

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (8K x 16)
Program Memory Type	OTP
EEPROM Size	
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c44t-25i-pq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC17C4X can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC17C4X uses a modified Harvard architecture. This architecture has the program and data accessed from separate memories. So the device has a program memory bus and a data memory bus. This improves bandwidth over traditional von Neumann architecture, where program and data are fetched from the same memory (accesses over the same bus). Separating program and data memory further allows instructions to be sized differently than the 8-bit wide data word. PIC17C4X opcodes are 16-bits wide, enabling single word instructions. The full 16-bit wide program memory bus fetches a 16-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions. Consequently, all instructions execute in a single cycle (121 ns @ 33 MHz), except for program branches and two special instructions that transfer data between program and data memory.

The PIC17C4X can address up to 64K x 16 of program memory space.

The **PIC17C42** and **PIC17C42A** integrate 2K x 16 of EPROM program memory on-chip, while the **PIC17CR42** has 2K x 16 of ROM program memory on-chip.

The **PIC17C43** integrates 4K x 16 of EPROM program memory, while the **PIC17CR43** has 4K x 16 of ROM program memory.

The **PIC17C44** integrates 8K x 16 EPROM program memory.

Program execution can be internal only (microcontroller or protected microcontroller mode), external only (microprocessor mode) or both (extended microcontroller mode). Extended microcontroller mode does not allow code protection.

The PIC17CXX can directly or indirectly address its register files or data memory. All special function registers, including the Program Counter (PC) and Working Register (WREG), are mapped in the data memory. The PIC17CXX has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC17CXX simple yet efficient. In addition, the learning curve is reduced significantly.

One of the PIC17CXX family architectural enhancements from the PIC16CXX family allows two file registers to be used in some two operand instructions. This allows data to be moved directly between two registers without going through the WREG register. This increases performance and decreases program memory usage. The PIC17CXX devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift, and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature.

The WREG register is an 8-bit working register used for ALU operations.

All PIC17C4X devices (except the PIC17C42) have an 8 x 8 hardware multiplier. This multiplier generates a 16-bit result in a single cycle.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

Although the ALU does not perform signed arithmetic, the Overflow bit (OV) can be used to implement signed math. Signed arithmetic is comprised of a magnitude and a sign bit. The overflow bit indicates if the magnitude overflows and causes the sign bit to change state. Signed math can have greater than 7-bit values (magnitude), if more than one byte is used. The use of the overflow bit only operates on bit6 (MSb of magnitude) and bit7 (sign bit) of the value in the ALU. That is, the overflow bit is not useful if trying to implement signed math where the magnitude, for example, is 11-bits. If the signed math values are greater than 7-bits (15-, 24or 31-bit), the algorithm must ensure that the low order bytes ignore the overflow status bit.

Care should be taken when adding and subtracting signed numbers to ensure that the correct operation is executed. Example 3-1 shows an item that must be taken into account when doing signed arithmetic on an ALU which operates as an unsigned machine.

EXAMPLE 3-1: SIGNED MATH

Hex Value	Signed Value Math	Unsigned Value Math
FFh	-127	255
<u>+ 01h</u>	<u>+ 1</u>	<u>+ 1</u>
= ?	= -126 (FEh)	= 0 (00h); Carry bit = 1
		curry pro - r

Signed math requires the result in REG to be FEh (-126). This would be accomplished by subtracting one as opposed to adding one.

Simplified block diagrams are shown in Figure 3-1 and Figure 3-2. The descriptions of the device pins are listed in Table 3-1.

© 1996 Microchip Technology Inc.

6.2.2.2 CPU STATUS REGISTER (CPUSTA)

The CPUSTA register contains the status and control bits for the CPU. This register is used to globally enable/disable interrupts. If only a specific interrupt is desired to be enabled/disabled, please refer to the INTerrupt STAtus (INTSTA) register and the Peripheral Interrupt Enable (PIE) register. This register also indicates if the stack is available and contains the Power-down (PD) and Time-out (TO) bits. The TO, PD, and STKAV bits are not writable. These bits are set and cleared according to device logic. Therefore, the result of an instruction with the CPUSTA register as destination may be different than intended.

FIGURE 6-8: CPUSTA REGISTER (ADDRESS: 06h, UNBANKED)

6.3 <u>Stack Operation</u>

The PIC17C4X devices have a 16 x 16-bit wide hardware stack (Figure 6-1). The stack is not part of either the program or data memory space, and the stack pointer is neither readable nor writable. The PC is "PUSHed" onto the stack when a CALL instruction is executed or an interrupt is acknowledged. The stack is "POPed" in the event of a RETURN, RETLW, or a RETFIE instruction execution. PCLATH is not affected by a "PUSH" or a "POP" operation.

The stack operates as a circular buffer, with the stack pointer initialized to '0' after all resets. There is a stack available bit (STKAV) to allow software to ensure that the stack has not overflowed. The STKAV bit is set after a device reset. When the stack pointer equals Fh, STKAV is cleared. When the stack pointer rolls over from Fh to 0h, the STKAV bit will be held clear until a device reset.

- **Note 1:** There is not a status bit for stack underflow. The STKAV bit can be used to detect the underflow which results in the stack pointer being at the top of stack.
- Note 2: There are no instruction mnemonics called PUSH or POP. These are actions that occur from the execution of the CALL, RETURN, RETLW, and RETFIE instructions, or the vectoring to an interrupt vector.
- Note 3: After a reset, if a "POP" operation occurs before a "PUSH" operation, the STKAV bit will be cleared. This will appear as if the stack is full (underflow has occurred). If a "PUSH" operation occurs next (before another "POP"), the STKAV bit will be locked clear. Only a device reset will cause this bit to set.

After the device is "PUSHed" sixteen times (without a "POP"), the seventeenth push overwrites the value from the first push. The eighteenth push overwrites the second push (and so on).

6.4 Indirect Addressing

Indirect addressing is a mode of addressing data memory where the data memory address in the instruction is not fixed. That is, the register that is to be read or written can be modified by the program. This can be useful for data tables in the data memory. Figure 6-10 shows the operation of indirect addressing. This shows the moving of the value to the data memory address specified by the value of the FSR register.

Example 6-1 shows the use of indirect addressing to clear RAM in a minimum number of instructions. A similar concept could be used to move a defined number of bytes (block) of data to the USART transmit register (TXREG). The starting address of the block of data to be transmitted could easily be modified by the program.

FIGURE 6-10: INDIRECT ADDRESSING

Example 8-4 shows the sequence to do an 16 x 16 signed multiply. Equation 8-2 shows the algorithm that used. The 32-bit result is stored in four registers RES3:RES0. To account for the sign bits of the arguments, each argument pairs most significant bit (MSb) is tested and the appropriate subtractions are done.

EQUATION 8-2:	16 x 16 SIGNED
	MULTIPLICATION
	ALGORITHM

RES3:RES0

- = ARG1H:ARG1L * ARG2H:ARG2L
- - (-1 * ARG1H<7> * ARG2H:ARG2L * 2¹⁶)

EXAMPLE 8-4: 16 x 16 SIGNED MULTIPLY

		ROUTI	N	E
	MOVFP	ARG1L, WREG		
	MULWF	ARG2L	;	ARG1L * ARG2L ->
				PRODH:PRODL
	MOVPF	PRODH, RES1		
		PRODL, RESO		
;		- ,		
	MOVFP	ARG1H, WREG		
				ARG1H * ARG2H ->
	110201	into bii	;	
	MOVPF	PRODH, RES3		TRODUCTRODE
		PRODL, RES2		
;	110 11 1	TRODE, REDZ	'	
'	MOVFP	ARG1L, WREG		
				ARG1L * ARG2H ->
	HOLMI	1110211	;	
	MOVFP	PRODL, WREG		TRODITITRODE
				Add cross
			;	products
		WREG, F	;	
	ADDWFC	RES3, F	;	
;	NOTED			
		ARG1H, WREG	'	100111 + 10001
	MULWF	ARG2L		ARG1H * ARG2L ->
			,	PRODH:PRODL
	MOMED			
		PRODL, WREG		Add among
	ADDWF	RES1, F		
		PRODH, WREG		products
			;	
	CLRF	WREG, F	;	
	ADDWFC	RES3, F	;	
;				
		ARG2H, 7	'	ARG2H:ARG2L neg?
				no, check ARG1
	MOVFP	ARG1L, WREG		
		RES2	;	
	MOVFP	ARG1H, WREG	;	
	SUBWFB	RES3		
;				
SIC	GN_ARG1			
				ARG1H:ARG1L neg?
	GOTO	CONT_CODE		no, done
		ARG2L, WREG		
	SUBWF	RES2	;	
	MOVFP	ARG2H, WREG	;	
	SUBWFB	RES3		
;				
COI	NT_CODE			
	:			

12.1.3.3.1 MAX RESOLUTION/FREQUENCY FOR EXTERNAL CLOCK INPUT

The use of an external clock for the PWM time-base (Timer1 or Timer2) limits the PWM output to a maximum resolution of 8-bits. The PWxDCL<7:6> bits must be kept cleared. Use of any other value will distort the PWM output. All resolutions are supported when internal clock mode is selected. The maximum attainable frequency is also lower. This is a result of the timing requirements of an external clock input for a timer (see the Electrical Specification section). The maximum PWM frequency, when the timers clock source is the RB4/TCLK12 pin, is shown in Table 12-3 (standard resolution mode).

12.2 <u>Timer3</u>

Timer3 is a 16-bit timer consisting of the TMR3H and TMR3L registers. TMR3H is the high byte of the timer and TMR3L is the low byte. This timer has an associated 16-bit period register (PR3H/CA1H:PR3L/CA1L). This period register can be software configured to be a second 16-bit capture register.

When the TMR3CS bit (TCON1<2>) is clear, the timer increments every instruction cycle (Fosc/4). When TMR3CS is set, the timer increments on every falling edge of the RB5/TCLK3 pin. In either mode, the TMR3ON bit must be set for the timer to increment. When TMR3ON is clear, the timer will not increment or set the TMR3IF bit.

Timer3 has two modes of operation, depending on the CA1/PR3 bit (TCON2<3>). These modes are:

- · One capture and one period register mode
- Dual capture register mode

The PIC17C4X has up to two 16-bit capture registers that capture the 16-bit value of TMR3 when events are detected on capture pins. There are two capture pins (RB0/CAP1 and RB1/CAP2), one for each capture register. The capture pins are multiplexed with PORTB pins. An event can be:

- · a rising edge
- a falling edge
- every 4th rising edge
- every 16th rising edge

Each 16-bit capture register has an interrupt flag associated with it. The flag is set when a capture is made. The capture module is truly part of the Timer3 block. Figure 12-7 and Figure 12-8 show the block diagrams for the two modes of operation.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 3	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h, Bank 3	TCON2	CA2OVF	CA10VF	PWM2ON	PWM10N	CA1/PR3	TMR3ON	TMR2ON	TMR10N	0000 0000	0000 0000
10h, Bank 2	TMR1	Timer1 reg	ister							xxxx xxxx	uuuu uuuu
11h, Bank 2	TMR2	Timer2 reg	ister							XXXX XXXX	uuuu uuuu
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
07h, Unbanked	INTSTA	PEIF	T0CKIF	T0IF	INTF	PEIE	TOCKIE	TOIE	INTE	0000 0000	0000 0000
06h, Unbanked	CPUSTA	—	_	STKAV	GLINTD	TO	PD	—	_	11 11	11 qq
10h, Bank 3	PW1DCL	DC1	DC0	—	—	—			_	xx	uu
11h, Bank 3	PW2DCL	DC1	DC0	TM2PW2	_	—			_	xx0	uu0
12h, Bank 3	PW1DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	xxxx xxxx	uuuu uuuu
13h, Bank 3	PW2DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	XXXX XXXX	uuuu uuuu

TABLE 12-4: REGISTERS/BITS ASSOCIATED WITH PWM

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends on conditions, shaded cells are not used by PWM.

13.1 USART Baud Rate Generator (BRG)

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit timer. Table 13-1 shows the formula for computation of the baud rate for different USART modes. These only apply when the USART is in synchronous master mode (internal clock) and asynchronous mode.

Given the desired baud rate and Fosc, the nearest integer value between 0 and 255 can be calculated using the formula below. The error in baud rate can then be determined.

TABLE 13-1: BAUD RATE FORMULA

SYNC	Mode	Baud Rate
0	Asynchronous	Fosc/(64(X+1))
1	Synchronous	Fosc/(4(X+1))

X = value in SPBRG (0 to 255)

Example 13-1 shows the calculation of the baud rate error for the following conditions:

Fosc = 16 MHz Desired Baud Rate = 9600 SYNC = 0

EXAMPLE 13-1: CALCULATING BAUD RATE ERROR

Desired Baud rate=Fosc / (64 (X + 1))

 $9600 = \frac{16000000}{(64 (X + 1))}$

X = 25.042 = 25

Calculated Baud Rate=16000000 / (64 (25 + 1))

= 9615

- Error = <u>(Calculated Baud Rate Desired Baud Rate)</u> Desired Baud Rate
 - = (9615 9600) / 9600
 - = 0.16%

Writing a new value to the SPBRG, causes the BRG timer to be reset (or cleared), this ensures that the BRG does not wait for a timer overflow before outputting the new baud rate.

TABLE 13-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
13h, Bank 0	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00u
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	—	—	TRMT	TX9D	00001x	00001u
17h, Bank 0 SPBRG Baud rate generator register								xxxx xxxx	uuuu uuuu		

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used by the Baud Rate Generator. $Note 1: Other (non power-up) resets include: external reset through <math>\overline{MCLR}$ and Watchdog Timer Reset.

TABLE 13-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
13h, Bank 0	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00u
16h, Bank 0	TXREG	TX7	TX6	TX5	TX4	TX3	TX2	TX1	TX0	xxxx xxxx	uuuu uuuu
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	—		TRMT	TX9D	00001x	00001u
17h, Bank 0 SPBRG Baud rate generator register									xxxx xxxx	uuuu uuuu	

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used for synchronous master transmission.

Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

FIGURE 13-9: SYNCHRONOUS TRANSMISSION

FIGURE 13-10: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

14.2.4 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with series resonance, or one with parallel resonance.

Figure 14-5 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometer biases the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 14-5: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

Figure 14-6 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 14-6: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

14.2.5 RC OSCILLATOR

For timing insensitive applications, the RC device option offers additional cost savings. RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 14-6 shows how the R/C combination is connected to the PIC17CXX. For Rext values below 2.2 kQ, the oscillator operation may become unstable, or stop completely. For very high Rext values (e.g. 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend to keep Rext between 3 $k\Omega$ and 100 $k\Omega$.

Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With little or no external capacitance, oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

See Section 18.0 for RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

See Section 18.0 for variation of oscillator frequency due to VDD for given Rext/Cext values as well as frequency variation due to operating temperature for given R, C, and VDD values.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin, and can be used for test purposes or to synchronize other logic (see Figure 3-2 for waveform).

FIGURE 14-7: RC OSCILLATOR MODE

Table 15-2 lists the instructions recognized by the MPASM assembler.

Note 1:	Any unused opcode is Reserved. Use of
	any reserved opcode may cause unex-
	pected operation.

Note 2: The shaded instructions are not available in the PIC17C42

All instruction examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

To represent a binary number:

0000 0100b

where b signifies a binary string.

FIGURE 15-1: GENERAL FORMAT FOR INSTRUCTIONS

15.1 <u>Special Function Registers as</u> <u>Source/Destination</u>

The PIC17C4X's orthogonal instruction set allows read and write of all file registers, including special function registers. There are some special situations the user should be aware of:

15.1.1 ALUSTA AS DESTINATION

If an instruction writes to ALUSTA, the Z, C, DC and OV bits may be set or cleared as a result of the instruction and overwrite the original data bits written. For example, executing CLRF ALUSTA will clear register ALUSTA, and then set the Z bit leaving 0000 0100b in the register.

15.1.2 PCL AS SOURCE OR DESTINATION

Read, write or read-modify-write on PCL may have the following results:

Read PC:	$\text{PCH} \rightarrow \text{PCLATH}; \text{PCL} \rightarrow \text{dest}$
Write PCL:	PCLATH \rightarrow PCH; 8-bit destination value \rightarrow PCL
Read-Modify-Write:	$PCL \rightarrow ALU$ operand $PCLATH \rightarrow PCH$; 8-bit result $\rightarrow PCL$

Where PCH = program counter high byte (not an addressable register), PCLATH = Program counter high holding latch, dest = destination, WREG or f.

15.1.3 BIT MANIPULATION

All bit manipulation instructions are done by first reading the entire register, operating on the selected bit and writing the result back (read-modify-write). The user should keep this in mind when operating on special function registers, such as ports.

15.2 <u>Q Cycle Activity</u>

Each instruction cycle (Tcy) is comprised of four Q cycles (Q1-Q4). The Q cycles provide the timing/designation for the Decode, Read, Execute, Write etc., of each instruction cycle. The following diagram shows the relationship of the Q cycles to the instruction cycle.

The 4 Q cycles that make up an instruction cycle (Tcy) can be generalized as:

- Q1: Instruction Decode Cycle or forced NOP
- Q2: Instruction Read Cycle or NOP
- Q3: Instruction Execute
- Q4: Instruction Write Cycle or NOP

Each instruction will show the detailed Q cycle operation for the instruction.

FIGURE 15-2: Q CYCLE ACTIVITY

ADD	WFC	ADD WRE	ADD WREG and Carry bit to f						
Synt	ax:	[<i>label</i>] A[[label] ADDWFC f,d						
Ope	rands:	0 ≤ f ≤ 255 d ∈ [0,1]	$0 \le f \le 255$ $d \in [0,1]$						
Ope	ration:	(WREG) +	- (f) + C -	→ (dest)					
Stat	us Affected:	OV, C, DC	, Z						
Enco	oding:	0001	000d	ffff	ffff				
Des	cription:	Add WREG memory loc placed in W placed in da	ation 'f'. If /REG. If 'd	'd' is 0, th ' is 1, the	e result is result is				
Wor	ds:	1							
Cycl	es:	1							
QC	ycle Activity:								
	Q1	Q2	Q3		Q4				
	Decode	Read register 'f'	Execut	-	rite to tination				
<u>Exa</u>	mple:	ADDWFC	REG	0					
	Before Instru Carry bit REG WREG After Instruct Carry bit REG WREG	= 1 = 0x02 = 0x4D							

ANDLW	And Liter	And Literal with WREG						
Syntax:	[<i>label</i>] A	[<i>label</i>] ANDLW k						
Operands:	$0 \le k \le 25$	5						
Operation:	(WREG) .	AND. (k) $ ightarrow$	(WR	EG)				
Status Affected:	Z							
Encoding:	1011	0101 k	kkk	kkkk				
Description:		The contents of WREG are AND'ed with the 8-bit literal 'k'. The result is placed in WREG.						
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3		Q4				
Decode	Read literal 'k'	Execute		Vrite to VREG				
Example:	ANDLW	0x5F						
Before Instruction WREG = 0xA3								
After Instruct WREG								

MOVFP	Move f to	р		MOVLB	Move Lite	eral to low i	nibble in BSR
Syntax:	[<i>label</i>] N	IOVFP f,p		Syntax:	[label]	MOVLB k	
Operands:	0 ≤ f ≤ 255	5		Operands:	$0 \le k \le 15$	5	
	$0 \le p \le 31$			Operation:	k ightarrow (BSR	(<3:0>)	
Operation:	$(f) \to (p)$			Status Affected:	None		
Status Affected:	None			Encoding:	1011	1000 ui	uuu kkkk
Encoding:	011p	pppp ff	ff ffff	Description:	The four bi	t literal 'k' is lo	baded in the
Description:	to data mer can be any	mory location ' where in the 2	nory location 'f' p'. Location 'f' 56 word data 'p' can be 00h		low 4-bits of are affected is unchang	of the Bank Se	
		'f' can be WR	EG (a useful	Words:	1		
	special situ	,	ful for transfer-	Cycles:	1		
			on to a periph-	Q Cycle Activity:			
			transmit buffer	Q1	Q2	Q3	Q4
	indirectly a	ort). Both 'f' an ddressed.	d p can be	Decode	Read	Execute	Write literal
Words:	1				literal 'u:k'		'k' to BSR<3:0>
Cycles:	1			Example:	MOVLB	0x5	
Q Cycle Activity	:			Before Instru	uction		
Q1	Q2	Q3	Q4	BSR reg	ister = 0x	:22	
Decode	Read register 'f'	Execute	Write register 'p'	After Instruc BSR reg		:25	
Example:	MOVFP I	REG1, REG2		Note: For th	ne PIC17C42	2, only the lo	ow four bits of
Before Insti REG1 REG2		33, 11			BSR registe ed. The uppe		sically imple- ead as '0'.
After Instru REG1		33,					

REG2

0x33

=

SUBWF	Sub	otrac	t WREG	from	f		
Syntax:	[lab	oel]	SUBWF	f,d			-
Operands:	-	f ≤ 25 [0,1]	55				:
Operation:	(f) –	· (W)	\rightarrow (dest)			
Status Affected:	OV,	C, D	C, Z				(
Encoding:	00	00	010d	fff	f	ffff	:
Description:	com resu	pleme It is si	VREG fro ent metho tored in W tored bac	d). If ' /REG	d' is . If 'c	0 the I' is 1 the	l
Words:	1						
Cycles:	1						,
Q Cycle Activity:							
Q1	Qź		Q3	3		Q4	
Decode	Rea registe		Execu	ute		Vrite to stination	
			DECI	1	ue	Sunation	
Example 1:	SUB	M F.	REG1,	T			
Before Instru REG1 WREG C	uction = 3 = 2 = ?						<u> </u>
After Instruc REG1 WREG C Z	tion = 1 = 2 = 1 = 0	;	result is p	oositiv	е		
Example 2:							
Before Instru REG1 WREG C	uction = 2 = 2 = ?						<u> </u>
After Instruc REG1 WREG C Z	tion = 0 = 2 = 1 = 1	;	result is z	zero			
Example 3:							
Before Instru REG1 WREG C	uction = 1 = 2 = ?						ļ
After Instruc REG1 WREG C Z	tion = F = 2 = 0 = 0		result is r	negativ	ve		

SUBWFB			t WREG	from	n f w	vith
Syntax:		Borrow	SUBWF	Bfo	1	
Operands:		$0 \le f \le 2$, u		
Operands.		d ∈ [0,1]			
Operation:		(f) – (W)	$) - \overline{C} \rightarrow (0)$	dest)		
Status Affect	ed:	OV, C, E	DC, Z			
Encoding:		0000	001d	fff	f	ffff
Description:		(borrow) ment me stored in	WREG an from regis thod). If 'd' WREG. If ack in regis	ter 'f' is 0 tl 'd' is ´	(2's he r 1 the	comple- esult is
Words:		1				
Cycles:		1				
Q Cycle Activ	/ity:					
Q1		Q2	Q3			Q4
Decod	-	Read egister 'f'	Execu	ıte		Vrite to stination
Example 1:		SUBWFB	REG1,	1		
Before Ir	nstructio	on				
REG WRE C		0x19 0x0D 1	(0001 (0000		'	
After Ins	truction	1				
REG WRE C	EG = =	0x0C 0x0D 1	(0000 (0000 ; resul t	110	1)	e
Z	=	0				
Example2:		UBWFB	REG1,0			
Before Ir REG WRE C	61 =	0x1B	(0001 (0001		,	
After Ins	truction	1				
REG		0x1B	(0001	101	1)	
WRE C Z	EG = = =	0x00 1 1	; resul	t is ze	ro	
Example3:	S	UBWFB	REG1,1			
Before Ir		on				
REG WRE C		0x03 0x0E 1	(0000 (0000			
After Ins REG WRE C Z	61 =	0xF5 0x0E 0 0	(1111 (0000 ; resul t	110	1)	?'s comp] ve

TABLRD	Table R	ead	
Example1:	TABLRD	1, 1,	REG ;
Before Instruc	ction		
REG		=	0x53
TBLATH		=	0xAA
TBLATL		=	0x55
TBLPTR		=	
MEMORY	(TBLPTR)	=	0x1234
After Instruction	on (table v	write co	mpletion)
REG		=	0xAA
TBLATH		=	0x12
TBLATL		=	0x34
TBLPTR			0xA357
MEMORY	(TBLPTR)	=	0x5678
Example2:	TABLRD	0, 0,	REG ;
Before Instruc	ction		
REG		=	0x53
TBLATH		=	0xAA
TBLATL		=	0x55
TBLPTR		=	0xA356
MEMORY	(TBLPTR)	=	0x1234
After Instruction	on (table v	write co	mpletion)
REG		=	0x55
TBLATH		=	0x12
TBLATL		=	0x34
TBLPTR		=	0xA356
MEMORY	(TBLPTR)	=	0x1234

TABLWT	Table Write					
Syntax:	[label] TABLWT t,i,f					
Operands:	0 ≤ f ≤ 255 i ∈ [0,1] t ∈ [0,1]					
Operation:	$f \in [0, 1]$ If $f = 0$,					
e per au e m	$f \rightarrow TBLATL;$					
	If t = 1, f \rightarrow TBLATH;					
	TBLAT \rightarrow Prog Mem (TBLPTF					
	If i = 1, TBLPTR + 1 \rightarrow TBLPTR					
Status Affected:	None					
Encoding:	1010 11ti ffff ffff					
Description:	1. Load value in 'f' into 16-bit table					
	latch (TBLAT) If t = 0: load into low byte;					
	If t = 1: load into high byte					
	2. The contents of TBLAT is written to the program memory location					
	pointed to by TBLPTR					
	If TBLPTR points to external program memory location, then					
	the instruction takes two-cycle					
	If TBLPTR points to an internal					
	EPROM location, then the instruction is terminated when					
	an interrupt is received.					
	LR/VPP pin must be at the programmir for successful programming of intern					
If MCLR	/VPP = VDD					
	gramming sequence of internal memore executed, but will not be successf					
(althoug	h the internal memory location may b					
disturbe	-7					
	 The TBLPTR can be automati- cally incremented 					
	If i = 0; TBLPTR is not					
	incremented					
Words:						
	incremented If i = 1; TBLPTR is incremented					
Cycles:	incremented If i = 1; TBLPTR is incremented 1 2 (many if write is to on-chip					
Words: Cycles: Q Cycle Activity: Q1	incremented If i = 1; TBLPTR is incremented 1 2 (many if write is to on-chip EPROM program memory) Q2 Q3 Q4					
Cycles: Q Cycle Activity:	incremented If i = 1; TBLPTR is incremented 1 2 (many if write is to on-chip EPROM program memory) Q2 Q3 Q4 Read Execute Write					
Cycles: Q Cycle Activity: Q1	incremented If i = 1; TBLPTR is incremented 1 2 (many if write is to on-chip EPROM program memory) Q2 Q3 Q4					

MPASM allow full symbolic debugging from the Microchip Universal Emulator System (PICMASTER).

MPASM has the following features to assist in developing software for specific use applications.

- Provides translation of Assembler source code to object code for all Microchip microcontrollers.
- Macro assembly capability.
- Produces all the files (Object, Listing, Symbol, and special) required for symbolic debug with Microchip's emulator systems.
- Supports Hex (default), Decimal and Octal source and listing formats.

MPASM provides a rich directive language to support programming of the PIC16/17. Directives are helpful in making the development of your assemble source code shorter and more maintainable.

16.11 Software Simulator (MPLAB-SIM)

The MPLAB-SIM Software Simulator allows code development in a PC host environment. It allows the user to simulate the PIC16/17 series microcontrollers on an instruction level. On any given instruction, the user may examine or modify any of the data areas or provide external stimulus to any of the pins. The input/ output radix can be set by the user and the execution can be performed in; single step, execute until break, or in a trace mode.

MPLAB-SIM fully supports symbolic debugging using MPLAB-C and MPASM. The Software Simulator offers the low cost flexibility to develop and debug code outside of the laboratory environment making it an excellent multi-project software development tool.

16.12 C Compiler (MPLAB-C)

The MPLAB-C Code Development System is a complete 'C' compiler and integrated development environment for Microchip's PIC16/17 family of micro-controllers. The compiler provides powerful integration capabilities and ease of use not found with other compilers.

For easier source level debugging, the compiler provides symbol information that is compatible with the MPLAB IDE memory display (PICMASTER emulator software versions 1.13 and later).

16.13 <u>Fuzzy Logic Development System</u> (*fuzzy*TECH-MP)

*fuzzy*TECH-MP fuzzy logic development tool is available in two versions - a low cost introductory version, MP Explorer, for designers to gain a comprehensive working knowledge of fuzzy logic system design; and a full-featured version, *fuzzy*TECH-MP, edition for implementing more complex systems.

Both versions include Microchip's *fuzzy*LAB[™] demonstration board for hands-on experience with fuzzy logic systems implementation.

16.14 <u>MP-DriveWay™ – Application Code</u> <u>Generator</u>

MP-DriveWay is an easy-to-use Windows-based Application Code Generator. With MP-DriveWay you can visually configure all the peripherals in a PIC16/17 device and, with a click of the mouse, generate all the initialization and many functional code modules in C language. The output is fully compatible with Microchip's MPLAB-C C compiler. The code produced is highly modular and allows easy integration of your own code. MP-DriveWay is intelligent enough to maintain your code through subsequent code generation.

16.15 <u>SEEVAL® Evaluation and</u> <u>Programming System</u>

The SEEVAL SEEPROM Designer's Kit supports all Microchip 2-wire and 3-wire Serial EEPROMs. The kit includes everything necessary to read, write, erase or program special features of any Microchip SEEPROM product including Smart Serials[™] and secure serials. The Total Endurance[™] Disk is included to aid in tradeoff analysis and reliability calculations. The total kit can significantly reduce time-to-market and result in an optimized system.

16.16 <u>TrueGauge[®] Intelligent Battery</u> <u>Management</u>

The TrueGauge development tool supports system development with the MTA11200B TrueGauge Intelligent Battery Management IC. System design verification can be accomplished before hardware prototypes are built. User interface is graphically-oriented and measured data can be saved in a file for exporting to Microsoft Excel.

16.17 <u>KEELOQ[®] Evaluation and</u> <u>Programming Tools</u>

KEELOQ evaluation and programming tools support Microchips HCS Secure Data Products. The HCS evaluation kit includes an LCD display to show changing codes, a decoder to decode transmissions, and a programming interface to program test transmitters. Applicable Devices 42 R42 42A 43 R43 44

FIGURE 17-1: PARAMETER MEASUREMENT INFORMATION

All timings are measure between high and low measurement points as indicated in the figures below.

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 19-9: USART MODULE: SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 19-9: SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param	Course	Characteristic		Min	Truck	Max	Unite	Conditions
No.	Sym	Characteristic		wiin	Тур†	Max	Units	Conditions
120	TckH2dtV	SYNC XMIT (MASTER &						
		SLAVE)	PIC17CR42/42A/43/R43/44	—	-	50	ns	
		Clock high to data out valid	PIC17LCR42/42A/43/R43/44	1 —	-	75	ns	
121	TckRF	Clock out rise time and fall time	PIC17CR42/42A/43/R43/44	—	—	25	ns	
		(Master Mode)	PIC17LCR42/42A/43/R43/44	—	—	40	ns	
122	TdtRF	Data out rise time and fall time	PIC17CR42/42A/43/R43/44	—	—	25	ns	
			PIC17LCR42/42A/43/R43/44	—	—	40	ns	
+	Data in "T	yp" column is at 5V, 25°C unless	otherwise stated. These parameters	are for	design	guidan	ce only	and are not

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 19-10: USART MODULE: SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 19-10: SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
125	TdtV2ckL	SYNC RCV (MASTER & SLAVE) Data hold before CK↓ (DT hold time)	15		_	ns	
126	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15	_	_	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

E.8 PIC17CXX Family of Devices

					Clock	Memory	ory		Peri	Peripherals					Features
				- 40,11,E 18 G	Solow stoller String soller							$\backslash /$			
			-Tougno		A LIGUER			$\backslash\rangle$	-SN (3	A A A A A A A A A A A A A A A A A A A	VIII NOI	Sic		ଁଂଶ୍	\$10130113U
	14	Y LUNUITO	10+ A3	NO2	The case in the case of the ca	Co, Co		C IBIJO	N-16H	THE WALLS WITH	1418441	eres 10 aires	1 9 10 00 00 00 00 00 00 00 00 00 00 00 00	AND	Refer of the second sec
PIC17C42	25	2K	Ι	232	TMR0,TMR1, TMR2,TMR3	2	2	Yes –	-	Yes	11 3	33 4	4.5-5.5	55	40-pin DIP; 44-pin PLCC, MQFP
PIC17C42A	25	ξ	Ι	232	TMR0,TMR1, TMR2,TMR3	2	₹	Yes Ye	Yes	Yes	11 3	33	2.5-6.0	58	40-pin DIP; 44-pin PLCC, TQFP, MQFP
PIC17CR42	25	Ι	2K	232	TMR0,TMR1, TMR2,TMR3	2	₹	Yes Ye	Yes	Yes	11 3	33	2.5-6.0	58	40-pin DIP; 44-pin PLCC, TQFP, MQFP
PIC17C43	25	,	Ι	454	TMR0,TMR1, TMR2,TMR3	2	₹	Yes Ye	Yes	Yes	11 3	33	2.5-6.0	58	40-pin DIP; 44-pin PLCC, TQFP, MQFP
PIC17CR43	25	Ι	4K	454	TMR0,TMR1, TMR2,TMR3	2	2 ⊀€	Yes Ye	Yes	Yes	11 3	33 2	2.5-6.0	58	40-pin DIP; 44-pin PLCC, TQFP, MQFP
PIC17C44	25	Ж Ж		454	TMR0,TMR1, TMR2,TMR3	2	2 Ye	Yes Ye	Yes \	Yes .	11 3	33 2	2.5-6.0	58	40-pin DIP; 44-pin PLCC, TQFP, MQFP
All F	PIC16/1	17 Fan	nily de	vices ha	ave Power-on F	keset,	select	able Wa	itchdo	g Time	r, selec	ctable	code pro	otect a	All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability.

MP-C C Compiler	145
MPSIM Software Simulator	
MULLW	129
Multiply Examples	
16 x 16 Routine	50
16 x 16 Signed Routine	51
8 x 8 Routine	49
8 x 8 Signed Routine	49
MULWF	129

Ν

NEGW)
NOP 130	`
NOP	'

0

OERR	84
Opcode Field Descriptions	107
OSC Selection	
Oscillator	
Configuration	100
Crystal	
External Clock	
External Crystal Circuit	102
External Parallel Resonant Crystal Circuit	102
External Series Resonant Crystal Circuit	102
RC	
RC Frequencies	165, 195
Oscillator Start-up Time (Figure)	
Oscillator Start-up Timer (OST)	15, 99
OST	
OV	
Overflow (OV)	9

Ρ

Package Marking Information	
Packaging Information	
Parameter Measurement Information	
PC (Program Counter)	
PCH	
PCL	34, 41, 108
PCLATH	
PD	
PEIE	
PEIF	
Peripheral Bank	
Peripheral Interrupt Enable	23
Peripheral Interrupt Request (PIR)	24
PICDEM-1 Low-Cost PIC16/17 Demo Board	143, 144
PICDEM-2 Low-Cost PIC16CXX Demo Board	143, 144
PICDEM-3 Low-Cost PIC16C9XXX Demo Boar	d144
PICMASTER [®] RT In-Circuit Emulator	
PICSTART [®] Low-Cost Development System	
PIE	
Pin Compatible Devices	
PIR	
PM0	
PM1	
POP	
POR	
PORTA	19, 34, 53
PORTB	19, 34, 55
PORTC	19, 34, 58

PORTD			
PORTE	19,	34,	62
Power-down Mode		1	05
Power-on Reset (POR)		15.	99
Power-up Timer (PWRT)			
PR1			
PR2			
PR3/CA1H			
PR3/CA1L			
PR3H/CA1H			
PR3L/CA1L			
Prescaler Assignments			
PRO MATE [®] Universal Programmer			42
PRODH			
PRODL			
Program Counter (PC)	•••••		41
Program Memory			
External Access Waveforms			
External Connection Diagram			
Мар			29
Modes			
Extended Microcontroller			29
Microcontroller			29
Microprocessor			29
Protected Microcontroller			29
Operation			29
Organization			29
Transfers from Data Memory			43
Protected Microcontroller			
PS0			
PS1			
PS2			
PS3			
PUSH			
PW1DCH			
PW1DCL			
PW2DCH			
PW2DCL			
PW2DCL			
Duty Cycle			
External Clock Source			
Frequency vs. Resolution			
Interrupts	•••••		10
Max Resolution/Frequency for External			
Clock Input			
Output			
Periods			-
PWM1			
PWM10N			
PWM2			
PWM2ON			
PWRT		15,	99

R

RA1/T0CKI pin	
RBIE	
RBIF	
RBPU	
RC Oscillator	
RC Oscillator Frequencies	
RCIE	
RCIF	
RCREG	19, 34, 91, 92, 96, 97
RCSTA	
Reading 16-bit Value	
0	