

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (8K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c44t-25e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.1 Clocking Scheme/Instruction Cycle

The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks, namely Q1, Q2, Q3, and Q4. Internally, the program counter (PC) is incremented every Q1, and the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 3-3.

3.2 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3, and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g.GOTO) then two cycles are required to complete the instruction (Example 3-2).

A fetch cycle begins with the program counter incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register (IR)" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-3: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-2: INSTRUCTION PIPELINE FLOW

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

5.2 <u>Peripheral Interrupt Enable Register</u> (PIE)

This register contains the individual flag bits for the Peripheral interrupts.

FIGURE 5-3: PIE REGISTER (ADDRESS: 17h, BANK 1)

_R/W - 0	
RBIE	TMR3IE TMR2IE TMR1IE CA2IE CA1IE TXIE RCIE R = Readable bit
bit7	bit0 W = Writable bit
bit 7:	RBIE : PORTB Interrupt on Change Enable bit 1 = Enable PORTB interrupt on change 0 = Disable PORTB interrupt on change
bit 6:	TMR3IE : Timer3 Interrupt Enable bit 1 = Enable Timer3 interrupt 0 = Disable Timer3 interrupt
bit 5:	TMR2IE : Timer2 Interrupt Enable bit 1 = Enable Timer2 interrupt 0 = Disable Timer2 interrupt
bit 4:	TMR1IE: Timer1 Interrupt Enable bit 1 = Enable Timer1 interrupt 0 = Disable Timer1 interrupt
bit 3:	CA2IE : Capture2 Interrupt Enable bit 1 = Enable Capture interrupt on RB1/CAP2 pin 0 = Disable Capture interrupt on RB1/CAP2 pin
bit 2:	CA1IE : Capture1 Interrupt Enable bit 1 = Enable Capture interrupt on RB2/CAP1 pin 0 = Disable Capture interrupt on RB2/CAP1 pin
bit 1:	TXIE : USART Transmit Interrupt Enable bit 1 = Enable Transmit buffer empty interrupt 0 = Disable Transmit buffer empty interrupt
bit 0:	RCIE : USART Receive Interrupt Enable bit 1 = Enable Receive buffer full interrupt 0 = Disable Receive buffer full interrupt

Example 8-3 shows the sequence to do a 16 x 16 unsigned multiply. Equation 8-1 shows the algorithm that is used. The 32-bit result is stored in 4 registers RES3:RES0.

EQUATION 8-1: 16 x 16 UNSIGNED MULTIPLICATION ALGORITHM

=

- ARG1H:ARG1L * ARG2H:ARG2L RES3:RES0 =
 - (ARG1H * ARG2H * 2¹⁶) +

(ARG1H * ARG2L * 2⁸) +

(ARG1L * ARG2H * 2⁸) (ARG1L * ARG2L)

+

EXAMPLE 8-3: 16 x 16 MULTIPLY ROUTINE

	MOVFP	ARG1L, WREG		
	MULWF	ARG2L	;	ARG1L * ARG2L ->
			;	PRODH:PRODL
	MOVPF	PRODH, RES1	;	
	MOVPF	PRODL, RESO	;	
;				
	MOVFP	ARG1H, WREG		
	MULWF	ARG2H	;	ARG1H * ARG2H ->
			;	PRODH:PRODL
	MOVPF	PRODH, RES3	;	
	MOVPF	PRODL, RES2	;	
;				
	MOVFP	ARG1L, WREG		
	MULWF	ARG2H	;	ARG1L * ARG2H ->
			;	PRODH:PRODL
	MOVFP	PRODL, WREG	;	
	ADDWF	RES1, F	;	Add cross
	MOVFP	PRODH, WREG	;	products
	ADDWFC	RES2, F	;	
		WIDEG E		
	CLRF	WREG, F	;	
	CLRF ADDWFC	RES3, F	; ;	
;	CLRF ADDWFC	RES3, F	; ;	
;	CLRF ADDWFC MOVFP	RES3, F ARG1H, WREG	; ; ;	
;	CLRF ADDWFC MOVFP MULWF	RES3, F RES3, F ARG1H, WREG ARG2L	; ; ; ;	ARG1H * ARG2L ->
;	CLRF ADDWFC MOVFP MULWF	RES3, F RES3, F ARG1H, WREG ARG2L	;;;;;;	ARG1H * ARG2L -> PRODH:PRODL
;	CLRF ADDWFC MOVFP MULWF	WREG, F RES3, F ARG1H, WREG ARG2L	;;;;;	ARG1H * ARG2L -> PRODH:PRODL
;	CLRF ADDWFC MOVFP MULWF MOVFP	WREG, F RES3, F ARG1H, WREG ARG2L PRODL, WREG	;;;;;;;	ARG1H * ARG2L -> PRODH:PRODL
;	CLRF ADDWFC MOVFP MULWF MOVFP ADDWF	WREG, F RES3, F ARG1H, WREG ARG2L PRODL, WREG RES1, F	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	ARG1H * ARG2L -> PRODH:PRODL Add cross
;	CLRF ADDWFC MOVFP MULWF MOVFP ADDWF MOVFP	WREG, F RES3, F ARG1H, WREG ARG2L PRODL, WREG RES1, F PRODH, WREG	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	ARG1H * ARG2L -> PRODH:PRODL Add cross products
;	CLRF ADDWFC MOVFP MULWF MOVFP ADDWF MOVFP ADDWFC	WREG, F RES3, F ARG1H, WREG ARG2L PRODL, WREG RES1, F PRODH, WREG RES2, F	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	ARG1H * ARG2L -> PRODH:PRODL Add cross products
;	CLRF ADDWFC MOVFP MULWF MOVFP ADDWF MOVFP ADDWFC CLRF	WREG, F RES3, F ARG1H, WREG ARG2L PRODL, WREG RES1, F PRODH, WREG RES2, F WREG, F	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	ARG1H * ARG2L -> PRODH:PRODL Add cross products

FIGURE 9-5: BLOCK DIAGRAM OF RB3 AND RB2 PORT PINS

FIGURE 13-2: RCSTA REGISTER (ADDRESS: 13h, BANK 0)

					P 0	P 0	Рv	
SPEN	RX9	SREN	CREN		FERR	OERR	RX9D	R = Readable bit
bit7							bit 0	W = Writable bit -n = Value at POR reset (x = unknown)
bit 7:	SPEN : Set 1 = Config 0 = Serial	erial Port I gures RA5 port disat	Enable bit /RX/DT an bled	d RA4/T〉	<td>is serial po</td> <td>rt pins</td> <td></td>	is serial po	rt pins	
bit 6:	RX9 : 9-bit $1 = $ Select $0 = $ Select	t Receive ts 9-bit rec ts 8-bit rec	Enable bit ception ception					
bit 5:	SREN: Sin This bit en Synchron 1 = Enable 0 = Disabl Note: This Asynchron Don't care	ngle Rece nables the ous mode e receptio le receptio bit is igno nous mod e	ive Enable reception <u>:</u> n on pred in syn <u>e:</u>	bit of a singl chronous	e byte. Afte slave rece	er receiving ption.	the byte, th	nis bit is automatically cleared.
bit 4:	CREN : Co This bit er Asynchron 1 = Enable 0 = DisablSynchron $1 = Enable0 = Disabl$	ontinuous nables the nous mod e receptio les recepti ous mode es continu les continu	Receive Er continuou <u>e:</u> n on <u>:</u> ous recept uous recept	nable bit s receptic ion until (tion	on of serial CREN is cle	data. eared (CRE	EN override	s SREN)
bit 3:	Unimpler	nented: R	ead as '0'					
bit 2:	FERR : Fra 1 = Framir 0 = No fra	aming Erro ng error (L ming erro	or bit Jpdated by r	reading l	RCREG)			
bit 1:	OERR : Ov 1 = Overru 0 = No ove	verrun Err un (Cleare errun erro	or bit ed by cleari r	ng CREN	I)			
bit 0:	RX9D : 9th	n bit of rec	eive data (can be th	e software	calculated	parity bit)	

FIGURE 13-5: ASYNCHRONOUS MASTER TRANSMISSION

FIGURE 13-6: ASYNCHRONOUS MASTER TRANSMISSION (BACK TO BACK)

TABLE 13-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
13h, Bank 0	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00u
16h, Bank 0	TXREG	Serial port	t transmit r	egister	•					xxxx xxxx	uuuu uuuu
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	_	—	TRMT	TX9D	00001x	00001u
17h, Bank 0	SPBRG	Baud rate	generator	register	•				•	xxxx xxxx	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used for asynchronous transmission.

Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

13.3 USART Synchronous Master Mode

In Master Synchronous mode, the data is transmitted in a half-duplex manner; i.e. transmission and reception do not occur at the same time: when transmitting data, the reception is inhibited and vice versa. The synchronous mode is entered by setting the SYNC (TXSTA<4>) bit. In addition, the SPEN (RCSTA<7>) bit is set in order to configure the RA5 and RA4 I/O ports to CK (clock) and DT (data) lines respectively. The Master mode indicates that the processor transmits the master clock on the CK line. The Master mode is entered by setting the CSRC (TXSTA<7>) bit.

13.3.1 USART SYNCHRONOUS MASTER TRANSMISSION

The USART transmitter block diagram is shown in Figure 13-3. The heart of the transmitter is the transmit (serial) shift register (TSR). The shift register obtains its data from the read/write transmit buffer TXREG. TXREG is loaded with data in software. The TSR is not loaded until the last bit has been transmitted from the previous load. As soon as the last bit is transmitted, the TSR is loaded with new data from TXREG (if available). Once TXREG transfers the data to the TSR (occurs in one TCY at the end of the current BRG cycle), TXREG is empty and the TXIF (PIR<1>) bit is set. This interrupt can be enabled/disabled by setting/clearing the TXIE bit (PIE<1>). TXIF will be set regardless of the state of bit TXIE and cannot be cleared in software. It will reset only when new data is loaded into TXREG. While TXIF indicates the status of TXREG, TRMT (TXSTA<1>) shows the status of the TSR. TRMT is a read only bit which is set when the TSR is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR is empty. The TSR is not mapped in data memory, so it is not available to the user.

Transmission is enabled by setting the TXEN (TXSTA<5>) bit. The actual transmission will not occur until TXREG has been loaded with data. The first data bit will be shifted out on the next available rising edge of the clock on the RA5/TX/CK pin. Data out is stable around the falling edge of the synchronous clock (Figure 13-10). The transmission can also be started by first loading TXREG and then setting TXEN. This is advantageous when slow baud rates are selected, since BRG is kept in RESET when the TXEN, CREN, and SREN bits are clear. Setting the TXEN bit will start the BRG, creating a shift clock immediately. Normally when transmission is first started, the TSR is empty, so a transfer to TXREG will result in an immediate transfer to the TSR, resulting in an empty TXREG. Back-to-back transfers are possible.

Clearing TXEN during a transmission will cause the transmission to be aborted and will reset the transmitter. The RA4/RX/DT and RA5/TX/CK pins will revert to hi-impedance. If either CREN or SREN are set during a transmission, the transmission is aborted and the

RA4/RX/DT pin reverts to a hi-impedance state (for a reception). The RA5/TX/CK pin will remain an output if the CSRC bit is set (internal clock). The transmitter logic is not reset, although it is disconnected from the pins. In order to reset the transmitter, the user has to clear the TXEN bit. If the SREN bit is set (to interrupt an ongoing transmission and receive a single word), then after the single word is received, SREN will be cleared and the serial port will revert back to transmitting, since the TXEN bit is still set. The DT line will immediately switch from hi-impedance receive mode to transmit and start driving. To avoid this, TXEN should be cleared.

In order to select 9-bit transmission, the TX9 (TXSTA<6>) bit should be set and the ninth bit should be written to TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to TXREG. This is because a data write to TXREG can result in an immediate transfer of the data to the TSR (if the TSR is empty). If the TSR was empty and TXREG was written before writing the "new" TX9D, the "present" value of TX9D is loaded.

Steps to follow when setting up a Synchronous Master Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate (see Baud Rate Generator Section for details).
- 2. Enable the synchronous master serial port by setting the SYNC, SPEN, and CSRC bits.
- 3. Ensure that the CREN and SREN bits are clear (these bits override transmission when set).
- 4. If interrupts are desired, then set the TXIE bit (the GLINTD bit must be clear and the PEIE bit must be set).
- 5. If 9-bit transmission is desired, then set the TX9 bit.
- 6. Start transmission by loading data to the TXREG register.
- 7. If 9-bit transmission is selected, the ninth bit should be loaded in TX9D.
- 8. Enable the transmission by setting TXEN.

Writing the transmit data to the TXREG, then enabling the transmit (setting TXEN) allows transmission to start sooner then doing these two events in the reverse order.

Note: To terminate a transmission, either clear the SPEN bit, or the TXEN bit. This will reset the transmit logic, so that it will be in the proper state when transmit is re-enabled.

TABLE 13-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
13h, Bank 0	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00u
16h, Bank 0	TXREG	TX7	TX6	TX5	TX4	TX3	TX2	TX1	TX0	xxxx xxxx	uuuu uuuu
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	—	_	TRMT	TX9D	00001x	00001u
17h, Bank 0	SPBRG	Baud rate	generator	register						xxxx xxxx	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used for synchronous master transmission.

Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

FIGURE 13-9: SYNCHRONOUS TRANSMISSION

FIGURE 13-10: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

TABLE 13-8: R	REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER RECEPTION
---------------	--

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
13h, Bank 0	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00u
14h, Bank 0	RCREG	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	xxxx xxxx	uuuu uuuu
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	—	_	TRMT	TX9D	00001x	00001u
17h, Bank 0	SPBRG	Baud rate	generator	register						xxxx xxxx	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used for synchronous master reception.

Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

BSF	:	Bit Set f							
Synt	ax:	[label] E	BSF f,b)					
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 25 \\ 0 \leq b \leq 7 \end{array}$	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \end{array}$						
Ope	ration:	$1 \rightarrow (f < b >$	$1 \rightarrow (f < b >)$						
State	us Affected:	None							
Enco	oding:	1000	0bbb ffff ffff						
Des	cription:	Bit 'b' in re	gister 'f' is	s set.					
Wor	ds:	1							
Cycl	es:	1							
QC	ycle Activity:								
	Q1	Q2	Q	3		Q4			
	Decode	Read register 'f'	Exect	ute	re	Write gister 'f'			
<u>Exa</u>	mple:	BSF	FLAG_RE	G, 7					
	Before Instru FLAG_R	iction EG= 0x0A							
	After Instruct FLAG_R	tion EG= 0x8A							

BTFSC	Bit Test, s	kip if Cle	ear						
Syntax:	[<i>label</i>] B	TFSC f,I	b						
Operands:	$0 \le f \le 255$ $0 \le b \le 7$	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \end{array}$							
Operation:	skip if (f <b< td=""><td colspan="8">skip if (f) = 0</td></b<>	skip if (f) = 0							
Status Affected:	None	None							
Encoding:	1001	1001 1bbb ffff ffff							
Description:	If bit 'b' in r instruction i	If bit 'b' in register 'f' is 0 then the next instruction is skipped.							
	If bit 'b' is 0 fetched dur cution is dis cuted instea instruction.	then the n ing the cur scarded, ar ad, making	ext instruction rent instruction nd a NOP is this a two	tion ction exe- s exe- o-cycle					
Words:	1								
Cycles:	1(2)	1(2)							
Q Cycle Activity	:								
Q1	Q2	Q3		Q4					
Decode	Read register 'f'	Execu	ite	NOP					
lf skip:			•						
Q1	Q2	Q3		Q4					
Forced NO	P NOP	Execu	ite	NOP					
Example:	HERE E FALSE : TRUE :	STFSC	FLAG,1						
Before Inst	ruction								
PC	= ad	dress (HE	RE)						
After Instru If FLAG PC	ction <1> = 0; ; = ad	dress (TR	UE)						
If FLAG	<1> = 1;		>						
PC	, = ad	aress (FA	LSE)						

DCF	SNZ	Decrem	ent f, ski	p if n	ot 0)
Synt	ax:	[<i>label</i>] [DCFSNZ	f,d		
Ope	rands:	0 ≤ f ≤ 29 d ∈ [0,1]	55			
Ope	ration:	(f) − 1 \rightarrow skip if no	(dest); ot 0			
State	us Affected:	None				
Enco	oding:	0010	011d	fff	f	ffff
Desc	cription:	The conte mented. If WREG. If back in re If the resu which is a and an Ne ing it a tw	ents of reg f 'd' is 0 th 'd' is 1 the gister 'f'. It is not 0, Ilready fet OP is exec o-cycle in:	ister 'f e resul e resul the ne ched, i cuted i structio	' are It is t is p ext in is dis nste on.	decre- placed in blaced struction, scarded, ad mak-
Word	ds:	1				
Cycl	es:	1(2)				
QC	cle Activity:					
	Q1	Q2	Q	3		Q4
	Decode	Read register 'f'	Exec	ute	V de	Vrite to stination
lf ski	p:					
	Q1	Q2	Q	3		Q4
	Forced NOP	NOP	Exec	ute		NOP
<u>Exar</u>	<u>mple</u> :	HERE ZERO NZERO	DCFSNZ : :	TEM	IP,	1
	Before Instru TEMP_V	ction ALUE =	: ?			
	After Instruct TEMP_V/ If TEMP_ PC If TEMP_ PC	ion ALUE = VALUE = VALUE ; =	= TEMF = 0; = Addre = 0; = Addre	P_VAL ess(z ess(n	UE - ERO	- 1,) 0)

GOTO	Uncondit	Unconditional Branch						
Syntax:	[label]	GOTO	k					
Operands:	$0 \le k \le 81$	$0 \le k \le 8191$						
Operation:	k → PC<1 k<12:8> - PC<15:13:	$\begin{array}{l} k \rightarrow PC < 12:0 >; \\ k < 12:8 > \rightarrow PCLATH < 4:0 >, \\ PC < 15:13 > \rightarrow PCLATH < 7:5 > \end{array}$						
Status Affected:	None							
Encoding:	110k	kkkk	kkkk	kkkk				
Description:	anywhere w The thirtee loaded into upper eight PCLATH. c instruction.	anywhere within an 8K page boundary. The thirteen bit immediate value is loaded into PC bits <12:0>. Then the upper eight bits of PC are loaded into PCLATH. GOTO is always a two-cycle instruction.						
Words:	1	1						
Cycles:	2							
Q Cycle Activity:								
Q1	Q2	Q3	5	Q4				
Decode	Read literal 'k'<7:0>	Execu	ute	NOP				
		-						
Forced NOP	NOP	Execu	ute	NOP				
Forced NOP Example:	GOTO THE		ute	NOP				
Forced NOP Example: After Instruct	GOTO THE	RE EXECU	ute	NOP				

MO	VLR	Move Lite BSR	eral to h	igh r	nibb	le in	
Syn	tax:	[label]	MOVLR	k			
Ope	rands:	$0 \le k \le 15$	5				
Ope	eration:	k ightarrow (BSF	R<7:4>)				
Stat	us Affected:	None					
Enc	oding:	1011	101x	kkl	ck	uuuu	
Des	cription:	The 4-bit li most signif Select Reg 4-bits of th are affecte BSR is und will encode	teral 'k' is ficant 4-bi jister (BSI e Bank So d. The lov changed. e the "u" fi	loade ts of t R). Or elect l ver ha The a elds a	ed int he B hly th Regis If of ssen as 0.	o the ank e high ster the nbler	
Wor	ds:	1					
Cyc	les:	1					
QC	ycle Activity:						
	Q1	Q2	Q3			Q4	
	Decode	Read literal 'k:u'	Read literal Execute 'k:u'			Write literal 'k' to BSR<7:4>	
<u>Exa</u>	mple:	MOVLR	5				
	Before Instru BSR regi	iction ster = 0x	:22				
	After Instruc BSR regi	tion ster = 0x	:52				
No	ote: This PIC17	instruction 7C42 device	is not	avail	able	in the	

MOVLW	Move Lite	eral to V	REG	ì			
Syntax:	[label]	MOVLW	k				
Operands:	$0 \le k \le 25$	55					
Operation:	$k \rightarrow (WR)$	EG)					
Status Affected:	None						
Encoding:	1011	0000	kkk	k	kkkk		
Description:	The eight b WREG.	The eight bit literal 'k' is loaded into WREG.					
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3	8	Q4			
Decode	Read literal 'k'	Execu	ute	V V	Vrite to VREG		
Example:	MOVLW	0x5A					
After Instruct	ion						

WREG = 0x5A

NEG	W	Negate W			
Synt	ax:	[<i>label</i>] N	EGW	f,s	
Ope	rands:	0 ≤ F ≤ 25 s ∈ [0,1]	5		
Ope	ration:	WREG + 1 WREG + 1	$I \rightarrow (f); I \rightarrow s$		
Statu	us Affected:	OV, C, DC	, Z		
Enco	oding:	0010	110s	ffff	ffff
Desc	cription:	WREG is ne ment. If 's' is WREG and 's' is 1 the re memory loc	egated u s 0 the re data me esult is p ation 'f'.	sing two's esult is pla emory loca laced only	comple- ced in tion 'f'. If r in data
Word	ds:	1			
Cycles:		1			
Q Cycle Activity:					
	Q1	Q2	Q3	3	Q4
	Decode		_		
		Read register 'f'	Exect	ute re ar sp	Write gister 'f' id other becified egister
Exar	nple:	Read register 'f' NEGW R	Execu EG,0	ute re ar sp	Write gister 'f' d other becified egister
<u>Exar</u>	nple: Before Instru	Read register 'f' NEGW R	Exect EG,0	ute re ar sp ru	Write gister 'f' Id other becified egister
<u>Exar</u>	nple: Before Instru WREG REG	Read register 'f' NEGW R Iction = 0011 1 = 1010 1	Exect EG,0 .010 [0x: .011 [0x/	ute re ar sp rd 3A], AB]	Write gister 'f' do other becified egister
Exar	nple: Before Instru WREG REG After Instruct	Read register 'f' NEGW R Iction = 0011 1 = 1010 1 tion	Exect EG,0 .010 [0x: .011 [0x/	ute re ar sp ro 3A], AB]	Write gister 'f' id other becified egister

NOF)	No Oper	ation			
Synt	ax:	[label]	NOP			
Ope	rands:	None				
Ope	ration:	No opera	tion			
State	us Affected:	None				
Enco	oding:	0000	0000	000	00	0000
Des	cription:	No operati	on.			
Wor	ds:	1				
Cycl	es:	1				
QC	ycle Activity:					
	Q1	Q2	Q	3		Q4
	Decode	NOP	Exect	ute		NOP

Example:

None.

TABLWT	Table Wr	ite		
<u>Example1</u> :	TABLWT	0, 1,	REG	
Before Instruct	tion			
REG		=	0x53	
TBLATH		=	0xAA	
TBLATL		=	0x55	
TBLPTR		=	0xA35	6
MEMORY(TBLPTR)	=	0xFFF	F
After Instruction	on (table v	vrite co	mpletic	n)
REG		=	0x53	
TBLATH		=	0x53	
TBLATL		=	0x55	
TBLPTR		=	0xA35	7
MEMORY(TBLPTR -	1) =	0x535	5
Example 2:	TABLWT	1, 0,	REG	
Before Instruct	tion			
REG		=	0x53	
TBLATH		=	0xAA	
TBLATL		=	0x55	
TBLPTR		=	0xA35	6
MEMORY(TBLPTR)	=	0xFFF	F
After Instructio	on (table v	vrite co	mpletic	on)
REG		=	0x53	
TBLATH		=	0xAA	
TBLATL		=	0x53	
TBLPTR		=	0xA35	6
MEMORY(TBLPTR)	=	0xAA5	3
Brogram				Dette
Memory	15		0	Data Memorv
	4			,

16 bits	TBLAT 8 bits

TLRD	Table Lat	ch Read		
Syntax:	[label]	TLRD t,f		
Operands:	0 ≤ f ≤ 25 t ∈ [0,1]	5		
Operation:	lf t = 0, TBLAT lf t = 1,	$L \rightarrow f;$		
	TBLAT	$H \rightarrow f$		
Status Affected:	None			
Encoding:	1010	00tx	ffff	ffff
Description:	Read data (TBLAT) in is unaffecte	from 16-bit to file regis ed.	table la ter 'f'. Ta	tch ble Latch
	If t = 1; hig	h byte is re	ad	
	If $t = 0$; low	byte is rea	d in con	iunction
	with TABLE	RD to transf ory to data	er data f memor	from pro- y.
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read	Execute	e	Write
	register TBLATH or TBLATL		re	gister 't'
Example:	TLRD	t, RAM		
Before Instru	iction			
t	= 0			
RAM TBLAT	= ? = 0x00AF	= (TBLATI (TBLATI	H = 0x00 L = 0xAl	0) =)
After Instruct	ion			
RAM TBLAT	= 0xAF = 0x00AF	- (TBLATI (TBLATI	H = 0x0 L = 0xAl	0) =)
Before Instru	iction			
t RAM	= 1 - 2			
TBLAT	= 9 = 0x00AF	(TBLATI	H = 0x00	D)
		(TBLATI	L = 0 X A I	-)
After Instruct	ion	(TBLATI	L = 0xAI	-)
After Instruct RAM TBLAT	tion = 0x00 = 0x00AF	(TBLATI - (TBLATI (TBLATI	L = 0xAI H = 0x00 L = 0xAI	-) D) =)
After Instruct RAM TBLAT	tion = 0x00 = 0x00AF	(TBLATI TBLATI (TBLATI	L = 0xAI H = 0x00 L = 0xAI	-) 0) -) Data
After Instruct RAM TBLAT	tion = 0×00 = $0 \times 00 \text{AF}$	(TBLATI - (TBLATI (TBLATI	H = 0x00 $L = 0xA1$ W	-) D) Data lemory
After Instruct RAM TBLAT	tion = $0x00$ = $0x00AF$	(TBLATI = (TBLATI (TBLATI 0 BLPTR	H = 0x00 $L = 0xA1$ M	-) D) Data lemory
After Instruct RAM TBLAT	tion = 0×00 = $0 \times 00 \text{AF}$	(TBLATI - (TBLATI (TBLATI 	H = 0x01 L = 0xAl	-) -) Data lemory

001	DM303		-G306001		N/A		N/A		HCS200, 300, 301 *
	N/A		N/A		N/A		JV114001		MTA11200B
	N/A		N/A		DV243001		N/A		All 2 wire and 3 wire Serial EEPROM's
ity Eval/Demo Kit	opping Code Secur	rammer Kit H	Security Prog	Hopping Code (EVAL® Designers Kit	ent Kit SEI	E® Developme	TRUEGAUG	Product
stems	. See development sy	orgereg separately ering part numbers	er modules are or specific orde	ordering guide for					MIPAOM ASSEMDIE
Inde	rt numbers above inc	ER-CE ordering pa	and PICMAST rogrammer	***AII PICMASTER	Simulator and	MPLAB-SIM S	ability date	hnology for avail /elopment Enviro	*Contact Microchip Tec **MPLAB Integrated Dev
DV003001	I	DV007003		EM177007/ EM177107	DV005001/ DV005002	SW006006	SW006005	SW007002	PIC17C42, 42A, 43, 44
DV003001	I	DV007003		EM167031/ EM167111	DV005001/ DV005002	SW006006	SW006005	SW007002	PIC16C923, 924*
DV003001	DV162003	DV007003		EM167029/ EM167107	DV005001/ DV005002	SW006006	SW006005	SW007002	PIC16F84
DV003001	DV162003	DV007003	EM167206	EM167029/ EM167107	DV005001/ DV005002	SW006006	SW006005	SW007002	PIC16C84
DV003001	DV162003	DV007003		EM167029/ EM167107	DV005001/ DV005002	SW006006	SW006005	SW007002	PIC16F83
DV003001	DV162002	DV007003	I	EM167025/ EM167103	I	SW006006	SW006005	SW007002	PIC16C72
DV003001	DV162003	DV007003	I	EM167027/ EM167105	DV005001/ DV005002	SW006006	SW006005	SW007002	PIC16C710, 711
DV003001	DV162003	DV007003	EM167205	EM167027/ EM167105	DV005001/ DV005002	SW006006	SW006005	SW007002	PIC16C71
DV003001	DV162002	DV007003	1	EM167035/ EM167105	1	I	SW006005	SW007002	PIC16C642, 662*
DV003001	DV162002	DV007003	EM167204	EM167025/ EM167103	DV005001/ DV005002	SW006006	SW006005	SW007002	PIC16C63, 65, 65A, 73, 73A, 74, 74A
DV003001	DV162003	DV007003	EM167202	EM167023/ EM167109	DV005001/ DV005002	SW006006	SW006005	SW007002	PIC16C620, 621, 622
DV003001	DV162002	DV007003	EM167203	EM167025/ EM167103	DV005001/ DV005002	SW006006	SW006005	SW007002	PIC16C62, 62A, 64, 64A
DV003001	DV162003	DV007003	EM167205	EM167021/ N/A	DV005001/ DV005002	SW006006	SW006005	SW007002	PIC16C61
DV003001	Ι	DV007003	1	EM167033/ EM167113	DV005001/ DV005002	I	SW006005	SW007002	PIC16C554, 556, 558
DV003001	DV162003	DV007003	EM167201	EM167015/ EM167101	DV005001/ DV005002	SW006006	SW006005	SW007002	PIC16C52, 54, 54A, 55, 56, 57, 58A
DV003001	Ι	DV007003	I	EM147001/ EM147101	I	1	SW006005	SW007002	PIC14000
DV003001	Ι	DV007003	1	EM167015/ EM167101	1	I	SW006005	SW007002	PIC12C508, 509
Universal Dev. Kit	Dev. Kit	Microchip Programmer	In-Circuit Emulator	In-Circuit Emulator	Fuzzy Logic Dev. Tool	Code Generator	-	Development Environment	
PICSTART® Plus Low-Cost	PICSTART® Lite	****PRO MATE TM Il Universal	ICEPIC Low-Cost	*** PICMASTER®/ PICMASTER-CE	fuzzyTECH®-MP Explorer/Edition	MP-DriveWay Applications	MPLAB™ C Compiler	** MPLAB™ Integrated	Product

TABLE 16-1: DEVELOPMENT TOOLS FROM MICROCHIP

PIC17C4X

Applicable Devices 42 R42 42A 43 R43 44

17.0 PIC17C42 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Ambient temperature under bias	55 to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0.6V to +14V
Voltage on RA2 and RA3 with respect to Vss	-0.6V to +12V
Voltage on all other pins with respect to Vss	0.6V to VDD + 0.6V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin(s) - Total	250 mA
Maximum current into VDD pin(s) - Total	200 mA
Input clamp current, lik (VI < 0 or VI > VDD)	±20 mA
Output clamp current, IOK (VO < 0 or VO > VDD)	±20 mA
Maximum output current sunk by any I/O pin (except RA2 and RA3)	35 mA
Maximum output current sunk by RA2 or RA3 pins	60 mA
Maximum output current sourced by any I/O pin	20 mA
Maximum current sunk by PORTA and PORTB (combined)	150 mA
Maximum current sourced by PORTA and PORTB (combined)	100 mA
Maximum current sunk by PORTC, PORTD and PORTE (combined)	150 mA
Maximum current sourced by PORTC, PORTD and PORTE (combined)	100 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - Σ IOH} + Σ {(VDD-VOH)) x IOH} + Σ (VOL x IOL)

Note 2: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 19-3: CLKOUT AND I/O TIMING

TABLE 19-3:	CLKOUT AND I/O TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
10	TosH2ckL	OSC1↓ to CLKOUT	÷	_	15‡	30 ‡	ns	Note 1
11	TosH2ckH	OSC1↓ to CLKOUT	\uparrow	_	15‡	30 ‡	ns	Note 1
12	TckR	CLKOUT rise time		—	5‡	15 ‡	ns	Note 1
13	TckF	CLKOUT fall time		—	5‡	15 ‡	ns	Note 1
14	TckH2ioV	CLKOUT ↑ to Port out valid	PIC17CR42/42A/43/ R43/44	—	_	0.5TCY + 20 ‡	ns	Note 1
			PIC17LCR42/42A/43/ R43/44	_	—	0.5TCY + 50 ‡	ns	Note 1
15	TioV2ckH	Port in valid before CLKOUT↑	PIC17CR42/42A/43/ R43/44	0.25Tcy + 25 ‡	_		ns	Note 1
			PIC17LCR42/42A/43/ R43/44	0.25Tcy + 50 ‡	—	—	ns	Note 1
16	TckH2iol	Port in hold after CL	KOUT↑	0 ‡	—	_	ns	Note 1
17	TosH2ioV	OSC1↓ (Q1 cycle) t	o Port out valid	—	—	100 ‡	ns	
18	TosH2iol	OSC1↓ (Q2 cycle) t (I/O in hold time)	$OSC1\downarrow$ (Q2 cycle) to Port input invalid (I/O in hold time)		-	—	ns	
19	TioV2osH	Port input valid to O (I/O in setup time)	SC1↓	30 ‡	_	—	ns	
20	TioR	Port output rise time	9	—	10 ‡	35 ‡	ns	
21	TioF	Port output fall time		_	10 ‡	35 ‡	ns	
22	TinHL	INT pin high or low	time	25 *	—		ns	
23	TrbHL	RB7:RB0 change IN	IT high or low time	25 *	_		ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

Note 1: Measurements are taken in EC Mode where CLKOUT output is 4 x Tosc.

Applicable Devices 42 R42 42A 43 R43 44

TABLE 19-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)		100 *	—	—	ns	VDD = 5V
31	Twdt	Watchdog Timer Time-ou (Prescale = 1)	It Period	5 *	12	25 *	ms	VDD = 5V
32	Tost	Oscillation Start-up Time	r Period	—	1024Tosc§	—	ms	Tosc = OSC1 period
33	Tpwrt	Power-up Timer Period		40 *	96	200 *	ms	VDD = 5V
35	TmcL2adl	MCLR to System Inter- face bus (AD15:AD0>)	PIC17CR42/42A/ 43/R43/44	_	—	100 *	ns	
		invalid	PIC17LCR42/ 42A/43/R43/44	—	—	120 *	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

§ This specification ensured by design.

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 19-9: USART MODULE: SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 19-9: SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param								
No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
120	TckH2dtV	SYNC XMIT (MASTER &						
		<u>SLAVE)</u>	PIC17CR42/42A/43/R43/44	—	-	50	ns	
		Clock high to data out valid	PIC17LCR42/42A/43/R43/44	—	_	75	ns	
121	TckRF	Clock out rise time and fall time	PIC17CR42/42A/43/R43/44	_	—	25	ns	
		(Master Mode)	PIC17LCR42/42A/43/R43/44	_	_	40	ns	
122	TdtRF	Data out rise time and fall time	PIC17CR42/42A/43/R43/44	_	_	25	ns	
			PIC17LCR42/42A/43/R43/44	_	_	40	ns	
+	† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not							

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 19-10: USART MODULE: SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 19-10: SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
125	TdtV2ckL	SYNC RCV (MASTER & SLAVE) Data hold before CK↓ (DT hold time)	15	_	_	ns	
126	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15	_	_	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

APPENDIX A: MODIFICATIONS

The following is the list of modifications over the PIC16CXX microcontroller family:

- Instruction word length is increased to 16-bit. This allows larger page sizes both in program memory (8 Kwords verses 2 Kwords) and register file (256 bytes versus 128 bytes).
- 2. Four modes of operation: microcontroller, protected microcontroller, extended microcontroller, and microprocessor.
- 22 new instructions. The MOVF, TRIS and OPTION instructions have been removed.
- 4. 4 new instructions for transferring data between data memory and program memory. This can be used to "self program" the EPROM program memory.
- Single cycle data memory to data memory transfers possible (MOVPF and MOVFP instructions). These instructions do not affect the Working register (WREG).
- 6. W register (WREG) is now directly addressable.
- 7. A PC high latch register (PCLATH) is extended to 8-bits. The PCLATCH register is now both readable and writable.
- 8. Data memory paging is redefined slightly.
- 9. DDR registers replaces function of TRIS registers.
- 10. Multiple Interrupt vectors added. This can decrease the latency for servicing the interrupt.
- 11. Stack size is increased to 16 deep.
- 12. BSR register for data memory paging.
- 13. Wake up from SLEEP operates slightly differently.
- 14. The Oscillator Start-Up Timer (OST) and Power-Up Timer (PWRT) operate in parallel and not in series.
- 15. PORTB interrupt on change feature works on all eight port pins.
- 16. TMR0 is 16-bit plus 8-bit prescaler.
- 17. Second indirect addressing register added (FSR1 and FSR2). Configuration bits can select the FSR registers to auto-increment, auto-decrement, remain unchanged after an indirect address.
- 18. Hardware multiplier added (8 x 8 \rightarrow 16-bit) (PIC17C43 and PIC17C44 only).
- 19. Peripheral modules operate slightly differently.
- 20. Oscillator modes slightly redefined.
- 21. Control/Status bits and registers have been placed in different registers and the control bit for globally enabling interrupts has inverse polarity.
- 22. Addition of a test mode pin.
- 23. In-circuit serial programming is not implemented.

APPENDIX B: COMPATIBILITY

To convert code written for PIC16CXX to PIC17CXX, the user should take the following steps:

- 1. Remove any TRIS and OPTION instructions, and implement the equivalent code.
- 2. Separate the interrupt service routine into its four vectors.
- 3. Replace:

4.

MOVF with:	REG1,	W
MOVFP	REG1,	WREG
Replace:		
MOVF	REG1,	W
MOVWF with:	REG2	
MOVPF	REG1,	REG2 ; Addr(REG1)<20h
or		
MOVFP	REG1,	REG2 ; Addr(REG2)<20h

Note: If REG1 and REG2 are both at addresses greater then 20h, two instructions are required. MOVFP REG1, WREG ; MOVPF WREG, REG2 ;

- 5. Ensure that all bit names and register names are updated to new data memory map location.
- 6. Verify data memory banking.
- 7. Verify mode of operation for indirect addressing.
- 8. Verify peripheral routines for compatibility.
- 9. Weak pull-ups are enabled on reset.

To convert code from the PIC17C42 to all the other PIC17C4X devices, the user should take the following steps.

- 1. If the hardware multiply is to be used, ensure that any variables at address 18h and 19h are moved to another address.
- 2. Ensure that the upper nibble of the BSR was not written with a non-zero value. This may cause unexpected operation since the RAM bank is no longer 0.
- 3. The disabling of global interrupts has been enhanced so there is no additional testing of the GLINTD bit after a BSF CPUSTA, GLINTD instruction.

^{© 1996} Microchip Technology Inc.