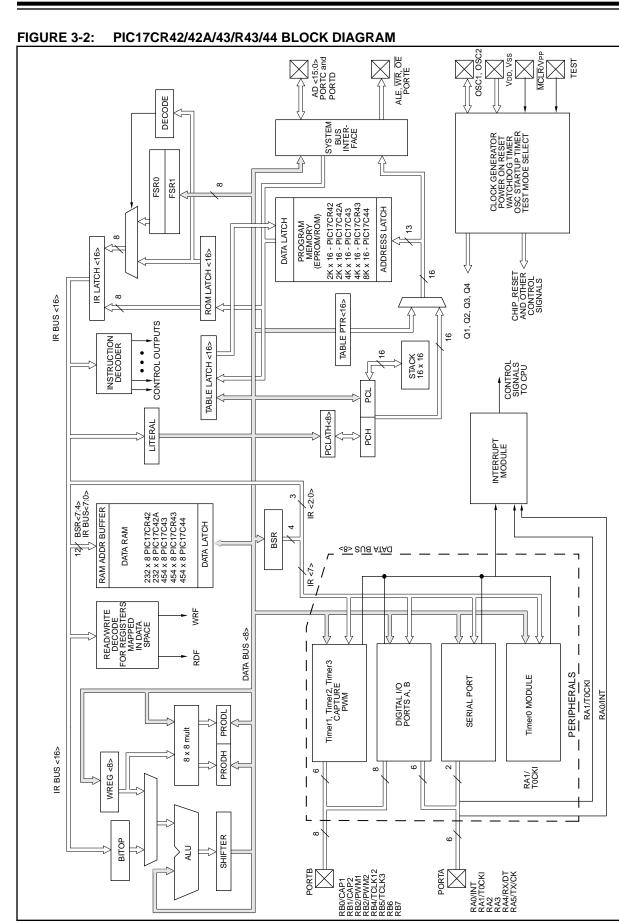


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	33MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (8K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c44-33i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

TABLE 6-1: MODE MEMORY ACCESS

Operating Mode	Internal Program Memory	Configuration Bits, Test Memory, Boot ROM	
Microprocessor	No Access	No Access	
Microcontroller	Access	Access	
Extended Microcontroller	Access	No Access	
Protected Microcontroller	Access	Access	

The PIC17C4X can operate in modes where the program memory is off-chip. They are the microprocessor and extended microcontroller modes. The microprocessor mode is the default for an unprogrammed device.

Regardless of the processor mode, data memory is always on-chip.

FIGURE 6-2: MEMORY MAP IN DIFFERENT MODES

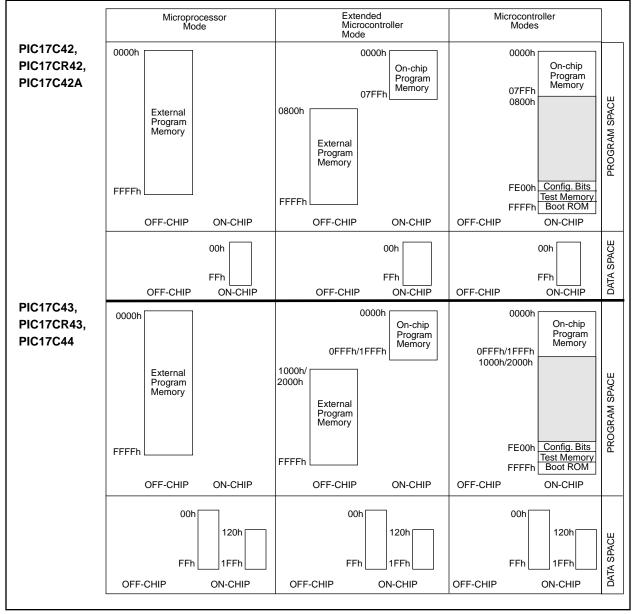
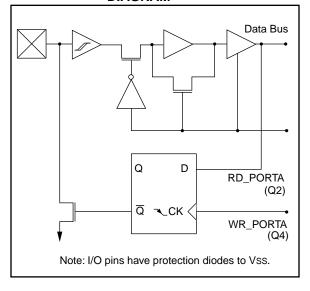
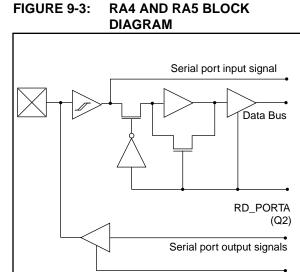




FIGURE 9-2: RA2 AND RA3 BLOCK DIAGRAM

 \overline{OE} = SPEN,SYNC,TXEN, \overline{CREN} , \overline{SREN} for RA4 \overline{OE} = SPEN (\overline{SYNC} +SYNC, \overline{CSRC}) for RA5

Note: I/O pins have protection diodes to VDD and VSS.

TABLE 9-1:	PO	RTA FUNCTI	ONS

.

_ _ _ _

Name	Bit0	Buffer Type	Function
RA0/INT	bit0	ST	Input or external interrupt input.
RA1/T0CKI	bit1	ST	Input or clock input to the TMR0 timer/counter, and/or an external interrupt input.
RA2	bit2	ST	Input/Output. Output is open drain type.
RA3	bit3	ST	Input/Output. Output is open drain type.
RA4/RX/DT	bit4	ST	Input or USART Asynchronous Receive or USART Synchronous Data.
RA5/TX/CK	bit5	ST	Input or USART Asynchronous Transmit or USART Synchronous Clock.
RBPU	bit7		Control bit for PORTB weak pull-ups.

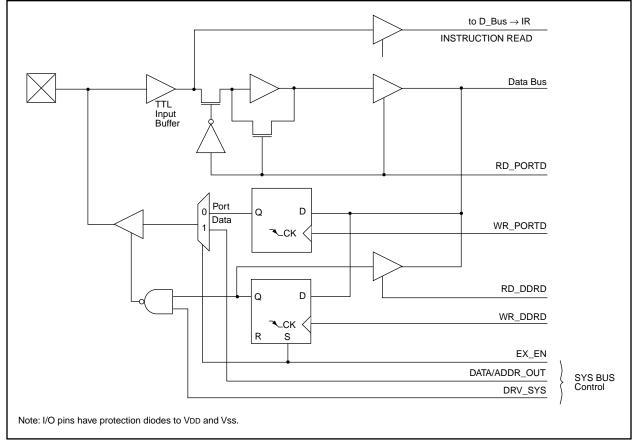
Legend: ST = Schmitt Trigger input.

TABLE 9-2: REGISTERS/BITS ASSOCIATED WITH PORTA

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
10h, Bank 0	PORTA	RBPU	_	RA5	RA4	RA3	RA2	RA1/T0CKI	RA0/INT	0-xx xxxx	0-uu uuuu
05h, Unbanked	TOSTA	INTEDG	T0SE	TOCS	PS3	PS2	PS1	PS0	_	0000 000-	0000 000-
13h, Bank 0	RCSTA	SPEN	RC9	SREN	CREN	—	FERR	OERR	RC9D	0000 -00x	0000 -00u
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	_	—	TRMT	TX9D	00001x	0000lu

Legend: x = unknown, u = unchanged, - = unimplemented reads as '0'. Shaded cells are not used by PORTA. Note 1: Other (non power-up) resets include: external reset through \overline{MCLR} and the Watchdog Timer Reset.

9.4 PORTD and DDRD Registers


PORTD is an 8-bit bi-directional port. The corresponding data direction register is DDRD. A '1' in DDRD configures the corresponding port pin as an input. A '0' in the DDRC register configures the corresponding port pin as an output. Reading PORTD reads the status of the pins, whereas writing to it will write to the port latch. PORTD is multiplexed with the system bus. When operating as the system bus, PORTD is the high order byte of the address/data bus (AD15:AD8). The timing for the system bus is shown in the Electrical Characteristics section.

Note: This port is configured as the system bus when the device's configuration bits are selected to Microprocessor or Extended Microcontroller modes. In the two other microcontroller modes, this port is a general purpose I/O. Example 9-3 shows the instruction sequence to initialize PORTD. The Bank Select Register (BSR) must be selected to Bank 1 for the port to be initialized.

EXAMPLE 9-3: INITIALIZING PORTD

MOVLB	1	;	Select Bank 1
CLRF	PORTD	;	Initialize PORTD data
		;	latches before setting
		;	the data direction
		;	register
MOVLW	0xCF	;	Value used to initialize
		;	data direction
MOVWF	DDRD	;	Set RD<3:0> as inputs
		;	RD<5:4> as outputs
		;	RD<7:6> as inputs

TABLE 9-7: PORTD FUNCTIONS

Name	Bit	Buffer Type	Function
RD0/AD8	bit0	TTL	Input/Output or system bus address/data pin.
RD1/AD9	bit1	TTL	Input/Output or system bus address/data pin.
RD2/AD10	bit2	TTL	Input/Output or system bus address/data pin.
RD3/AD11	bit3	TTL	Input/Output or system bus address/data pin.
RD4/AD12	bit4	TTL	Input/Output or system bus address/data pin.
RD5/AD13	bit5	TTL	Input/Output or system bus address/data pin.
RD6/AD14	bit6	TTL	Input/Output or system bus address/data pin.
RD7/AD15	bit7	TTL	Input/Output or system bus address/data pin.

Legend: TTL = TTL input.

TABLE 9-8: REGISTERS/BITS ASSOCIATED WITH PORTD

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
13h, Bank 1	PORTD	RD7/ AD15	RD6/ AD14	RD5/ AD13	RD4/ AD12	RD3/ AD11	RD2/ AD10	RD1/ AD9	RD0/ AD8	XXXX XXXX	uuuu uuuu
12h, Bank 1	DDRD	Data direc	ction registe	er for PORTI	5					1111 1111	1111 1111

Legend: x = unknown, u = unchanged.

Note 1: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

10.0 OVERVIEW OF TIMER RESOURCES

The PIC17C4X has four timer modules. Each module can generate an interrupt to indicate that an event has occurred. These timers are called:

- Timer0 16-bit timer with programmable 8-bit
- prescaler
- Timer1 8-bit timer
- Timer2 8-bit timer
- Timer3 16-bit timer

For enhanced time-base functionality, two input Captures and two Pulse Width Modulation (PWM) outputs are possible. The PWMs use the TMR1 and TMR2 resources and the input Captures use the TMR3 resource.

10.1 <u>Timer0 Overview</u>

The Timer0 module is a simple 16-bit overflow counter. The clock source can be either the internal system clock (Fosc/4) or an external clock.

The Timer0 module also has a programmable prescaler option. The PS3:PS0 bits (T0STA<4:1>) determine the prescaler value. TMR0 can increment at the following rates: 1:1, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64, 1:128, 1:256.

When TImer0's clock source is an external clock, the Timer0 module can be selected to increment on either the rising or falling edge.

Synchronization of the external clock occurs after the prescaler. When the prescaler is used, the external clock frequency may be higher then the device's frequency. The maximum frequency is 50 MHz, given the high and low time requirements of the clock.

10.2 <u>Timer1 Overview</u>

The TImer0 module is an 8-bit timer/counter with an 8bit period register (PR1). When the TMR1 value rolls over from the period match value to 0h, the TMR1IF flag is set, and an interrupt will be generated when enabled. In counter mode, the clock comes from the RB4/TCLK12 pin, which can also be selected to be the clock for the Timer2 module.

TMR1 can be concatenated to TMR2 to form a 16-bit timer. The TMR1 register is the LSB and TMR2 is the MSB. When in the 16-bit timer mode, there is a corresponding 16-bit period register (PR2:PR1). When the TMR2:TMR1 value rolls over from the period match value to 0h, the TMR1IF flag is set, and an interrupt will be generated when enabled.

10.3 <u>Timer2 Overview</u>

The TMR2 module is an 8-bit timer/counter with an 8bit period register (PR2). When the TMR2 value rolls over from the period match value to 0h, the TMR2IF flag is set, and an interrupt will be generated when enabled. In counter mode, the clock comes from the RB4/TCLK12 pin, which can also be selected to be the clock for the TMR1 module.

TMR1 can be concatenated to TMR2 to form a 16-bit timer. The TMR2 register is the MSB and TMR1 is the LSB. When in the 16-bit timer mode, there is a corresponding 16-bit period register (PR2:PR1). When the TMR2:TMR1 value rolls over from the period match value to 0h, the TMR1IF flag is set, and an interrupt will be generated when enabled.

10.4 <u>Timer3 Overview</u>

The TImer3 module is a 16-bit timer/counter with a 16bit period register. When the TMR3H:TMR3L value rolls over to 0h, the TMR3IF bit is set and an interrupt will be generated when enabled. In counter mode, the clock comes from the RB5/TCLK3 pin.

When operating in the dual capture mode, the period registers become the second 16-bit capture register.

10.5 Role of the Timer/Counters

The timer modules are general purpose, but have dedicated resources associated with them. Tlmer1 and Timer2 are the time-bases for the two Pulse Width Modulation (PWM) outputs, while Timer3 is the timebase for the two input captures.

© 1996 Microchip Technology Inc.

ADDLW	ADD Literal to WREG							
Syntax:	[label] A	[<i>label</i>] ADDLW k						
Operands:	$0 \le k \le 25$	55						
Operation:	(WREG) -	+ k \rightarrow (V	VREG)					
Status Affected:	OV, C, DC	C, Z						
Encoding:	1011	0001	kkkk	kkkk				
Description:	The conten 8-bit literal WREG.							
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3	3	Q4				
Decode	Read literal 'k'	Execu		Vrite to WREG				
Example:	ADDLW	0x15						
Before Instruc WREG =								

ADDWF	ADD WRE	EG to f		
Syntax:	[<i>label</i>] A[DDWF 1	f,d	
Operands:	$0 \le f \le 255$ $d \in [0,1]$	5		
Operation:	(WREG) +	- (f) \rightarrow (de	est)	
Status Affected:	OV, C, DC	, Z		
Encoding:	0000	111d	ffff	ffff
Description:	Add WREG result is sto result is sto	red in WRE	EG. If 'd'	is 1 the
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read register 'f'	Execute	· ·	/rite to stination
Example:	ADDWF	REG, 0		
Before Instru WREG REG	iction = 0x17 = 0xC2			
After Instruct WREG REG	tion = 0xD9 = 0xC2			

After Instruction WREG = 0x25

INFSNZ	Incremer	Increment f, skip if not 0					
Syntax:	[<i>label</i>] II	NFSNZ	f,d				
Operands:	0 ≤ f ≤ 25 d ∈ [0,1]	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \ [0,1] \end{array}$					
Operation:	(f) + 1 \rightarrow	(dest), s	kip if not	0			
Status Affected:	None						
Encoding:	0010	010d	ffff	ffff			
Description:	The conter mented. If WREG. If ' back in reg If the result which is all and an NO it a two-cyc	'd' is 0 the d' is 1 the jister 'f'. t is not 0, ready feto P is exect	e result is p result is p the next in ched, is dis uted instea	placed in blaced istruction, scarded,			
Words:	1						
Cycles:	1(2)						
Q Cycle Activity:							
Q1	Q2	Q	3	Q4			
Decode	Read register 'f'	Exect		Vrite to stination			
lf skip:							
Q1	Q2	Q	3	Q4			
Forced NOP	NOP	Exect	ute	NOP			
Example:	HERE ZERO NZERO	INFSNZ	REG, 1				
Before Instru REG	uction = REG						
After Instruc REG If REG PC If REG PC	= REG + = 1; = Addres = 0;	1 s (zero s (nzero					

Current		[lahal]						
Synt	ax:	[label]	IORLW	К				
Ope	rands:	$0 \le k \le 25$	55					
Ope	ration:	(WREG)	.OR. (k)	\rightarrow (WR	EG)			
State	us Affected:	Z						
Enco	oding:	1011	0011	kkkk	kkkk			
Des	cription:	the eight b	The contents of WREG are OR'ed with the eight bit literal 'k'. The result is placed in WREG.					
Wor	ds:	1						
Cycl	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q	3	Q4			
	Decode	Read literal 'k'	Exect	ute	Write to WREG			
<u>Exa</u>	<u>mple</u> :	IORLW	0x35					
	Before Instru WREG	iction = 0x9A						
	After Instruct WREG	tion = 0xBF						

MOVFP	Move f to	р		MOVLB	Move Lite	eral to low i	nibble in BSR	
Syntax:	[<i>label</i>] N	IOVFP f,p		Syntax:	[label]	MOVLB k		
Operands:	0 ≤ f ≤ 255	5		Operands:	$0 \le k \le 15$	5		
	$0 \le p \le 31$			Operation:	k ightarrow (BSR	(<3:0>)		
Operation:	$(f) \to (p)$			Status Affected:	None			
Status Affected:	None			Encoding:	1011	1000 ui	uuu kkkk	
Encoding:	011p	pppp ff	ff ffff	Description:	The four bi	t literal 'k' is lo	baded in the	
Description:	cription: Move data from data memory location 'f' to data memory location 'p'. Location 'f' can be anywhere in the 256 word data space (00h to FFh) while 'p' can be 00h to 1Fh.			of the Bank Se d. The upper l ed. The asse	Register (BSR). Only the the Bank Select Register . The upper half of the BSR d. The assembler will 'u" fields as '0'.			
		'f' can be WR	EG (a useful	Words:	1			
	special situation). MOVFP is particularly useful for transfer-		Cycles:	1				
ring a data memory location to a periph-		Q Cycle Activity:						
		eral register (such as the transmit buffer or an I/O port). Both 'f' and 'p' can be indirectly addressed.		Q1	Q2	Q3	Q4	
				Decode	Read	Execute	Write literal	
Words:	1				literal 'u:k'		'k' to BSR<3:0>	
Cycles:	1			Example:	MOVLB	0x5		
Q Cycle Activity	:			Before Instruction				
Q1	Q2	Q3	Q4	BSR reg	ister = 0x	:22		
Decode	Read register 'f'	Execute	Write register 'p'	After Instruc BSR reg		:25		
Example: MOVFP REG1, REG2		Note: For th	ne PIC17C42	2, only the lo	ow four bits of			
Before Insti REG1 REG2		33, 11			BSR registe ed. The uppe		sically imple- ead as '0'.	
After Instru REG1		33,						

REG2

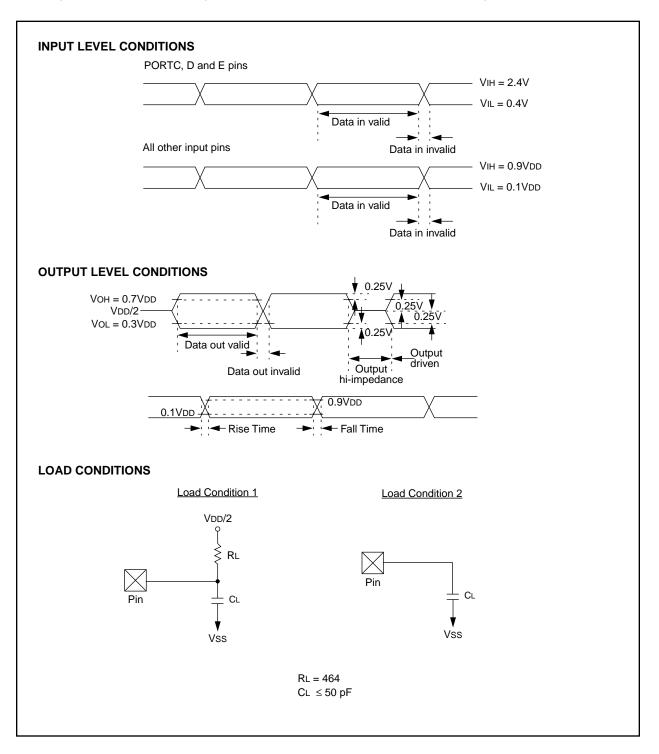
0x33

=

RLNCF	Rotate Left f	Rotate Left f (no carry)				
Syntax:	[label] RLN	ICF f,d				
Operands:	0 ≤ f ≤ 255 d ∈ [0,1]					
Operation:	$f < n > \rightarrow d < n + f < 7 > \rightarrow d < 0 >$	1>;				
Status Affected:	None					
Encoding:	0010 00	ld ff	ff ffff			
Description:	The contents o one bit to the le placed in WRE stored back in	eft. If 'd' is G. If 'd' is	0 the result is 1 the result is			
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3	Q4			
Decode	Read E register 'f'	xecute	Write to destination			
Example:	RLNCF	REG, 1				
Before Instru	uction					
C REG	= 0 = 1110 1011					
After Instruc C	tion =					

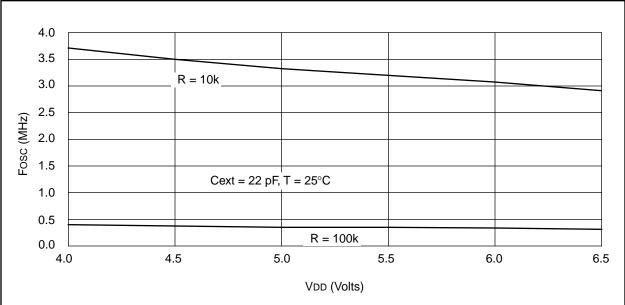
RRCF	Rotate Right f through Carry				
Syntax:	[label] RRCF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \ [0,1] \end{array}$				
Operation:	$f < n > \rightarrow d < n-1 >;$ $f < 0 > \rightarrow C;$ $C \rightarrow d < 7 >$				
Status Affected:	С				
Encoding:	0001 100d ffff ffff				
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in WREG. If 'd' is 1 the result is placed back in register 'f'.				
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2 Q3 Q4				
Decode	Read Execute Write to register 'f' destination				
Example:	RRCF REG1,0				
Before Instr	uction				
REG1 C	= 1110 0110 = 0				
After Instruc REG1 WREG C	tion = 1110 0110 = 0111 0011 = 0				

17.3 <u>Timing Parameter Symbology</u>

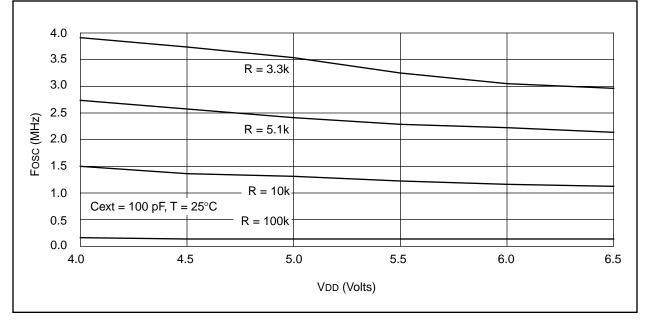

The timing parameter symbols have been created using one of the following formats:

- 1. TppS2ppS
- 2. TppS

2.100				
Т				
F	Frequency	T	Time	
Lowerc	case symbols (pp) and their meanings:			
рр				
ad	Address/Data	ost	Oscillator Start-up Timer	
al	ALE	pwrt	Power-up Timer	
сс	Capture1 and Capture2	rb	PORTB	
ck	CLKOUT or clock	rd	RD	
dt	Data in	rw	RD or WR	
in	INT pin	tO	ТОСКІ	
io	I/O port	t123	TCLK12 and TCLK3	
mc	MCLR	wdt	Watchdog Timer	
oe	OE	wr	WR	
OS	OSC1			
Upperc	case symbols and their meanings:			
S				
D	Driven	L	Low	
E	Edge	P	Period	
F	Fall	R	Rise	
н	High	V	Valid	
I	Invalid (Hi-impedance)	Z	Hi-impedance	


FIGURE 17-1: PARAMETER MEASUREMENT INFORMATION

All timings are measure between high and low measurement points as indicated in the figures below.



Applicable Devices 42 R42 42A 43 R43 44

FIGURE 18-2: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

FIGURE 18-3: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

TABLE 19-1:CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

osc	PIC17LCR42-08 PIC17LC42A-08 PIC17LC43-08 PIC17LCR43-08 PIC17LC44-08 PIC17LC44-08	PIC17CR42-16 PIC17C42A-16 PIC17C43-16 PIC17CR43-16 PIC17CR43-16 PIC17C44-16	PIC17CR42-25 PIC17C42A-25 PIC17C43-25 PIC17CR43-25 PIC17CR43-25	PIC17CR42-33 PIC17C42A-33 PIC17C43-33 PIC17CR43-33 PIC17CR43-33	JW Devices (Ceramic Windowed Devices)
RC	VDD: 2.5V to 6.0V IDD: 6 mA max. IPD: 5.1A max at 5.5V	VDD: 4.5V to 6.0V IDD: 6 mA max. IPD: 5 u A max at 5.5V	VDD: 4.5V to 6.0V DD: 6 mA max. PD' 5 ii A max at 5.5V	VDD: 4.5V to 6.0V IDD: 6 mA max. IDD: 5 i A max at 5.5V	VDD: 4.5V to 6.0V IDD: 6 mA max. IDD: 5 nA max at 5.5V
	WDT disabled Freq: 4 MHz max.		÷÷		÷÷
XT	VDD: 2.5V to 6.0V IDD: 12 mA max. IPD: 5 μA max. at 5.5V WDT disabled Fred: 8 MH7 max	VDD: 4.5V to 6.0V IDD: 24 mA max. IPD: 5 μA max. at 5.5V WDT disabled Fred: 16 MH7 max	VDD: 4.5V to 6.0V IDD: 38 mA max. IPD: 5 μA max. at 5.5V WDT disabled Free: 25 MHz max	VDD: 4.5V to 6.0V IDD: 38 mA max. IPD: 5 µA max. at 5.5V WDT disabled Fred: 33 MH7 max	VDD: 4.5V to 6.0V IDD: 38 mA max. IPD: 5 µA max. at 5.5V WDT disabled Fren: 33 MHz max
С Ш	-	VDD: 4.5V to 6.0V IDD: 24 mA max. IPD: 5 μA max. at 5.5V WDT disabled Freq: 16 MHz Max	VDD: 4.5V to 6.0V IDD: 38 mA max. IPD: 5 μA max. at 5.5V WDT disabled Freq: 25 MHz max.	VDD: 4.5V to 6.0V IDD: 38 mA max. IPD: 5 µA max. at 5.5V WDT disabled Freq: 33 MHz max.	VDD: 4.5V to 6.0V IDD: 38 mA max. IPD: 5 µA max. at 5.5V WDT disabled Freq: 33 MHz max.
5	VDD: 2.5V to 6.0V IDD: 150 μA max. at 32 kHz IPD: 5 μA max. at 5.5V WDT disabled Freq: 2 MHz max.	VDD: 4.5V to 6.0V 12 IDD: 95 μA typ. at 32 kHz IPD: <1 μA typ. at 5.5V WDT disabled Freq: 2 MHz max.	VDD: 4.5V to 6.0V IDD: 95 μA typ. at 32 kHz IPD: <1 μA typ. at 5.5V WDT disabled Freq: 2 MHz max.	VDD: 4.5V to 6.0V IDD: 95 μA typ. at 32 kHz IPD: <1 μA typ. at 5.5V WDT disabled Freq: 2 MHz max.	VDD: 2.5V to 6.0V IDD: 150 µA max. at 32 kHz IPD: 5 µA max. at 5.5V WDT disabled Freq: 2 MHz max.
The st select	aded sections indicate oscil the device type that ensures	The shaded sections indicate oscillator selections which are tested for functionality, but not for MIN/MAX specifications. It is recommended that the user select the device two that ensures the specifications required	for functionality, but not for M	IN/MAX specifications. It is re	commended that the user

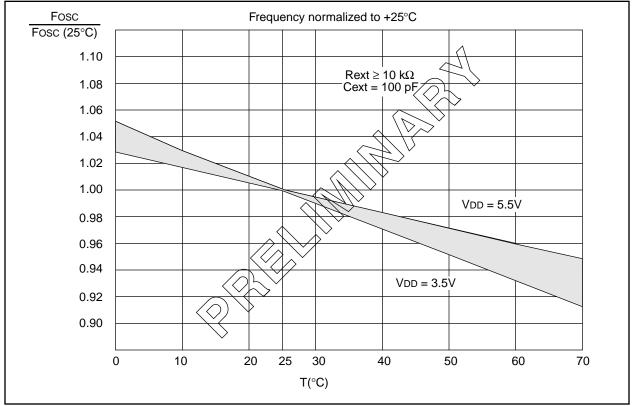
Applicable Devices 42 R42 42A 43 R43 44

19.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created following one of the following formats:

1. TppS2	Sdo	3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			
F	Frequency	Т	Time
Lowerc	ase symbols (pp) and their meanings:		
рр			
ad	Address/Data	ost	Oscillator Start-Up Timer
al	ALE	pwrt	Power-Up Timer
сс	Capture1 and Capture2	rb	PORTB
ck	CLKOUT or clock	rd	RD
dt	Data in	rw	RD or WR
in	INT pin	tO	TOCKI
io	I/O port	t123	TCLK12 and TCLK3
mc	MCLR	wdt	Watchdog Timer
oe	ŌĒ	wr	WR
os	OSC1		
Upperc	ase symbols and their meanings:		
S			
D	Driven	L	Low
E	Edge	Р	Period
F	Fall	R	Rise
Н	High	V	Valid
1	Invalid (Hi-impedance)	Z	Hi-impedance

20.0 PIC17CR42/42A/43/R43/44 DC AND AC CHARACTERISTICS


The graphs and tables provided in this section are for design guidance and are not tested nor guaranteed. In some graphs or tables the data presented is outside specified operating range (e.g. outside specified VDD range). This is for information only and devices are ensured to operate properly only within the specified range.

The data presented in this section is a statistical summary of data collected on units from different lots over a period of time. "Typical" represents the mean of the distribution while "max" or "min" represents (mean + 3σ) and (mean - 3σ) respectively where σ is standard deviation.

TABLE 20-1: PIN CAPACITANCE PER PACKAGE TYPE

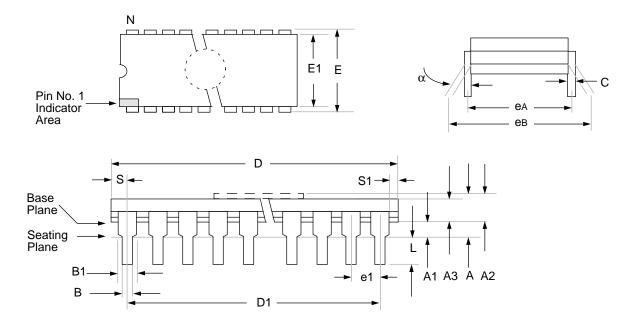

Din Nama	Typical Capacitance (pF)					
Pin Name	40-pin DIP	44-pin PLCC	44-pin MQFP	44-pin TQFP		
All pins, except MCLR, VDD, and Vss	10	10	10	10		
MCLR pin	20	20	20	20		

FIGURE 20-1: TYPICAL RC OSCILLATOR FREQUENCY vs. TEMPERATURE

21.0 PACKAGING INFORMATION

21.1 40-Lead Ceramic CERDIP Dual In-line, and CERDIP Dual In-line with Window (600 mil)

Package Group: Ceramic CERDIP Dual In-Line (CDP)						
		Millimeters			Inches	
Symbol	Min	Max	Notes	Min	Max	Notes
α	0°	10°		0°	10°	
А	4.318	5.715		0.170	0.225	
A1	0.381	1.778		0.015	0.070	
A2	3.810	4.699		0.150	0.185	
A3	3.810	4.445		0.150	0.175	
В	0.355	0.585		0.014	0.023	
B1	1.270	1.651	Typical	0.050	0.065	Typical
С	0.203	0.381	Typical	0.008	0.015	Typical
D	51.435	52.705		2.025	2.075	
D1	48.260	48.260	Reference	1.900	1.900	Reference
E	15.240	15.875		0.600	0.625	
E1	12.954	15.240		0.510	0.600	
e1	2.540	2.540	Reference	0.100	0.100	Reference
eA	14.986	16.002	Typical	0.590	0.630	Typical
eB	15.240	18.034		0.600	0.710	
L	3.175	3.810		0.125	0.150	
Ν	40	40		40	40	
S	1.016	2.286		0.040	0.090	
S1	0.381	1.778		0.015	0.070	

© 1996 Microchip Technology Inc.

APPENDIX A: MODIFICATIONS

The following is the list of modifications over the PIC16CXX microcontroller family:

- Instruction word length is increased to 16-bit. This allows larger page sizes both in program memory (8 Kwords verses 2 Kwords) and register file (256 bytes versus 128 bytes).
- 2. Four modes of operation: microcontroller, protected microcontroller, extended microcontroller, and microprocessor.
- 22 new instructions. The MOVF, TRIS and OPTION instructions have been removed.
- 4. 4 new instructions for transferring data between data memory and program memory. This can be used to "self program" the EPROM program memory.
- Single cycle data memory to data memory transfers possible (MOVPF and MOVFP instructions). These instructions do not affect the Working register (WREG).
- 6. W register (WREG) is now directly addressable.
- 7. A PC high latch register (PCLATH) is extended to 8-bits. The PCLATCH register is now both readable and writable.
- 8. Data memory paging is redefined slightly.
- 9. DDR registers replaces function of TRIS registers.
- 10. Multiple Interrupt vectors added. This can decrease the latency for servicing the interrupt.
- 11. Stack size is increased to 16 deep.
- 12. BSR register for data memory paging.
- 13. Wake up from SLEEP operates slightly differently.
- 14. The Oscillator Start-Up Timer (OST) and Power-Up Timer (PWRT) operate in parallel and not in series.
- 15. PORTB interrupt on change feature works on all eight port pins.
- 16. TMR0 is 16-bit plus 8-bit prescaler.
- 17. Second indirect addressing register added (FSR1 and FSR2). Configuration bits can select the FSR registers to auto-increment, auto-decrement, remain unchanged after an indirect address.
- 18. Hardware multiplier added (8 x 8 \rightarrow 16-bit) (PIC17C43 and PIC17C44 only).
- 19. Peripheral modules operate slightly differently.
- 20. Oscillator modes slightly redefined.
- 21. Control/Status bits and registers have been placed in different registers and the control bit for globally enabling interrupts has inverse polarity.
- 22. Addition of a test mode pin.
- 23. In-circuit serial programming is not implemented.

APPENDIX B: COMPATIBILITY

To convert code written for PIC16CXX to PIC17CXX, the user should take the following steps:

- 1. Remove any TRIS and OPTION instructions, and implement the equivalent code.
- 2. Separate the interrupt service routine into its four vectors.
- 3. Replace:

4.

<pre>MOVF REG1, W with: MOVFP REG1, WREG Replace: MOVF REG1, W MOVWF REG2 with: MOVPF REG1, REG2 ; Addr(REG1)<20h or MOVFP REG1, REG2 ; Addr(REG2)<20h</pre>			
MOVFP REG1, WREG Replace: MOVF REG1, W MOVWF REG2 with: MOVPF REG1, REG2 ; Addr(REG1)<20h or	MOVF	REG1,	W
Replace: MOVF REG1, W MOVWF REG2 with: MOVPF REG1, REG2 ; Addr(REG1)<20h or	with:		
MOVF REG1, W MOVWF REG2 with: MOVPF REG1, REG2 ; Addr(REG1)<20h Or	MOVFP	REG1,	WREG
MOVWF REG2 with: MOVPF REG1, REG2 ; Addr(REG1)<20h Or	Replace:		
with: MOVPF REG1, REG2 ; Addr(REG1)<20h or	MOVF	REG1,	W
MOVPF REG1, REG2 ; Addr(REG1)<20h or	MOVWF	REG2	
or	with:		
	MOVPF	REG1,	REG2 ; Addr(REG1)<20h
MOVFP REG1, REG2 ; Addr(REG2)<20h	or		
	MOVFP	REG1,	REG2 ; Addr(REG2)<20h

Note: If REG1 and REG2 are both at addresses greater then 20h, two instructions are required. MOVFP REG1, WREG ; MOVPF WREG, REG2 ;

- 5. Ensure that all bit names and register names are updated to new data memory map location.
- 6. Verify data memory banking.
- 7. Verify mode of operation for indirect addressing.
- 8. Verify peripheral routines for compatibility.
- 9. Weak pull-ups are enabled on reset.

To convert code from the PIC17C42 to all the other PIC17C4X devices, the user should take the following steps.

- 1. If the hardware multiply is to be used, ensure that any variables at address 18h and 19h are moved to another address.
- 2. Ensure that the upper nibble of the BSR was not written with a non-zero value. This may cause unexpected operation since the RAM bank is no longer 0.
- 3. The disabling of global interrupts has been enhanced so there is no additional testing of the GLINTD bit after a BSF CPUSTA, GLINTD instruction.

^{© 1996} Microchip Technology Inc.

NOTES: