered.

For the RC oscillator, the current through the external pull-up resistor (R) can be estimated as: VbD / (2 • R). For capacitive loads, the current can be estimated (for an individual I/O pin) as (CL • VDD) • f

CL = Total capacitive load on the I/O pin; f = average frequency the I/O pin switches.

The capacitive currents are most significant when the device is configured for external execution (includes extended microcontroller mode).

- 3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula IR = VDD/2Rext (mA) with Rext in kOhm.

Standard Operating Conditions (unloss otherwise stated)

APPENDIX E: PIC16/17 MICROCONTROLLERS

E.1 PIC14000 Devices

© 1996 Microchip Technology Inc.

Delay From External Clock Edge	68
Development Support	
Development Tools	
Device Drawings	
44-Lead Plastic Surface Mount (MQFP	
10x10 mm Body 1.6/0.15 mm Lead Form)	209
DIGIT BORROW	9
Digit Carry (DC)	9
Duty Cycle	75

Ε

Electrical Characteristics
PIC17C42
Absolute Maximum Ratings147
Capture Timing159
CLKOUT and I/O Timing 156
DC Characteristics149
External Clock Timing155
Memory Interface Read Timing 162
Memory Interface Write Timing
PWM Timing159
RESET, Watchdog Timer, Oscillator Start-up
Timer and Power-up Timer157
Timer0 Clock Timings158
Timer1, Timer2 and Timer3 Clock Timing 158
USART Module, Synchronous Receive160
USART Module, Synchronous Transmission 160
PIC17C43/44
Absolute Maximum Ratings175
Capture Timing188
CLKOUT and I/O Timing 185
DC Characteristics177
External Clock Timing184
Memory Interface Read Timing 191
Memory Interface Write Timing
Parameter Measurement Information183
RESET, Watchdog Timer, Oscillator Start-up
Timer and Power-up Timer Timing
Timer0 Clock Timing187
Timer1, Timer2 and Timer3 Clock Timing 187
Timing Parameter Symbology182
USART Module Synchronous Receive
Timing189
USART Module Synchronous Transmission
Timing189
EPROM Memory Access Time Order Suffix
Extended Microcontroller29
Extended Microcontroller Mode
External Memory Interface
External Program Memory Waveforms

F

Family of Devices	6
PIC14000	
PIC16C5X	
PIC16CXXX	
PIC16C6X	
PIC16C7X	
PIC16C8X	
PIC16C9XX	
PIC17CXX	
FERR	
FOSC0	

FOSC1	
FS0	36
FS1	36
FS2	36
FS3	36
FSR0	34, 40
FSR1	34, 40
Fuzzy Logic Dev. System (<i>fuzzy</i> TECH [®] -MP)	143, 145

G

General Format for Instructions 108
General Purpose RAM
General Purpose RAM Bank 42
General Purpose Register (GPR) 32
GLINTD 25, 37, 78, 105
GOTO 122
GPR (General Purpose Register) 32
Graphs
ЮН vs. VOH, VDD = 3V 170, 200
ЮН vs. VOH, VDD = 5V 171, 201
IOL vs. VOL, VDD = 3V 171, 201
IOL vs. VOL, VDD = 5V 172, 202
Maximum IDD vs. Frequency
(External Clock 125°C to -40°C) 167, 197
Maximum IPD vs. VDD Watchdog Disabled 168, 198
Maximum IPD vs. VDD Watchdog Enabled 169, 199
RC Oscillator Frequency vs.
VDD (Cext = 100 pF) 164, 194
RC Oscillator Frequency vs.
VDD (Cext = 22 pF) 164, 194
RC Oscillator Frequency vs.
VDD (Cext = 300 pF)
Transconductance of LF Oscillator vs.VDD 166, 196
Transconductance of XT Oscillator vs. VDD 166, 196
Typical IDD vs. Frequency
(External Clock 25°C)
Typical IPD vs. VDD Watchdog Disabled 25°C . 168, 198
Typical IPD vs. VDD Watchdog Enabled 25°C 169, 199
Typical RC Oscillator vs. Temperature
VTH (Input Threshold Voltage) of I/O Pins vs.
VDD
Vтн (Input Threshold Voltage) of OSC1 Input
(In XT, HS, and LP Modes) vs. VDD 173, 203
VTH. VIL of MCLR. TOCKI and OSC1
(In RC Mode) vs. VDD 173, 203
WDT Timer Time-Out Period vs. VDD 170, 200

Н

Hardware Multiplier	 49
i la aware manipher	 -0

L

I/O Ports	
Bi-directional	64
I/O Ports	53
Programming Considerations	64
Read-Modify-Write Instructions	64
Successive Operations	64
INCF	123
INCFSNZ	124
INCFSZ	123
INDF0	34, 40
INDF1	34, 40

ON-LINE SUPPORT

Microchip provides two methods of on-line support. These are the Microchip BBS and the Microchip World Wide Web (WWW) site.

Use Microchip's Bulletin Board Service (BBS) to get current information and help about Microchip products. Microchip provides the BBS communication channel for you to use in extending your technical staff with microcontroller and memory experts.

To provide you with the most responsive service possible, the Microchip systems team monitors the BBS, posts the latest component data and software tool updates, provides technical help and embedded systems insights, and discusses how Microchip products provide project solutions.

The web site, like the BBS, is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp.mchip.com/biz/mchip

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
 Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products

Connecting to the Microchip BBS

Connect worldwide to the Microchip BBS using either the Internet or the CompuServe[®] communications network.

Internet:

You can telnet or ftp to the Microchip BBS at the address:

mchipbbs.microchip.com

CompuServe Communications Network:

When using the BBS via the Compuserve Network, in most cases, a local call is your only expense. The Microchip BBS connection does not use CompuServe membership services, therefore you do not need CompuServe membership to join Microchip's BBS. There is no charge for connecting to the Microchip BBS. The procedure to connect will vary slightly from country to country. Please check with your local CompuServe agent for details if you have a problem. CompuServe service allow multiple users various baud rates depending on the local point of access.

The following connect procedure applies in most locations.

- 1. Set your modem to 8-bit, No parity, and One stop (8N1). This is not the normal CompuServe setting which is 7E1.
- 2. Dial your local CompuServe access number.
- 3. Depress the <Enter> key and a garbage string will appear because CompuServe is expecting a 7E1 setting.
- 4. Type +, depress the <Enter> key and "Host Name:" will appear.
- 5. Type MCHIPBBS, depress the <Enter> key and you will be connected to the Microchip BBS.

In the United States, to find the CompuServe phone number closest to you, set your modem to 7E1 and dial (800) 848-4480 for 300-2400 baud or (800) 331-7166 for 9600-14400 baud connection. After the system responds with "Host Name:", type NETWORK, depress the <Enter> key and follow CompuServe's directions.

For voice information (or calling from overseas), you may call (614) 723-1550 for your local CompuServe number.

Microchip regularly uses the Microchip BBS to distribute technical information, application notes, source code, errata sheets, bug reports, and interim patches for Microchip systems software products. For each SIG, a moderator monitors, scans, and approves or disapproves files submitted to the SIG. No executable files are accepted from the user community in general to limit the spread of computer viruses.

Systems Information and Upgrade Hot Line

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive any currently available upgrade kits.The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and

1-602-786-7302 for the rest of the world.

960513

Trademarks: The Microchip name, logo, PIC, PICSTART, PICMASTER and PRO MATE are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FlexROM, MPLAB and fuzzyLAB, are trademarks and SQTP is a service mark of Microchip in the U.S.A.

fuzzyTECH is a registered trademark of Inform Software Corporation. IBM, IBM PC-AT are registered trademarks of International Business Machines Corp. Pentium is a trademark of Intel Corporation. Windows is a trademark and MS-DOS, Microsoft Windows are registered trademarks of Microsoft Corporation. CompuServe is a registered trademark of CompuServe Incorporated.

All other trademarks mentioned herein are the property of their respective companies.

^{© 1996} Microchip Technology Inc.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Rocky Mountain

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-7456

Atlanta

500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Detroit Tri-Atria Office Building

32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260 Kokomo

2767 S. Albright Road

Kokomo, Indiana 46902 Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles

18201 Von Karman, Suite 1090 Irvine, CA 92612

Tel: 949-263-1888 Fax: 949-263-1338 New York

150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335 San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing

Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office Unit 915 Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu

Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office Rm. 2401, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-6766200 Fax: 86-28-6766599

China - Fuzhou

Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521 China - Shanghai

Microchip Technology Consulting (Shanghai) Co., Ltd. Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen

Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1315, 13/F, Shenzhen Kerry Centre, Renminnan Lu Shenzhen 518001, China Tel: 86-755-2350361 Fax: 86-755-2366086 Hong Kong Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza

223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

India

Microchip Technology Inc. India Liaison Office **Divvasree Chambers** 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5934 Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-334-8870 Fax: 65-334-8850 Taiwan Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark

Microchip Technology Nordic ApS **Regus Business Centre** Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910 France Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany Microchip Technology GmbH

Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44 Italy

Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kinadom

Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

01/18/02