

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

201010	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	16MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (8K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c44t-16-pq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

4.0 RESET

The PIC17CXX differentiates between various kinds of reset:

- Power-on Reset (POR)
- MCLR reset during normal operation
- WDT Reset (normal operation)

Some registers are not affected in any reset condition; their status is unknown on POR and unchanged in any other reset. Most other registers are forced to a "reset state" on Power-on Reset (POR), on $\overline{\text{MCLR}}$ or WDT Reset and on $\overline{\text{MCLR}}$ reset during SLEEP. They are not affected by a WDT Reset during SLEEP, since this reset is viewed as the resumption of normal operation. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared differently in different reset situations as indicated in Table 4-3. These bits are used in software to determine the nature of reset. See Table 4-4 for a full description of reset states of all registers.

Note: While the device is in a reset state, the internal phase clock is held in the Q1 state. Any processor mode that allows external execution will force the RE0/ALE pin as a low output and the RE1/OE and RE2/WR pins as high outputs.

A simplified block diagram of the on-chip reset circuit is shown in Figure 4-1.

4.1 <u>Power-on Reset (POR), Power-up</u> <u>Timer (PWRT), and Oscillator Start-up</u> <u>Timer (OST)</u>

4.1.1 POWER-ON RESET (POR)

The Power-on Reset circuit holds the device in reset until VDD is above the trip point (in the range of 1.4V -2.3V). The PIC17C42 does not produce an internal reset when VDD declines. All other devices will produce an internal reset for both rising and falling VDD. To take advantage of the POR, just tie the MCLR/VPP pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create Power-on Reset. A minimum rise time for VDD is required. See Electrical Specifications for details.

4.1.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 96 ms time-out (nominal) on power-up. This occurs from rising edge of the POR signal and after the first rising edge of $\overline{\text{MCLR}}$ (detected high). The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as the PWRT is active. In most cases the PWRT delay allows the VDD to rise to an acceptable level.

The power-up time delay will vary from chip to chip and to VDD and temperature. See DC parameters for details.

FIGURE 4-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

© 1996 Microchip Technology Inc.

5.5 RA0/INT Interrupt

The external interrupt on the RA0/INT pin is edge triggered. Either the rising edge, if INTEDG bit (T0STA<7>) is set, or the falling edge, if INTEDG bit is clear. When a valid edge appears on the RA0/INT pin, the INTF bit (INTSTA<4>) is set. This interrupt can be disabled by clearing the INTE control bit (INTSTA<0>). The INT interrupt can wake the processor from SLEEP. See Section 14.4 for details on SLEEP operation.

5.6 TMR0 Interrupt

An overflow (FFFFh \rightarrow 0000h) in TMR0 will set the T0IF (INTSTA<5>) bit. The interrupt can be enabled/ disabled by setting/clearing the T0IE control bit (INTSTA<1>). For operation of the Timer0 module, see Section 11.0.

5.7 TOCKI Interrupt

The external interrupt on the RA1/T0CKI pin is edge triggered. Either the rising edge, if the T0SE bit (T0STA<6>) is set, or the falling edge, if the T0SE bit is clear. When a valid edge appears on the RA1/T0CKI pin, the T0CKIF bit (INTSTA<6>) is set. This interrupt can be disabled by clearing the T0CKIE control bit (INTSTA<2>). The T0CKI interrupt can wake up the processor from SLEEP. See Section 14.4 for details on SLEEP operation.

5.8 Peripheral Interrupt

The peripheral interrupt flag indicates that at least one of the peripheral interrupts occurred (PEIF is set). The PEIF bit is a read only bit, and is a bit wise OR of all the flag bits in the PIR register AND'ed with the corresponding enable bits in the PIE register. Some of the peripheral interrupts can wake the processor from SLEEP. See Section 14.4 for details on SLEEP operation.

FIGURE 5-5: INT PIN / TOCKI PIN INTERRUPT TIMING

TABLE 6-3:	SPECIAL FUNCTION REGISTERS
------------	----------------------------

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (3)		
Unbank	ed	•				•			•				
00h	INDF0	Uses con	tents of FSI	R0 to addres	s data mem	ory (not a p	hysical regis	ster)					
01h	FSR0	Indirect d	Indirect data memory address pointer 0 xxxx x2										
02h	PCL	Low orde	r 8-bits of P	С						0000 0000	0000 0000		
03h ⁽¹⁾	PCLATH	Holding re	egister for u	pper 8-bits o	of PC					0000 0000	uuuu uuuu		
04h	ALUSTA	FS3	FS2	FS1	FS0	OV	Z	DC	С	1111 xxxx	1111 uuuu		
05h	TOSTA	INTEDG	TOSE	TOCS	PS3	PS2	PS1	PS0	—	0000 000-	0000 000-		
06h (2)	CPUSTA	_	_	STKAV	GLINTD	TO	PD	_	_	11 11	11 qq		
07h	INTSTA	PEIF	TOCKIF	T0IF	INTF	PEIE	TOCKIE	TOIE	INTE	0000 0000	0000 0000		
08h	INDF1	Uses con	tents of FSI	R1 to addres	s data mem	ory (not a p	hysical regis	ster)					
09h	FSR1	Indirect d	ata memory	address po	inter 1		, ,			xxxx xxxx	uuuu uuuu		
0Ah	WREG	Working r	egister							xxxx xxxx	uuuu uuuu		
0Bh	TMR0L	TMR0 reg	gister; low b	yte						xxxx xxxx	uuuu uuuu		
0Ch	TMR0H	TMR0 reg	gister; high I	oyte						xxxx xxxx	uuuu uuuu		
0Dh	TBLPTRL	Low byte	Low byte of program memory table pointer (4)										
0Eh	TBLPTRH	High byte	of program	memory tal	ole pointer					(4)	(4)		
0Fh	BSR	Bank sele	ect register							0000 0000	0000 0000		
Bank 0		1								I			
10h	PORTA	RBPU	_	RA5	RA4	RA3	RA2	RA1/T0CKI	RA0/INT	0-xx xxxx	0-uu uuuu		
11h	DDRB	Data dire	ction registe	er for PORTE	3					1111 1111	1111 1111		
12h	PORTB	PORTB d	ata latch							xxxx xxxx	uuuu uuuu		
13h	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00u		
14h	RCREG	Serial por	t receive re	gister						xxxx xxxx	uuuu uuuu		
15h	TXSTA	CSRC	TX9	TXEN	SYNC	—	—	TRMT	TX9D	00001x	00001u		
16h	TXREG	Serial por	t transmit re	egister						xxxx xxxx	uuuu uuuu		
17h	SPBRG	Baud rate	generator	register						xxxx xxxx	uuuu uuuu		
Bank 1													
10h	DDRC	Data dire	ction registe	er for PORT	2					1111 1111	1111 1111		
11h	PORTC	RC7/ AD7	RC6/ AD6	RC5/ AD5	RC4/ AD4	RC3/ AD3	RC2/ AD2	RC1/ AD1	RC0/ AD0	xxxx xxxx	uuuu uuuu		
12h	DDRD	Data dire	ction registe	er for PORTI)					1111 1111	1111 1111		
4.01-	PORTD	RD7/ AD15	RD6/ AD14	RD5/ AD13	RD4/ AD12	RD3/ AD11	RD2/ AD10	RD1/ AD9	RD0/ AD8	xxxx xxxx	uuuu uuuu		
13h		Data direction register for PORTE111 -									111		
13h 14h	DDRE	Data dire						-					
	DDRE PORTE	Data dire	_	_	_	_	RE2/WR	RE1/OE	RE0/ALE	xxx	uuu		
14h		RBIF	— TMR3IF	— TMR2IF	— TMR1IF	— CA2IF	RE2/WR CA1IF	RE1/OE TXIF	RE0/ALE RCIF	xxx 0000 0010	uuu 0000 0010		

x = unknown, u = unchanged, - = unimplemented read as '0', q - value depends on condition. Shaded cells are unimplemented, read as '0'. The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<15:8> whose contents are updated Legend: Note 1:

from or transferred to the upper byte of the program counter. The TO and PD status bits in CPUSTA are not affected by a MCLR reset. 2:

3: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

4:

The following values are for both TBLPTRL and TBLPTRH: All PIC17C4X devices (Power-on Reset 0000 0000) and (All other resets 0000 0000) except the PIC17C42 (Power-on Reset xxxx xxxx) and (All other resets uuuu uuuu)

5: The PRODL and PRODH registers are not implemented on the PIC17C42.

7.1 <u>Table Writes to Internal Memory</u>

A table write operation to internal memory causes a long write operation. The long write is necessary for programming the internal EPROM. Instruction execution is halted while in a long write cycle. The long write will be terminated by any enabled interrupt. To ensure that the EPROM location has been well programmed, a minimum programming time is required (see specification #D114). Having only one interrupt enabled to terminate the long write ensures that no unintentional interrupts will prematurely terminate the long write.

The sequence of events for programming an internal program memory location should be:

- 1. Disable all interrupt sources, except the source to terminate EPROM program write.
- 2. Raise MCLR/VPP pin to the programming voltage.
- 3. Clear the WDT.
- 4. Do the table write. The interrupt will terminate the long write.
- 5. Verify the memory location (table read).
 - **Note:** Programming requirements must be met. See timing specification in electrical specifications for the desired device. Violating these specifications (including temperature) may result in EPROM locations that are not fully programmed and may lose their state over time.

7.1.1 TERMINATING LONG WRITES

An interrupt source or reset are the only events that terminate a long write operation. Terminating the long write from an interrupt source requires that the interrupt enable and flag bits are set. The GLINTD bit only enables the vectoring to the interrupt address.

If the TOCKI, RA0/INT, or TMR0 interrupt source is used to terminate the long write; the interrupt flag, of the highest priority enabled interrupt, will terminate the long write and automatically be cleared.

- **Note 1:** If an interrupt is pending, the TABLWT is aborted (an NOP is executed). The highest priority pending interrupt, from the TOCKI, RA0/INT, or TMR0 sources that is enabled, has its flag cleared.
- **Note 2:** If the interrupt is not being used for the program write timing, the interrupt should be disabled. This will ensure that the interrupt is not lost, nor will it terminate the long write prematurely.

If a peripheral interrupt source is used to terminate the long write, the interrupt enable and flag bits must be set. The interrupt flag will not be automatically cleared upon the vectoring to the interrupt vector address.

If the GLINTD bit is cleared prior to the long write, when the long write is terminated, the program will branch to the interrupt vector.

If the GLINTD bit is set prior to the long write, when the long write is terminated, the program will not vector to the interrupt address.

Interrupt Source	GLINTD	Enable Bit	Flag Bit	Action
RA0/INT, TMR0, T0CKI	0	1	1	Terminate long table write (to internal program memory), branch to interrupt vector (branch clears flag bit).
	0	1	0	None
	1	0	x	None
	1	1	1	Terminate table write, do not branch to interrupt vector (flag is automatically cleared).
Peripheral	0	1	1	Terminate table write, branch to interrupt vector.
•	0	1	0	None
	1	0	x	None
	1	1	1	Terminate table write, do not branch to interrupt vector (flag is set).

TABLE 7-1: INTERRUPT - TABLE WRITE INTERACTION

TABLE 9-7: PORTD FUNCTIONS

Name	Bit	Buffer Type	Function
RD0/AD8	bit0	TTL	Input/Output or system bus address/data pin.
RD1/AD9	bit1	TTL	Input/Output or system bus address/data pin.
RD2/AD10	bit2	TTL	Input/Output or system bus address/data pin.
RD3/AD11	bit3	TTL	Input/Output or system bus address/data pin.
RD4/AD12	bit4	TTL	Input/Output or system bus address/data pin.
RD5/AD13	bit5	TTL	Input/Output or system bus address/data pin.
RD6/AD14	bit6	TTL	Input/Output or system bus address/data pin.
RD7/AD15	bit7	TTL	Input/Output or system bus address/data pin.

Legend: TTL = TTL input.

TABLE 9-8: REGISTERS/BITS ASSOCIATED WITH PORTD

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
13h, Bank 1	PORTD	RD7/ AD15	RD6/ AD14	RD5/ AD13	RD4/ AD12	RD3/ AD11	RD2/ AD10	RD1/ AD9	RD0/ AD8	XXXX XXXX	uuuu uuuu
12h, Bank 1	DDRD	Data direc	Data direction register for PORTD								1111 1111

Legend: x = unknown, u = unchanged.

Note 1: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

NOTES:

Address	Name	Bit 7	Bit 6	Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0		Value on Power-on Reset	Value on all other resets (Note1)				
05h, Unbanked	TOSTA	INTEDG	T0SE	TOCS	PS3	PS2	PS1	PS0		0000 000-	0000 000-
06h, Unbanked	CPUSTA	—	STKAV GLINTD TO PD						11 11	11 qq	
07h, Unbanked	INTSTA	PEIF	TOCKIF	T0IF	INTF	PEIE	T0CKIE	TOIE	INTE	0000 0000	0000 0000
0Bh, Unbanked	TMR0L	MR0L TMR0 register; low byte									uuuu uuuu
0Ch, Unbanked	TMR0H	TMR0 reg	MR0 register; high byte xxxx xxxx uuuu uuuu								

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', g - value depends on condition, Shaded cells are not used by Timer0. Note 1: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset. NOTES:

BAUD	Fosc = 3	3 MHz	SPBRG	FOSC = 25 MHz		SPBRG FOSC = 20 MHz			SPBRG	Fosc = 1	SPBRG	
RATE (K)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)
0.3	NA	_	—	NA	_		NA	_	_	NA	_	-
1.2	NA	_	_	NA	_	_	1.221	+1.73	255	1.202	+0.16	207
2.4	2.398	-0.07	214	2.396	0.14	162	2.404	+0.16	129	2.404	+0.16	103
9.6	9.548	-0.54	53	9.53	-0.76	40	9.469	-1.36	32	9.615	+0.16	25
19.2	19.09	-0.54	26	19.53	+1.73	19	19.53	+1.73	15	19.23	+0.16	12
76.8	73.66	-4.09	6	78.13	+1.73	4	78.13	+1.73	3	83.33	+8.51	2
96	103.12	+7.42	4	97.65	+1.73	3	104.2	+8.51	2	NA	_	_
300	257.81	-14.06	1	390.63	+30.21	0	312.5	+4.17	0	NA	_	-
500	515.62	+3.13	0	NA	_	_	NA	_	_	NA	_	-
HIGH	515.62	_	0	_	_	0	312.5	_	0	250	_	0
LOW	2.014	—	255	1.53	—	255	1.221	—	255	0.977	_	255

TABLE 13-4: BAUD RATES FOR ASYNCHRONOUS MODE

BAUD RATE	Fosc = 10 MH	Fosc = 10 MHz SPBRG value) MHz	SPBRG value	FOSC = 5.068	8 MHz	SPBRG value	
(K)	KBAUD	%ERROR	(decimal)	KBAUD	%ERROR	(decimal)	KBAUD	%ERROR	(decimal)	
0.3	NA	_	_	NA	_	_	0.31	+3.13	255	
1.2	1.202	+0.16	129	1.203	_0.23	92	1.2	0	65	
2.4	2.404	+0.16	64	2.380	-0.83	46	2.4	0	32	
9.6	9.766	+1.73	15	9.322	-2.90	11	9.9	-3.13	7	
19.2	19.53	+1.73	7	18.64	-2.90	5	19.8	+3.13	3	
76.8	78.13	+1.73	1	NA	_	—	79.2	+3.13	0	
96	NA	—	—	NA	—	—	NA	—	—	
300	NA	_	—	NA	_	—	NA	_	_	
500	NA	_	_	NA	_	_	NA	_	_	
HIGH	156.3	_	0	111.9	_	0	79.2	_	0	
LOW	0.610	—	255	0.437	—	255	0.309	_	2 55	
BAUD	Fosc = 3.579	MHz	SPBRG	Fosc = 1 MH	z	SPBRG				
RATE (K)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)	
0.3	0.301	+0.23	185	0.300	+0.16	51	0.256	-14.67	1	
1.2	1.190	-0.83	46	1.202	+0.16	12	NA	—	—	
2.4	2.432	+1.32	22	2.232	-6.99	6	NA	—	—	
9.6	9.322	-2.90	5	NA	_	_	NA	_	_	
19.2	18.64	-2.90	2	NA	—	—	NA	—	—	
76.8	NA	—	—	NA	—	—	NA	—	—	
96	NA	_	_	NA	_	_	NA	_	_	
300	NA	—	—	NA	—	—	NA	—	—	
500	NA	—	—	NA	—	—	NA	—	—	
HIGH	55.93	_	0	15.63	_	0	0.512	_	0	
l mon										

TABLE 13-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
13h, Bank 0	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00u
16h, Bank 0	TXREG	TX7	TX6	TX5	TX4	TX3	TX2	TX1	TX0	xxxx xxxx	uuuu uuuu
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	—		TRMT	TX9D	00001x	00001u
17h, Bank 0	SPBRG	Baud rate generator register								xxxx xxxx	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used for synchronous master transmission.

Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

FIGURE 13-9: SYNCHRONOUS TRANSMISSION

FIGURE 13-10: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

Table 15-2 lists the instructions recognized by the MPASM assembler.

Note 1:	Any unused opcode is Reserved. Use of
	any reserved opcode may cause unex-
	pected operation.

Note 2: The shaded instructions are not available in the PIC17C42

All instruction examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

To represent a binary number:

0000 0100b

where b signifies a binary string.

FIGURE 15-1: GENERAL FORMAT FOR INSTRUCTIONS

15.1 <u>Special Function Registers as</u> <u>Source/Destination</u>

The PIC17C4X's orthogonal instruction set allows read and write of all file registers, including special function registers. There are some special situations the user should be aware of:

15.1.1 ALUSTA AS DESTINATION

If an instruction writes to ALUSTA, the Z, C, DC and OV bits may be set or cleared as a result of the instruction and overwrite the original data bits written. For example, executing CLRF ALUSTA will clear register ALUSTA, and then set the Z bit leaving 0000 0100b in the register.

15.1.2 PCL AS SOURCE OR DESTINATION

Read, write or read-modify-write on PCL may have the following results:

Read PC:	$PCH \to PCLATH; PCL \to dest$
Write PCL:	PCLATH \rightarrow PCH; 8-bit destination value \rightarrow PCL
Read-Modify-Write:	$PCL \rightarrow ALU$ operand $PCLATH \rightarrow PCH$; 8-bit result $\rightarrow PCL$

Where PCH = program counter high byte (not an addressable register), PCLATH = Program counter high holding latch, dest = destination, WREG or f.

15.1.3 BIT MANIPULATION

All bit manipulation instructions are done by first reading the entire register, operating on the selected bit and writing the result back (read-modify-write). The user should keep this in mind when operating on special function registers, such as ports.

15.2 <u>Q Cycle Activity</u>

Each instruction cycle (Tcy) is comprised of four Q cycles (Q1-Q4). The Q cycles provide the timing/designation for the Decode, Read, Execute, Write etc., of each instruction cycle. The following diagram shows the relationship of the Q cycles to the instruction cycle.

The 4 Q cycles that make up an instruction cycle (Tcy) can be generalized as:

- Q1: Instruction Decode Cycle or forced NOP
- Q2: Instruction Read Cycle or NOP
- Q3: Instruction Execute
- Q4: Instruction Write Cycle or NOP

Each instruction will show the detailed Q cycle operation for the instruction.

FIGURE 15-2: Q CYCLE ACTIVITY

PIC17C4X

MOVLR	Move Literal to high nibble in BSR					
Syntax:	[<i>label</i>] MOVLR k					
Operands:	$0 \le k \le 15$					
Operation:	$k \rightarrow (BSR < 7:4 >)$					
Status Affected:	None					
Encoding:	1011 101x kkkk uuuu					
Description:	The 4-bit literal 'k' is loaded into the most significant 4-bits of the Bank Select Register (BSR). Only the high 4-bits of the Bank Select Register are affected. The lower half of the BSR is unchanged. The assembler will encode the "u" fields as 0.					
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2 Q3 Q4					
Decode	Read literal Execute Write 'k:u' literal 'k' to BSR<7:4>					
Example:	MOVLR 5					
Before Instruction BSR register = 0x22 After Instruction BSR register = 0x52						
Note: This i	instruction is not available in th C42 device.	e				

MOVLW	Move Lite	eral to V	VREG			
Syntax: [label] MOVLW k						
Operands:	$0 \le k \le 25$	55				
Operation:	$k \rightarrow (WR)$	$k \rightarrow (WREG)$				
Status Affected:	None					
Encoding:	1011	0000 kkkk kkkk				
Description:	The eight b WREG.	oit literal 'l	k' is loa	ded into		
Words:	1					
Cycles:	1					
Q Cycle Activity:						
Q1	Q2	Q3		Q4		
Decode	Read literal 'k'	Execu	ute	Write to WREG		
Example:	MOVLW	0x5A				
After Instruct	ion					

WREG = 0x5A

PIC17C4X

TABLWT	Table Wr	ite		
Example1:	TABLWT	0, 1,	REG	
Before Instruc	ction			
REG		=	0x53	
TBLATH		=	0xAA	
TBLATL		=	0x55	
TBLPTR		=	0xA356	
MEMORY	(TBLPTR)	=	0xFFFI	F
After Instruction	on (table v	vrite co	mpletio	n)
REG		=	0x53	
TBLATH		=	0x53	
TBLATL		=	0x55	
TBLPTR		=	0xA357	7
MEMORY	(TBLPTR -	1) =	0x5355	5
Example 2:	TABLWT	1, 0,	REG	
Before Instruc	ction			
REG		=	0x53	
TBLATH		=	0xAA	
TBLATL		=	0x55	
TBLPTR		=	0xA356	6
MEMORY	(TBLPTR)	=	0xFFFI	F
After Instruction	on (table v	vrite co	mpletio	n)
REG	,	=	0x53	,
TBLATH		=	0xAA	
TBLATL		=	0x53	
TBLPTR		=	0xA356	6
MEMORY	(TBLPTR)	=	0xAA5	3
	 ר		г	
Program Memory	15		0	Data Memory
				wentory
	1 (5	TBLPTR		

	TBLPTR
· · · · · · · · · · · · · · · · · · ·	
16 bits	TBLAT 8 bits

TLR	D	Table Late	ch Read		
Synt	ax:	[<i>label</i>] T	LRD t,f		
Ope	rands:	0 ≤ f ≤ 255 t ∈ [0,1]	5		
Ope	ration:	lf t = 0, TBLAT	$L \rightarrow f;$		
		lf t = 1, TBLAT	$H \rightarrow f$		
State	us Affected:	None			
Enco	oding:	1010	00tx ff	ff ffff	
Deso	cription:	(TBLAT) into is unaffecte If t = 1; high		ole latch f'. Table Latch	
		with TABLR	tion is used ir □ to transfer c ory to data me	lata from pro-	
Word	ds:	1			
Cycl	es:	1			
QC	cle Activity:				
	Q1	Q2	Q3	Q4	
	Decode	Read register TBLATH or TBLATL	Execute	Write register 'f'	
Example: TLRD t, RAM					
Before Instruction					
	t RAM	= 0 = ?			
	TBLAT	= ? = 0x00AF	(TBLATH = (TBLATL =		
	After Instruct	tion			
	RAM TBLAT	= 0xAF = 0x00AF	(TBLATH = (TBLATL =	,	
	Before Instru	iction			
	t RAM	= 1 = ?			
	TBLAT	= ? = 0x00AF	(TBLATH = (TBLATL =	,	
	After Instruct	tion			
	RAM TBLAT	= 0x00 = 0x00AF	(TBLATH = (TBLATL =	,	
	Program Memory	15	0	Data Memory	
• - •			. (÷	
	16 bits		BLAT	8 bits	

Droduct	** MDI ADTM		MD-Drivo/Mov		*** DICMACTED®/				DIC CTADT® DI
	Integrated	Compiler	Applications	Explorer/Edition	PICMASTER-CE	Low-Cost	II Universal	Ultra Low-Cost	Low-Cost
	Development Environment		Code Generator	Fuzzy Logic Dev. Tool	In-Circuit Emulator	In-Circuit Emulator	Microchip Programmer	Dev. Kit	Universal Dev. Kit
PIC12C508, 509	SW007002	SW006005	1	I	EM167015/ EM167101	1	DV007003	1	DV003001
PIC14000	SW007002	SW006005	I	I	EM147001/ EM147101	1	DV007003	I	DV003001
PIC16C52, 54, 54A, 55, 56, 57, 58A	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167015/ EM167101	EM167201	DV007003	DV162003	DV003001
PIC16C554, 556, 558	SW007002	SW006005	1	DV005001/ DV005002	EM167033/ EM167113	1	DV007003	I	DV003001
PIC16C61	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167021/ N/A	EM167205	DV007003	DV162003	DV003001
PIC16C62, 62A, 64, 64A	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167025/ EM167103	EM167203	DV007003	DV162002	DV003001
PIC16C620, 621, 622	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167023/ EM167109	EM167202	DV007003	DV162003	DV003001
PIC16C63, 65, 65A, 73, 73A, 74, 74A	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167025/ EM167103	EM167204	DV007003	DV162002	DV003001
PIC16C642, 662*	SW007002	SW006005	1	I	EM167035/ EM167105	1	DV007003	DV162002	DV003001
PIC16C71	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167027/ EM167105	EM167205	DV007003	DV162003	DV003001
PIC16C710, 711	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167027/ EM167105	1	DV007003	DV162003	DV003001
PIC16C72	SW007002	SW006005	SW006006	I	EM167025/ EM167103	1	DV007003	DV162002	DV003001
PIC16F83	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167029/ EM167107	1	DV007003	DV162003	DV003001
PIC16C84	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167029/ EM167107	EM167206	DV007003	DV162003	DV003001
PIC16F84	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167029/ EM167107		DV007003	DV162003	DV003001
PIC16C923, 924*	SW007002	SW006005	SW006006	DV005001/ DV005002	EM167031/ EM167111		DV007003	I	DV003001
PIC17C42, 42A, 43, 44	SW007002	SW006005	SW006006	DV005001/ DV005002	EM177007/ EM177107	1	DV007003	I	DV003001
*Contact Microchip Technology for availability date **MPLAB Integrated Development Environment includes MPLAB-SIM Simulator and MPASM Assembler	innology for avails velopment Enviro	ability date inment includes	s MPLAB-SIM Sir	mulator and	***All PICMASTER and PICMASTER-CE ordering part numbers above include PRO MATE II programmer ****PRO MATE socket modules are ordered separately. See development systems ordering guide for specific ordering part numbers	and PICMAST rogrammer at modules are or specific orde	II PICMASTER and PICMASTER-CE ordering par PRO MATE II programmer RO MATE socket modules are ordered separately. ordering guide for specific ordering part numbers	***All PICMASTER and PICMASTER-CE ordering part numbers above include PRO MATE II programmer **PRO MATE socket modules are ordered separately. See development system ordering guide for specific ordering part numbers	lude stems
Product	TRUEGAUGI	TRUEGAUGE® Development Kit		SEEVAL® Designers Kit	Hopping Code Security Programmer Kit	Security Prog		Hopping Code Security Eval/Demo Kit	ity Eval/Demo Kit
All 2 wire and 3 wire Serial EEPROM's		N/A		DV243001		N/A		N/A	
MTA11200B		DV114001		N/A		N/A		N/A	
HCS200, 300, 301 *		N/A	_	N/A	-	PG306001		DM303001	001

TABLE 16-1: DEVELOPMENT TOOLS FROM MICROCHIP

PIC17C4X

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 19-9: USART MODULE: SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 19-9: SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param	C. m	Characteristic		Min	Trent	Max	Unito	Conditions
No.	Sym	Characteristic		IVIIII	Тур†	Max	Units	Conditions
120	TckH2dtV	SYNC XMIT (MASTER &						
		SLAVE)	PIC17CR42/42A/43/R43/44	—	—	50	ns	
		Clock high to data out valid	PIC17LCR42/42A/43/R43/44	—	—	75	ns	
121	TckRF	Clock out rise time and fall time	PIC17CR42/42A/43/R43/44	—	—	25	ns	
		(Master Mode)	PIC17LCR42/42A/43/R43/44	—	—	40	ns	
122	TdtRF	Data out rise time and fall time	PIC17CR42/42A/43/R43/44	—	—	25	ns	
			PIC17LCR42/42A/43/R43/44	—	—	40	ns	
†	Data in "T	yp" column is at 5V, 25°C unless	otherwise stated. These parameters	are for	design	guidan	ce only	and are not

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 19-10: USART MODULE: SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 19-10: SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
125	TdtV2ckL	SYNC RCV (MASTER & SLAVE) Data hold before CK↓ (DT hold time)	15		_	ns	
126	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15	_	_	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

APPENDIX C: WHAT'S NEW

The structure of the document has been made consistent with other data sheets. This ensures that important topics are covered across all PIC16/17 families. Here is an overview of new features.

Added the following devices:

PIC17CR42

PIC17C42A

PIC17CR43

A 33 MHz option is now available.

APPENDIX D: WHAT'S CHANGED

To make software more portable across the different PIC16/17 families, the name of several registers and control bits have been changed. This allows control bits that have the same function, to have the same name (regardless of processor family). Care must still be taken, since they may not be at the same special function register address. The following shows the register and bit names that have been changed:

Old Name	New Name
TX8/9	TX9
RC8/9	RX9
RCD8	RX9D
TXD8	TX9D

Instruction DECFSNZ corrected to DCFSNZ

Instruction INCFSNZ corrected to INFSNZ

Enhanced discussion on PWM to include equation for determining bits of PWM resolution.

Section 13.2.2 and 13.3.2 have had the description of updating the FERR and RX9 bits enhanced.

The location of configuration bit PM2 was changed (Figure 6-1 and Figure 14-1).

Enhanced description of the operation of the INTSTA register.

Added note to discussion of interrupt operation.

Tightened electrical spec D110.

Corrected steps for setting up USART Asynchronous Reception.

ON-LINE SUPPORT

Microchip provides two methods of on-line support. These are the Microchip BBS and the Microchip World Wide Web (WWW) site.

Use Microchip's Bulletin Board Service (BBS) to get current information and help about Microchip products. Microchip provides the BBS communication channel for you to use in extending your technical staff with microcontroller and memory experts.

To provide you with the most responsive service possible, the Microchip systems team monitors the BBS, posts the latest component data and software tool updates, provides technical help and embedded systems insights, and discusses how Microchip products provide project solutions.

The web site, like the BBS, is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape or Microsoft Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available by using your favorite Internet browser to attach to:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp.mchip.com/biz/mchip

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
 Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products

Connecting to the Microchip BBS

Connect worldwide to the Microchip BBS using either the Internet or the CompuServe[®] communications network.

Internet:

You can telnet or ftp to the Microchip BBS at the address:

mchipbbs.microchip.com

CompuServe Communications Network:

When using the BBS via the Compuserve Network, in most cases, a local call is your only expense. The Microchip BBS connection does not use CompuServe membership services, therefore you do not need CompuServe membership to join Microchip's BBS. There is no charge for connecting to the Microchip BBS. The procedure to connect will vary slightly from country to country. Please check with your local CompuServe agent for details if you have a problem. CompuServe service allow multiple users various baud rates depending on the local point of access.

The following connect procedure applies in most locations.

- 1. Set your modem to 8-bit, No parity, and One stop (8N1). This is not the normal CompuServe setting which is 7E1.
- 2. Dial your local CompuServe access number.
- 3. Depress the <Enter> key and a garbage string will appear because CompuServe is expecting a 7E1 setting.
- 4. Type +, depress the <Enter> key and "Host Name:" will appear.
- 5. Type MCHIPBBS, depress the <Enter> key and you will be connected to the Microchip BBS.

In the United States, to find the CompuServe phone number closest to you, set your modem to 7E1 and dial (800) 848-4480 for 300-2400 baud or (800) 331-7166 for 9600-14400 baud connection. After the system responds with "Host Name:", type NETWORK, depress the <Enter> key and follow CompuServe's directions.

For voice information (or calling from overseas), you may call (614) 723-1550 for your local CompuServe number.

Microchip regularly uses the Microchip BBS to distribute technical information, application notes, source code, errata sheets, bug reports, and interim patches for Microchip systems software products. For each SIG, a moderator monitors, scans, and approves or disapproves files submitted to the SIG. No executable files are accepted from the user community in general to limit the spread of computer viruses.

Systems Information and Upgrade Hot Line

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive any currently available upgrade kits.The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and

1-602-786-7302 for the rest of the world.

960513

Trademarks: The Microchip name, logo, PIC, PICSTART, PICMASTER and PRO MATE are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. FlexROM, MPLAB and fuzzyLAB, are trademarks and SQTP is a service mark of Microchip in the U.S.A.

fuzzyTECH is a registered trademark of Inform Software Corporation. IBM, IBM PC-AT are registered trademarks of International Business Machines Corp. Pentium is a trademark of Intel Corporation. Windows is a trademark and MS-DOS, Microsoft Windows are registered trademarks of Microsoft Corporation. CompuServe is a registered trademark of CompuServe Incorporated.

All other trademarks mentioned herein are the property of their respective companies.

^{© 1996} Microchip Technology Inc.

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:		Technical Publications Manager Total Pages Sent
RE _		Reader Response
Fro	om:	Name
		Company
		Address City / State / ZIP / Country
		Telephone: () FAX: ()
Ар	plica	ation (optional):
Wo	buld	you like a reply?YN
De	vice	E: PIC17C4X Literature Number: DS30412C
		ions:
1.	W	hat are the best features of this document?
2	— Ho	ow does this document meet your hardware and software development needs?
۷.		Sw does this document meet your hardware and software development needs:
3.	Do	o you find the organization of this data sheet easy to follow? If not, why?
4.	W	hat additions to the data sheet do you think would enhance the structure and subject?
~		
5.	vvi	hat deletions from the data sheet could be made without affecting the overall usefulness?
6.	ls	there any incorrect or misleading information (what and where)?
7.	Ho	ow would you improve this document?
8.	Ho	ow would you improve our software, systems, and silicon products?