

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detailo	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (8K x 16)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c44t-25-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

NOTES:

3.1 Clocking Scheme/Instruction Cycle

The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks, namely Q1, Q2, Q3, and Q4. Internally, the program counter (PC) is incremented every Q1, and the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 3-3.

3.2 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3, and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g.GOTO) then two cycles are required to complete the instruction (Example 3-2).

A fetch cycle begins with the program counter incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register (IR)" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-3: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-2: INSTRUCTION PIPELINE FLOW

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

Register	Address	Power-on Reset	MCLR Reset WDT Reset	Wake-up from SLEEP through interrupt
Unbanked	L		<u></u>	
INDF0	00h	0000 0000	0000 0000	0000 0000
FSR0	01h	XXXX XXXX	uuuu uuuu	นนนน นนนน
PCL	02h	0000h	0000h	PC + 1 ⁽²⁾
PCLATH	03h	0000 0000	0000 0000	uuuu uuuu
ALUSTA	04h	1111 xxxx	1111 uuuu	1111 uuuu
TOSTA	05h	0000 000-	0000 000-	0000 000-
CPUSTA ⁽³⁾	06h	11 11	11 qq	uu qq
INTSTA	07h	0000 0000	0000 0000	uuuu uuuu(¹⁾
INDF1	08h	0000 0000	0000 0000	<u>uuuu</u> uuuu
FSR1	09h	XXXX XXXX	uuuu uuuu	uuuu uuuu
WREG	0Ah	XXXX XXXX	uuuu uuuu	uuuu uuuu
TMR0L	0Bh	XXXX XXXX	uuuu uuuu	uuuu uuuu
TMR0H	0Ch	XXXX XXXX	uuuu uuuu	uuuu uuuu
TBLPTRL ⁽⁴⁾	0Dh	XXXX XXXX	uuuu uuuu	นนนน นนนน
TBLPTRH (4)	0Eh	XXXX XXXX	uuuu uuuu	uuuu uuuu
TBLPTRL (5)	0Dh	0000 0000	0000 0000	uuuu uuuu
TBLPTRH ⁽⁵⁾	0Eh	0000 0000	0000 0000	<u>uuuu</u> uuuu
BSR	0Fh	0000 0000	0000 0000	
Bank 0	I		I	
PORTA	10h	0-xx xxxx	0-uu uuuu	<u>uuuu</u> uuuu
DDRB	11h	1111 1111	1111 1111	
PORTB	12h	XXXX XXXX	uuuu uuuu	uuuu uuuu
RCSTA	13h	0000 -00x	0000 -00u	uuuu -uuu
RCREG	14h	XXXX XXXX	uuuu uuuu	uuuu uuuu
TXSTA	15h	00001x	00001u	uuuuuu
TXREG	16h	XXXX XXXX	uuuu uuuu	uuuu uuuu
SPBRG	17h	XXXX XXXX	uuuu uuuu	นนนน นนนน
Bank 1				
DDRC	10h	1111 1111	1111 1111	uuuu uuuu
PORTC	11h	XXXX XXXX	uuuu uuuu	uuuu uuuu
DDRD	12h	1111 1111	1111 1111	uuuu uuuu
PORTD	13h	XXXX XXXX	uuuu uuuu	นนนน นนนน
DDRE	14h	111	111	uuu
PORTE	15h	xxx	uuu	uuu
PIR	16h	0000 0010	0000 0010	uuuu uuuu ⁽¹⁾
PIE	17h	0000 0000	0000 0000	uuuu uuuu

Legend: u = unchanged, x = unknown, - = unimplemented read as '0', q = value depends on condition. Note 1: One or more bits in INTSTA, PIR will be affected (to cause wake-up).

When the wake-up is due to an interrupt and the GLINTD bit is cleared, the PC is loaded with the interrupt vector.

3: See Table 4-3 for reset value of specific condition.

4: Only applies to the PIC17C42.

5: Does not apply to the PIC17C42.

5.4 Interrupt Operation

Global Interrupt Disable bit, GLINTD (CPUSTA<4>), enables all unmasked interrupts (if clear) or disables all interrupts (if set). Individual interrupts can be disabled through their corresponding enable bits in the INTSTA register. Peripheral interrupts need either the global peripheral enable PEIE bit disabled, or the specific peripheral enable bit disabled. Disabling the peripherals via the global peripheral enable bit, disables all peripheral interrupts. GLINTD is set on reset (interrupts disabled).

The RETFIE instruction allows returning from interrupt and re-enable interrupts at the same time.

When an interrupt is responded to, the GLINTD bit is automatically set to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with interrupt vector. There are four interrupt vectors to reduce interrupt latency.

The peripheral interrupt vector has multiple interrupt sources. Once in the peripheral interrupt service routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The peripheral interrupt flag bit(s) must be cleared in software before reenabling interrupts to avoid continuous interrupts.

The PIC17C4X devices have four interrupt vectors. These vectors and their hardware priority are shown in Table 5-1. If two enabled interrupts occur "at the same time", the interrupt of the highest priority will be serviced first. This means that the vector address of that interrupt will be loaded into the program counter (PC).

TABLE 5-1: INTERRUPT VECTORS/ PRIORITIES

Address	Vector	Priority
0008h	External Interrupt on RA0/ INT pin (INTF)	1 (Highest)
0010h	TMR0 overflow interrupt (T0IF)	2
0018h	External Interrupt on T0CKI (T0CKIF)	3
0020h	Peripherals (PEIF)	4 (Lowest)

- **Note 1:** Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GLINTD bit.
- **Note 2:** When disabling any of the INTSTA enable bits, the GLINTD bit should be set (disabled).

Note 3: For the PIC17C42 only: If an interrupt occurs while the Global Interrupt Disable (GLINTD) bit is being set, the GLINTD bit may unintentionally be reenabled by the user's Interrupt Service Routine (the RETFIE instruction). The events that would cause this to occur are:

- 1. An interrupt occurs simultaneously with an instruction that sets the GLINTD bit.
- 2. The program branches to the Interrupt vector and executes the Interrupt Service Routine.
- 3. The Interrupt Service Routine completes with the execution of the RET-FIE instruction. This causes the GLINTD bit to be cleared (enables interrupts), and the program returns to the instruction after the one which was meant to disable interrupts.

The method to ensure that interrupts are globally disabled is:

1. Ensure that the GLINTD bit was set by the instruction, as shown in the follow-ing code:

LOOP	BSF	CPUSTA,	GLINTD	;	Disable Global
				;	Interrupt
	BTFSS	CPUSTA,	GLINTD	;	Global Interrupt
				;	Disabled?
	GOTO	LOOP		;	NO, try again
				;	YES, continue
				;	with program
				;	low

7.0 TABLE READS AND TABLE WRITES

The PIC17C4X has four instructions that allow the processor to move data from the data memory space to the program memory space, and vice versa. Since the program memory space is 16-bits wide and the data memory space is 8-bits wide, two operations are required to move 16-bit values to/from the data memory.

The TLWT t,f and TABLWT t,i,f instructions are used to write data from the data memory space to the program memory space. The TLRD t,f and TABLRD t,i,f instructions are used to write data from the program memory space to the data memory space.

The program memory can be internal or external. For the program memory access to be external, the device needs to be operating in extended microcontroller or microprocessor mode.

Figure 7-1 through Figure 7-4 show the operation of these four instructions.

FIGURE 7-2: TABLWT INSTRUCTION OPERATION

© 1996 Microchip Technology Inc.

Example 8-3 shows the sequence to do a 16 x 16 unsigned multiply. Equation 8-1 shows the algorithm that is used. The 32-bit result is stored in 4 registers RES3:RES0.

EQUATION 8-1: 16 x 16 UNSIGNED MULTIPLICATION ALGORITHM

=

- ARG1H:ARG1L * ARG2H:ARG2L RES3:RES0 =
 - (ARG1H * ARG2H * 2¹⁶) +

(ARG1H * ARG2L * 2⁸) +

(ARG1L * ARG2H * 2⁸) (ARG1L * ARG2L)

+

EXAMPLE 8-3: 16 x 16 MULTIPLY ROUTINE

			; ARG1L * ARG2L - ; PRODH:PRODL	>
;		PRODH, RES1 PRODL, RES0	;	
,			; ARG1H * ARG2H - ; PRODH:PRODL	>
;		PRODH, RES3 PRODL, RES2		
-	MOVFP MULWF		; ARG1L * ARG2H - ; PRODH:PRODL	>
	ADDWF MOVFP ADDWFC		; Add cross ; products ;	
;	ADDWFC	RES3, F ARG1H, WREG	;	
	MULWF	ARG2L	; ARG1H * ARG2L - ; PRODH:PRODL	>
	ADDWF MOVFP ADDWFC CLRF		; Add cross ; products ; ;	

12.0 TIMER1, TIMER2, TIMER3, PWMS AND CAPTURES

The PIC17C4X has a wealth of timers and time-based functions to ease the implementation of control applications. These time-base functions include two PWM outputs and two Capture inputs.

Timer1 and Timer2 are two 8-bit incrementing timers, each with a period register (PR1 and PR2 respectively) and separate overflow interrupt flags. Timer1 and Timer2 can operate either as timers (increment on internal Fosc/4 clock) or as counters (increment on falling edge of external clock on pin RB4/TCLK12). They are also software configurable to operate as a single 16-bit timer. These timers are also used as the time-base for the PWM (pulse width modulation) module. Timer3 is a 16-bit timer/counter consisting of the TMR3H and TMR3L registers. This timer has four other associated registers. Two registers are used as a 16-bit period register or a 16-bit Capture1 register (PR3H/CA1H:PR3L/CA1L). The other two registers are strictly the Capture2 registers (CA2H:CA2L). Timer3 is the time-base for the two 16-bit captures.

TMR3 can be software configured to increment from the internal system clock or from an external signal on the RB5/TCLK3 pin.

Figure 12-1 and Figure 12-2 are the control registers for the operation of Timer1, Timer2, and Timer3, as well as PWM1, PWM2, Capture1, and Capture2.

FIGURE 12-1: TCON1 REGISTER (ADDRESS: 16h, BANK 3)

bit7	I CA2ED0 CA1ED1 CA1ED0 T16 TMR3CS TMR2CS TMR1CS bit0	R = Readable bit W = Writable bit -n = Value at POR reset
bit 7-6:	CA2ED1:CA2ED0 : Capture2 Mode Select bits 00 = Capture on every falling edge 01 = Capture on every rising edge 10 = Capture on every 4th rising edge 11 = Capture on every 16th rising edge	
bit 5-4:	CA1ED1:CA1ED0 : Capture1 Mode Select bits 00 = Capture on every falling edge 01 = Capture on every rising edge 10 = Capture on every 4th rising edge 11 = Capture on every 16th rising edge	
bit 3:	T16 : Timer1:Timer2 Mode Select bit 1 = Timer1 and Timer2 form a 16-bit timer 0 = Timer1 and Timer2 are two 8-bit timers	
bit 2:	TMR3CS : Timer3 Clock Source Select bit 1 = TMR3 increments off the falling edge of the RB5/TCLK3 pin 0 = TMR3 increments off the internal clock	
bit 1:	TMR2CS : Timer2 Clock Source Select bit 1 = TMR2 increments off the falling edge of the RB4/TCLK12 pin 0 = TMR2 increments off the internal clock	
bit 0:	TMR1CS : Timer1 Clock Source Select bit 1 = TMR1 increments off the falling edge of the RB4/TCLK12 pin 0 = TMR1 increments off the internal clock	

13.1 USART Baud Rate Generator (BRG)

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit timer. Table 13-1 shows the formula for computation of the baud rate for different USART modes. These only apply when the USART is in synchronous master mode (internal clock) and asynchronous mode.

Given the desired baud rate and Fosc, the nearest integer value between 0 and 255 can be calculated using the formula below. The error in baud rate can then be determined.

TABLE 13-1: BAUD RATE FORMULA

SYNC	Mode	Baud Rate
0	Asynchronous	Fosc/(64(X+1))
1	Synchronous	Fosc/(4(X+1))

X = value in SPBRG (0 to 255)

Example 13-1 shows the calculation of the baud rate error for the following conditions:

Fosc = 16 MHz Desired Baud Rate = 9600 SYNC = 0

EXAMPLE 13-1: CALCULATING BAUD RATE ERROR

Desired Baud rate=Fosc / (64 (X + 1))

 $9600 = \frac{16000000}{(64 (X + 1))}$

X = 25.042 = 25

Calculated Baud Rate=16000000 / (64 (25 + 1))

= 9615

- Error = <u>(Calculated Baud Rate Desired Baud Rate)</u> Desired Baud Rate
 - = (9615 9600) / 9600
 - = 0.16%

Writing a new value to the SPBRG, causes the BRG timer to be reset (or cleared), this ensures that the BRG does not wait for a timer overflow before outputting the new baud rate.

TABLE 13-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
13h, Bank 0	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00u
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	—	—	TRMT	TX9D	00001x	00001u
17h, Bank 0	nk 0 SPBRG Baud rate generator register										uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used by the Baud Rate Generator. $Note 1: Other (non power-up) resets include: external reset through <math>\overline{MCLR}$ and Watchdog Timer Reset.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
13h, Bank 0	RCSTA	SPEN	RX9	SREN	CREN		FERR	OERR	RX9D	0000 -00x	0000 -00u
16h, Bank 0	TXREG	TX7	TX6	TX5	TX4	TX3	TX2	TX1	TX0	xxxx xxxx	uuuu uuuu
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC		_	TRMT	TX9D	00001x	00001u
17h, Bank 0 SPBRG Baud rate generator register										xxxx xxxx	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used for synchronous slave transmission.

Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

TABLE 13-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
13h, Bank0	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00u
14h, Bank0	RCREG	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	xxxx xxxx	uuuu uuuu
17h, Bank1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	_	-	TRMT	TX9D	00001x	00001u
17h, Bank0	SPBRG Baud rate generator register										uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used for synchronous slave reception.

Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

14.4 Power-down Mode (SLEEP)

The Power-down mode is entered by executing a SLEEP instruction. This clears the Watchdog Timer and postscaler (if enabled). The \overrightarrow{PD} bit is cleared and the \overrightarrow{TO} bit is set (in the CPUSTA register). In SLEEP mode, the oscillator driver is turned off. The I/O ports maintain their status (driving high, low, or hi-impedance).

The $\overline{\text{MCLR}}/\text{VPP}$ pin must be at a logic high level (VIHMC). A WDT time-out RESET does not drive the $\overline{\text{MCLR}}/\text{VPP}$ pin low.

14.4.1 WAKE-UP FROM SLEEP

The device can wake up from SLEEP through one of the following events:

- A POR reset
- External reset input on MCLR/VPP pin
- WDT Reset (if WDT was enabled)
- Interrupt from RA0/INT pin, RB port change, T0CKI interrupt, or some Peripheral Interrupts

The following peripheral interrupts can wake-up from SLEEP:

- · Capture1 interrupt
- Capture2 interrupt
- USART synchronous slave transmit interrupt
- · USART synchronous slave receive interrupt

Other peripherals can not generate interrupts since during SLEEP, no on-chip Q clocks are present.

Any reset event will cause a device reset. Any interrupt event is considered a continuation of program execution. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits in the CPUSTA register can be used to determine the cause of device reset. The

 \overline{PD} bit, which is set on power-up, is cleared when SLEEP is invoked. The \overline{TO} bit is cleared if WDT time-out occurred (and caused wake-up).

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GLINTD bit. If the GLINTD bit is set (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GLINTD bit is clear (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt vector address. In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

Note: If the global interrupts are disabled (GLINTD is set), but any interrupt source has both its interrupt enable bit and the corresponding interrupt flag bits set, the device will immediately wake-up from sleep. The TO bit is set, and the PD bit is cleared.

The WDT is cleared when the device wake from SLEEP, regardless of the source of wake-up.

14.4.1.1 WAKE-UP DELAY

When the oscillator type is configured in XT or LF mode, the Oscillator Start-up Timer (OST) is activated on wake-up. The OST will keep the device in reset for 1024Tosc. This needs to be taken into account when considering the interrupt response time when coming out of SLEEP.

FIGURE 14-9: WAKE-UP FROM SLEEP THROUGH INTERRUPT

	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2	Q3 Q4	Q1 Q2	Q3 Q4	Q1 Q2 Q3 Q4
OSC1						$\frown \frown \frown$	
CLKOUT(4)		/		Tost(2)	\/ \/		
INT					I I		
(RA0/INT pin)	ı ı		: (1		<u>1 </u>
INTF flag			<u>`</u>		I		Interrupt Latency (2)
GLINTD bit	1 11		· ·		I		·
	i i		Processor		1		1 I
INSTRUCTION	FLOW		in SLEEP		1 1		I I I I
PC	C PC	PC+1		+2	× 0004	h	× <u>0005h</u>
Instruction (fetched	Inst (PC) = SLEEP	Inst (PC+1)			Inst (PC	+2)	
Instruction {	Inst (PC-1)	SLEEP			Inst (PC	+1)	Dummy Cycle
2: Tost = 102 3: When GLI	scillator mode assume 4Tosc (drawing not to s NTD = 0 processor jum s not available in these	scale). This delay will ps to interrupt routing	e after wake	-up. If GLIN	ITD = 1, exec	ution will	continue in line.

TABLE 15-2: PIC17CXX INSTRUCTION SET

Mnemonic,		Description		16-bit Opcoo	le	Status	Notes
Operands				MSb	LSb	Affected	
BYTE-ORIE		TILE REGISTER OPERATIONS	•				•
ADDWF	f,d	ADD WREG to f	1	0000 111d ffff	ffff	OV,C,DC,Z	
ADDWFC	f,d	ADD WREG and Carry bit to f	1	0001 000d ffff	ffff	OV,C,DC,Z	
ANDWF	f,d	AND WREG with f	1	0000 101d ffff	ffff	Z	
CLRF	f,s	Clear f, or Clear f and Clear WREG	1	0010 100s ffff	ffff	None	3
COMF	f,d	Complement f	1	0001 001d ffff	ffff	Z	
CPFSEQ	f	Compare f with WREG, skip if f = WREG	1 (2)	0011 0001 ffff	ffff	None	6,8
CPFSGT	f	Compare f with WREG, skip if f > WREG	1 (2)	0011 0010 ffff	ffff	None	2,6,8
CPFSLT	f	Compare f with WREG, skip if f < WREG	1 (2)	0011 0000 ffff	ffff	None	2,6,8
DAW	f,s	Decimal Adjust WREG Register	1	0010 111s ffff	ffff	C	3
DECF	f,d	Decrement f	1	0000 011d ffff	ffff	OV,C,DC,Z	
DECFSZ	f,d	Decrement f, skip if 0	1 (2)	0001 011d ffff	ffff	None	6,8
DCFSNZ	f,d	Decrement f, skip if not 0	1 (2)	0010 011d ffff	ffff	None	6,8
INCF	f,d	Increment f	1	0001 010d ffff	ffff	OV,C,DC,Z	
INCFSZ	f,d	Increment f, skip if 0	1 (2)	0001 111d ffff	ffff	None	6,8
INFSNZ	f,d	Increment f, skip if not 0	1 (2)	0010 010d ffff	ffff	None	6,8
IORWF	f,d	Inclusive OR WREG with f	1	0000 100d ffff	ffff	Z	
MOVFP	f,p	Move f to p	1	011p pppp ffff	ffff	None	
MOVPF	p,f	Move p to f	1	010p pppp ffff	ffff	Z	
MOVWF	f	Move WREG to f	1	0000 0001 ffff	ffff	None	
MULWF	f	Multiply WREG with f	1	0011 0100 ffff	ffff	None	9
NEGW	f,s	Negate WREG	1	0010 110s ffff	ffff	OV,C,DC,Z	1,3
NOP	—	No Operation	1	0000 0000 0000	0000	None	
RLCF	f,d	Rotate left f through Carry	1	0001 101d ffff	ffff	С	
RLNCF	f,d	Rotate left f (no carry)	1	0010 001d ffff	ffff	None	
RRCF	f,d	Rotate right f through Carry	1	0001 100d ffff	ffff	C	
RRNCF	f,d	Rotate right f (no carry)	1	0010 000d ffff	ffff	None	
SETF	f,s	Set f	1	0010 101s ffff	ffff	None	3
SUBWF	f,d	Subtract WREG from f	1	0000 010d ffff	ffff	OV,C,DC,Z	1
SUBWFB	f,d	Subtract WREG from f with Borrow	1	0000 001d ffff	ffff	OV,C,DC,Z	1
SWAPF	f,d	Swap f	1	0001 110d ffff	ffff	None	
TABLRD	t,i,f	Table Read	2 (3)	1010 10ti ffff	ffff	None	7

Legend: Refer to Table 15-1 for opcode field descriptions.

- Note 1: 2's Complement method.
 - 2: Unsigned arithmetic.

3: If s = '1', only the file is affected: If s = '0', both the WREG register and the file are affected; If only the Working register (WREG) is required to be affected, then f = WREG must be specified.

- 4: During an LCALL, the contents of PCLATH are loaded into the MSB of the PC and kkkk kkkk is loaded into the LSB of the PC (PCL)
- 5: Multiple cycle instruction for EPROM programming when table pointer selects internal EPROM. The instruction is terminated by an interrupt event. When writing to external program memory, it is a two-cycle instruction.
- 6: Two-cycle instruction when condition is true, else single cycle instruction.
- 7: Two-cycle instruction except for TABLRD to PCL (program counter low byte) in which case it takes 3 cycles.
- 8: A "skip" means that instruction fetched during execution of current instruction is not executed, instead an NOP is executed.
- 9: These instructions are not available on the PIC17C42.

PIC17C4X

BSF	Bit Set f	Bit Set f					
Syntax:	[<i>label</i>] E	[<i>label</i>] BSF f,b					
Operands:	$\begin{array}{l} 0 \leq f \leq 25 \\ 0 \leq b \leq 7 \end{array}$	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \end{array}$					
Operation:	$1 \rightarrow (f < b >$	-)					
Status Affected:	None						
Encoding:	1000	0bbb	fff	f	ffff		
Description:	Bit 'b' in re	gister 'f' is	s set.				
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3			Q4		
Decode	Read register 'f'	Execu	ute	Write register 'f'			
Example:	BSF	FLAG_RE	G, 7				
Example: BSF FLAG_REG, 7 Before Instruction FLAG_REG= 0x0A After Instruction FLAG_REG= 0x8A							

BTF	SC	Bit Test, s	skip if Cle	ear		
Synt	tax:	[<i>label</i>] B	TFSC f,I	b		
Ope	rands:	$0 \le f \le 253$ $0 \le b \le 7$	5			
Ope	ration:	skip if (f) = 0				
Stat	us Affected:	None				
Enc	oding:	1001	1bbb	ffff	ffff	
Des	cription:	If bit 'b' in register 'f' is 0 then the next instruction is skipped. If bit 'b' is 0 then the next instruction fetched during the current instruction exe cution is discarded, and a NOP is exe- cuted instead, making this a two-cycle instruction.				
Wor	ds:	1				
Cycl	les:	1(2)				
QC	ycle Activity:					
	Q1	Q2	Q3		Q4	
	Decode	Read register 'f'	Execu	ite	NOP	
lf sk	ip:					
	Q1	Q2	Q3		Q4	
	Forced NOP	NOP	Execu	ite	NOP	
<u>Exa</u>	mple:	FALSE	BTFSC :	FLAG,1		
Before Instruction PC = address (HERE)						
	After Instructi If FLAG<7 PC If FLAG<7 PC	l> = 0; = ac l> = 1;	ldress (TR			

PIC17C4X

CPFS	SLT	Compare f with WREG, skip if f < WREG						
Synta	ax:	[label]	[label] CPFSLT f					
Opera	ands:	$0 \le f \le 25$	5					
Opera	ation:	skip if (f) <	(f) – (WREG), skip if (f) < (WREG) (unsigned comparison)					
Statu	s Affected:	None						
Enco	ding:	0011	0000 ffi	ff ffff				
Desc	ription:	location 'f' performing If the conte WREG, the discarded	Compares the contents of data memory location 'f' to the contents of WREG by performing an unsigned subtraction. If the contents of 'f' < the contents of WREG, then the fetched instruction is discarded and an NOP is executed instead making this a two-cycle instruc- tion.					
Word	s:	1						
Cycle	es:	1 (2)						
Q Cycle Activity:								
	Q1	Q2	Q3	Q4				
	Decode	Read register 'f'	Execute	NOP				
lf skip	o:							
-	Q1	Q2	Q3	Q4				
	Forced NOP	NOP	Execute	NOP				
<u>Exarr</u>	nple:	HERE NLESS LESS	CPFSLT REG : :					
E	Before Instru PC W		ddress (HERE)					
After Instruction If REG < WREG; PC = Address (LESS) If REG ≥ WREG; PC = Address (NLESS)								

DAW		Decimal	Adjust WRE	G Register		
Syntax	K:	[<i>label</i>] D	AW f,s			
Opera	nds:	$0 \le f \le 25$ s $\in [0,1]$	5			
Opera	tion:	If [WREG<3:0> >9] .OR. [DC = 1] ther WREG<3:0> + 6 → f<3:0>, s<3:0: else WREG<3:0> → f<3:0>, s<3:0>;				
		If [WREG<7:4> >9] .OR. [C = 1] then WREG<7:4> + 6 → f<7:4>, s<7:4> else				
Status	Affected:	C	$<7:4> \rightarrow f<7:$	4>, S<7:4>		
Encod		0010	111s ff	ff ffff		
Descri	U		ts the eight bi			
		WREG resulting from the earlier add tion of two variables (each in packed BCD format) and produces a correct packed BCD result. s = 0: Result is placed in Data memory location 'f' and WREG.				
			esult is placed emory locatio			
Words	:	1				
Cycles	8:	1				
Q Cyc	le Activity:			•		
	Q1 Decode	Q2 Read	Q3 Execute	Q4 Write		
	Decode	register 'f'	Execute	register 'f' and other specified register		
Exam	ole1:	DAW RE	G1, 0			
B	 efore Instru	iction				
	WREG REG1 C DC	= 0xA5 = ?? = 0 = 0				
Ai <u>Exam</u> t	fter Instruct WREG REG1 C DC DC	ion = 0x05 = 0x05 = 1 = 0				
В	efore Instru					
	WREG REG1 C	= 0xCE = ?? = 0				

U	-	0				
DC	=	0				
After Instruction						
WREG	=	0x24				
REG1	=	0x24				
С	=	1				
DC	=	0				

RETFIE Return from Interrupt							
Syntax:		[label]	[label] RETFIE				
Operands:		None					
Operation:		TOS \rightarrow (PC); 0 \rightarrow GLINTD; PCLATH is unchanged.					
Status Affe	ected:	GLINTD					
Encoding:		0000	0000	0000	0101		
Description: Return from Interrupt. Stack is I and Top of Stack (TOS) is loade PC. Interrupts are enabled by c the GLINTD bit. GLINTD is the interrupt disable bit (CPUSTA<			ded in the clearing e global				
Words:		1					
Cycles:		2					
Q Cycle A	ctivity:						
C	21	Q2	Q3	3	Q4		
Dec	ode	Read register T0STA	Execu	ute	NOP		
Force	d NOP	NOP	Execu	ute	NOP		
Example: RETFIE After Interrupt PC PC = GLINTD =							

RETL	w	Return Li	teral to WRE	EG			
Synta	ax:	[label]	RETLW k				
Opera	ands:	$0 \le k \le 25$	$0 \le k \le 255$				
Opera	ation:	•	$G; TOS \rightarrow 0$ s unchanged				
Statu	s Affected:	ed: None					
Enco	ding:	1011	0110 kkl	kk kkkk			
Desci	ription:	WREG is loaded with the eight bit lite 'k'. The program counter is loaded fro the top of the stack (the return addres The high address latch (PCLATH) remains unchanged.					
Word	s:	1					
Cycle	es:	2					
O Cv	cle Activity:						
Q Oy	CIE ACTIVITY.						
Q 0 y	Q1	Q2	Q3	Q4			
	-	Q2 Read literal 'k'	Q3 Execute	Q4 Write to WREG			
	Q1	Read		Write to			
	Q1 Decode Forced NOP	Read literal 'k'	Execute	Write to WREG NOP			
	Q1 Decode Forced NOP	Read literal 'k' NOP	Execute Execute BLE ; WREG co; ; offset ; WREG n; ; table c ; wREG = 0 ; Begin t;	Write to WREG NOP ntains table value ow has value			
Exam	Q1 Decode Forced NOP	Read literal 'k' NOP CALL TAN CALL TAN CALL TAN : TABLE ADDWF PC RETLW ki : : RETLW ki : : RETLW ki	Execute Execute BLE ; WREG coi ; offset ; WREG n; ; table coi ; table coi ; wREG = 0 ; Begin t; ; ;	Write to WREG NOP ntains table value ow has value			

NOTES:

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 17-1: PARAMETER MEASUREMENT INFORMATION

All timings are measure between high and low measurement points as indicated in the figures below.

PIC17C4X

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 18-9: TYPICAL IPD vs. VDD WATCHDOG DISABLED 25°C

FIGURE 18-10: MAXIMUM IPD vs. VDD WATCHDOG DISABLED

21.0 PACKAGING INFORMATION

21.1 40-Lead Ceramic CERDIP Dual In-line, and CERDIP Dual In-line with Window (600 mil)

Package Group: Ceramic CERDIP Dual In-Line (CDP)						
	Millimeters				Inches	
Symbol	Min	Мах	Notes	Min	Мах	Notes
α	0°	10°		0°	10°	
А	4.318	5.715		0.170	0.225	
A1	0.381	1.778		0.015	0.070	
A2	3.810	4.699		0.150	0.185	
A3	3.810	4.445		0.150	0.175	
В	0.355	0.585		0.014	0.023	
B1	1.270	1.651	Typical	0.050	0.065	Typical
С	0.203	0.381	Typical	0.008	0.015	Typical
D	51.435	52.705		2.025	2.075	
D1	48.260	48.260	Reference	1.900	1.900	Reference
E	15.240	15.875		0.600	0.625	
E1	12.954	15.240		0.510	0.600	
e1	2.540	2.540	Reference	0.100	0.100	Reference
eA	14.986	16.002	Typical	0.590	0.630	Typical
eB	15.240	18.034		0.600	0.710	
L	3.175	3.810		0.125	0.150	
Ν	40	40		40	40	
S	1.016	2.286		0.040	0.090	
S1	0.381	1.778		0.015	0.070	

© 1996 Microchip Technology Inc.

APPENDIX C: WHAT'S NEW

The structure of the document has been made consistent with other data sheets. This ensures that important topics are covered across all PIC16/17 families. Here is an overview of new features.

Added the following devices:

PIC17CR42

PIC17C42A

PIC17CR43

A 33 MHz option is now available.

APPENDIX D: WHAT'S CHANGED

To make software more portable across the different PIC16/17 families, the name of several registers and control bits have been changed. This allows control bits that have the same function, to have the same name (regardless of processor family). Care must still be taken, since they may not be at the same special function register address. The following shows the register and bit names that have been changed:

Old Name	New Name
TX8/9	TX9
RC8/9	RX9
RCD8	RX9D
TXD8	TX9D

Instruction DECFSNZ corrected to DCFSNZ

Instruction INCFSNZ corrected to INFSNZ

Enhanced discussion on PWM to include equation for determining bits of PWM resolution.

Section 13.2.2 and 13.3.2 have had the description of updating the FERR and RX9 bits enhanced.

The location of configuration bit PM2 was changed (Figure 6-1 and Figure 14-1).

Enhanced description of the operation of the INTSTA register.

Added note to discussion of interrupt operation.

Tightened electrical spec D110.

Corrected steps for setting up USART Asynchronous Reception.

PIC17C4X Product Identification System

To order or to obtain information, e.g., on pricing or delivery, please use the listed part numbers, and refer to the factory or the listed sales offices.

PART NO. – XX X /XX XXX		Examples
Pattern:	QTP, SQTP, ROM Code (factory specified) or Special Requirements. Blank for OTP and Windowed devices	a) PIC17C42 – 16/P Commercial Temp., PDIP package,
Package:	P = PDIP JW = Windowed CERDIP P = PDIP (600 mil) PQ = MQFP PT = TQFP L = PLCC	16 MHZ, normal VDD limits b) PIC17LC44 – 08/PT Commercial Temp., TQFP package,
Temperature Range:	$\begin{array}{rcl} - & = 0^{\circ}C \text{ to } +70^{\circ}C \\ I & = -40^{\circ}C \text{ to } +85^{\circ}C \end{array}$	8MHz, extended VDD limits
Frequency Range:	08 = 8 MHz 16 = 16 MHz 25 = 25 Mhz 33 = 33 Mhz	c) PIC17C43 – 25I/P Industrial Temp., PDIP package,
Device:	PIC17C44 : Standard Vdd range PIC17C44T : (Tape and Reel) PIC17LC44 : Extended Vdd range	25 MHz, normal VDD limits

Sales and Support

Products supported by a preliminary Data Sheet may possibly have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following:

1. Your local Microchip sales office (see below)

2. The Microchip Corporate Literature Center U.S. FAX: (602) 786-7277

3. The Microchip's Bulletin Board, via your local CompuServe number (CompuServe membership NOT required).

Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using.

For latest version information and upgrade kits for Microchip Development Tools, please call 1-800-755-2345 or 1-602-786-7302.

^{© 1996} Microchip Technology Inc.