

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	25MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (8K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c44t-25i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Addr	Unbanked			
00h	INDF0			
01h	FSR0			
02h	PCL			
03h	PCLATH			
04h	ALUSTA			
05h	TOSTA			
06h	CPUSTA			
07h	INTSTA			
08h	INDF1			
09h	FSR1			
0Ah	WREG			
0Bh	TMR0L			
0Ch	TMR0H			
0Dh	TBLPTRL			
0Eh	TBLPTRH			
0Fh	BSR			
	Bank 0	Bank 1 ⁽¹⁾	Bank 2 ⁽¹⁾	Bank 3 ⁽¹⁾
10h	PORTA	DDRC	TMR1	PW1DCL
10h 11h	PORTA DDRB	DDRC PORTC	TMR1 TMR2	PW1DCL PW2DCL
10h 11h 12h	PORTA DDRB PORTB	DDRC PORTC DDRD	TMR1 TMR2 TMR3L	PW1DCL PW2DCL PW1DCH
10h 11h 12h 13h	PORTA DDRB PORTB RCSTA	DDRC PORTC DDRD PORTD	TMR1 TMR2 TMR3L TMR3H	PW1DCL PW2DCL PW1DCH PW2DCH
10h 11h 12h 13h 14h	PORTA DDRB PORTB RCSTA RCREG	DDRC PORTC DDRD PORTD DDRE	TMR1 TMR2 TMR3L TMR3H PR1	PW1DCL PW2DCL PW1DCH PW2DCH CA2L
10h 11h 12h 13h 14h 15h	PORTA DDRB PORTB RCSTA RCREG TXSTA	DDRC PORTC DDRD PORTD DDRE PORTE	TMR1 TMR2 TMR3L TMR3H PR1 PR2	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H
10h 11h 12h 13h 14h 15h 16h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG	DDRC PORTC DDRD PORTD DDRE PORTE PIR	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1
10h 11h 12h 13h 14h 15h 16h 17h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG	DDRC PORTC DDRD PORTD DDRE PORTE PIR PIE	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L PR3H/CA1H	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1 TCON2
10h 11h 12h 13h 14h 15h 16h 17h 18h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG	DDRC PORTC DDRD PORTD DDRE PORTE PIR PIE	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L PR3H/CA1H	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1 TCON2
10h 11h 12h 13h 14h 15h 16h 17h 18h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG	DDRC PORTC DDRD PORTD DDRE PORTE PIR PIE	TMR1 TMR2 TMR3L TMR3H PR1 PR2 PR3L/CA1L PR3H/CA1H	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1 TCON2
10h 11h 12h 13h 14h 15h 16h 17h 18h 1Fh	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG	DDRC PORTC DDRD PORTD DDRE PORTE PIR PIE	TMR1 TMR2 TMR3L PR1 PR2 PR3L/CA1L PR3H/CA1H	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1 TCON2
10h 11h 12h 13h 14h 15h 16h 17h 18h 1Fh 20h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG General Purpose	DDRC PORTC DDRD PORTD DDRE PORTE PIR PIE	TMR1 TMR2 TMR3L PR1 PR2 PR3L/CA1L PR3H/CA1H	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1 TCON2
10h 11h 12h 13h 14h 15h 16h 17h 18h 1Fh 20h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG General Purpose RAM	DDRC PORTC DDRD PORTD DDRE PORTE PIR PIE	TMR1 TMR2 TMR3L PR1 PR2 PR3L/CA1L PR3H/CA1H	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1 TCON2
10h 11h 12h 13h 14h 15h 16h 17h 18h 1Fh 20h	PORTA DDRB PORTB RCSTA RCREG TXSTA TXREG SPBRG General Purpose RAM	DDRC PORTC DDRD PORTD DDRE PORTE PIR PIE	TMR1 TMR2 TMR3L PR1 PR2 PR3L/CA1L PR3H/CA1H	PW1DCL PW2DCL PW1DCH PW2DCH CA2L CA2H TCON1 TCON2

FIGURE 6-5: PIC17C42 REGISTER FILE MAP

Note 1: SFR file locations 10h - 17h are banked. All other SFRs ignore the Bank Select Register (BSR) bits.

FIGURE 6-6: PIC17CR42/42A/43/R43/44 REGISTER FILE MAP

Addr	Unbanked			
00h	INDF0			
01h	FSR0			
02h	PCL			
03h	PCLATH			
04h	ALUSTA			
05h	TOSTA			
06h	CPUSTA			
07h	INTSTA			
08h	INDF1			
09h	FSR1			
0Ah	WREG			
0Bh	TMR0L			
0Ch	TMR0H			
0Dh	TBLPTRL			
0Eh	TBLPTRH			
0Fh	BSR			
	Bank 0	Bank 1 ⁽¹⁾	Bank 2 ⁽¹⁾	Bank 3 ⁽¹⁾
10h	PORTA	DDRC	TMR1	PW1DCL
11h	DDRB	PORTC	TMR2	PW2DCL
12h	PORTB	DDRD	TMR3L	PW1DCH
13h	RCSTA	PORTD	TMR3H	PW2DCH
14h	RCREG	DDRE	PR1	CA2L
15h	TXSTA	PORTE	PR2	CA2H
16h	TXREG	PIR	PR3L/CA1L	TCON1
17h	SPBRG	PIE	PR3H/CA1H	TCON2
18h	PRODL			
19h	PRODH			
1Ah				
1Fh]	
20h	General Purpose RAM (2)	General Purpose RAM ⁽²⁾		
FFh				

- Note 1: SFR file locations 10h 17h are banked. All other SFRs ignore the Bank Select Register (BSR) bits.
 - 2: General Purpose Registers (GPR) locations 20h - FFh and 120h - 1FFh are banked. All other GPRs ignore the Bank Select Register (BSR) bits.

8.0 HARDWARE MULTIPLIER

All PIC17C4X devices except the PIC17C42, have an 8 x 8 hardware multiplier included in the ALU of the device. By making the multiply a hardware operation, it completes in a single instruction cycle. This is an unsigned multiply that gives a 16-bit result. The result is stored into the 16-bit PRODuct register (PRODH:PRODL). The multiplier does not affect any flags in the ALUSTA register.

Making the 8 x 8 multiplier execute in a single cycle gives the following advantages:

- Higher computational throughput
- Reduces code size requirements for multiply algorithms

The performance increase allows the device to be used in applications previously reserved for Digital Signal Processors.

Table 8-1 shows a performance comparison between the PIC17C42 and all other PIC17CXX devices, which have the single cycle hardware multiply.

Example 8-1 shows the sequence to do an 8 x 8 unsigned multiply. Only one instruction is required when one argument of the multiply is already loaded in the WREG register.

Example 8-2 shows the sequence to do an 8×8 signed multiply. To account for the sign bits of the arguments, each argument's most significant bit (MSb) is tested and the appropriate subtractions are done.

EXAMPLE 8-1: 8 x 8 MULTIPLY ROUTINE

MOVFP	ARG1,	WREG					
MULWF	ARG2		;	ARG1	*	ARG2	->
			;	PRO	DDI	H:PROI	ЪГ

EXAMPLE 8-2: 8 x 8 SIGNED MULTIPLY ROUTINE

MOVFP	ARG1, WREG		
MULWF	ARG2	;	ARG1 * ARG2 ->
		;	PRODH: PRODL
BTFSC	ARG2, SB	;	Test Sign Bit
SUBWF	PRODH, F	;	PRODH = PRODH
		;	- ARG1
MOVFP	ARG2, WREG		
BTFSC	ARG1, SB	;	Test Sign Bit
SUBWF	PRODH, F	;	PRODH = PRODH
		•	- ARC2

Doutino	Deviee	Program Memory		Time		
Routine	Device	(Words)	Cycles (Max)	@ 25 MHz	@ 33 MHz	
8 x 8 unsigned	PIC17C42	13	69	11.04 μs	N/A	
	All other PIC17CXX devices	1	1	160 ns	121 ns	
8 x 8 signed	PIC17C42	—	—	—	N/A	
	All other PIC17CXX devices	6	6	960 ns	727 ns	
16 x 16 unsigned	PIC17C42	21	242	38.72 μs	N/A	
	All other PIC17CXX devices	24	24	3.84 µs	2.91 μs	
16 x 16 signed	PIC17C42	52	254	40.64 μs	N/A	
	All other PIC17CXX devices	36	36	5.76 μs	4.36 μs	

TABLE 8-1: PERFORMANCE COMPARISON

TABLE 9-9: PORTE FUNCTIONS

Name	Bit	Buffer Type	Function
RE0/ALE	bit0	TTL	Input/Output or system bus Address Latch Enable (ALE) control pin.
RE1/OE	bit1	TTL	Input/Output or system bus Output Enable (OE) control pin.
RE2/WR	bit2	TTL	Input/Output or system bus Write (WR) control pin.

Legend: TTL = TTL input.

TABLE 9-10: REGISTERS/BITS ASSOCIATED WITH PORTE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
15h, Bank 1	PORTE	—	—	—	_	—	RE2/WR	RE1/OE	RE0/ALE	xxx	uuu
14h, Bank 1	DDRE	Data dire	ction registe	111	111						

Legend: x = unknown, u = unchanged, - = unimplemented read as '0'. Shaded cells are not used by PORTE.

Note 1: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
05h, Unbanked	TOSTA	INTEDG	TOSE	TOCS	PS3	PS2	PS1	PS0	_	0000 000-	0000 000-
06h, Unbanked	CPUSTA	_	_	STKAV	GLINTD	TO	PD	-	_	11 11	11 qq
07h, Unbanked	INTSTA	PEIF	T0CKIF	TOIF	INTF	PEIE	TOCKIE	TOIE	INTE	0000 0000	0000 0000
0Bh, Unbanked	TMR0L	TMR0 reg	ister; low by		XXXX XXXX	uuuu uuuu					
0Ch, Unbanked	TMR0H	TMR0 reg	ister; high by	xxxx xxxx	uuuu uuuu						

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', g - value depends on condition, Shaded cells are not used by Timer0. Note 1: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

13.1 USART Baud Rate Generator (BRG)

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit timer. Table 13-1 shows the formula for computation of the baud rate for different USART modes. These only apply when the USART is in synchronous master mode (internal clock) and asynchronous mode.

Given the desired baud rate and Fosc, the nearest integer value between 0 and 255 can be calculated using the formula below. The error in baud rate can then be determined.

TABLE 13-1: BAUD RATE FORMULA

SYNC	Mode	Baud Rate
0	Asynchronous	Fosc/(64(X+1))
1	Synchronous	Fosc/(4(X+1))

X = value in SPBRG (0 to 255)

Example 13-1 shows the calculation of the baud rate error for the following conditions:

Fosc = 16 MHz Desired Baud Rate = 9600 SYNC = 0

EXAMPLE 13-1: CALCULATING BAUD RATE ERROR

Desired Baud rate=Fosc / (64 (X + 1))

 $9600 = \frac{16000000}{(64 (X + 1))}$

X = 25.042 = 25

Calculated Baud Rate=16000000 / (64 (25 + 1))

= 9615

- Error = <u>(Calculated Baud Rate Desired Baud Rate)</u> Desired Baud Rate
 - = (9615 9600) / 9600
 - = 0.16%

Writing a new value to the SPBRG, causes the BRG timer to be reset (or cleared), this ensures that the BRG does not wait for a timer overflow before outputting the new baud rate.

TABLE 13-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
13h, Bank 0	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00u
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	—	_	TRMT	TX9D	00001x	0000lu
17h, Bank 0	h, Bank 0 SPBRG Baud rate generator register										uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used by the Baud Rate Generator. Note 1: Other (non power-up) resets include: external reset through \overline{MCLR} and Watchdog Timer Reset.

TABLE 13-7: REGISTERS ASSOCIATED WITH SYNCHRONOUS MASTER TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
13h, Bank 0	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00u
16h, Bank 0	TXREG	TX7	TX6	TX5	TX4	TX3	TX2	TX1	TX0	xxxx xxxx	uuuu uuuu
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	—	_	TRMT	TX9D	00001x	00001u
17h, Bank 0	SPBRG Baud rate generator register								xxxx xxxx	uuuu uuuu	

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used for synchronous master transmission.

Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

FIGURE 13-9: SYNCHRONOUS TRANSMISSION

FIGURE 13-10: SYNCHRONOUS TRANSMISSION (THROUGH TXEN)

Table 15-2 lists the instructions recognized by the MPASM assembler.

Note 1:	Any	unused o	pcode is	Rese	erved. l	Jse of
	any	reserved	opcode	may	cause	unex-
	pected operation.					

Note 2: The shaded instructions are not available in the PIC17C42

All instruction examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

To represent a binary number:

0000 0100b

where b signifies a binary string.

FIGURE 15-1: GENERAL FORMAT FOR INSTRUCTIONS

15.1 <u>Special Function Registers as</u> <u>Source/Destination</u>

The PIC17C4X's orthogonal instruction set allows read and write of all file registers, including special function registers. There are some special situations the user should be aware of:

15.1.1 ALUSTA AS DESTINATION

If an instruction writes to ALUSTA, the Z, C, DC and OV bits may be set or cleared as a result of the instruction and overwrite the original data bits written. For example, executing CLRF ALUSTA will clear register ALUSTA, and then set the Z bit leaving 0000 0100b in the register.

15.1.2 PCL AS SOURCE OR DESTINATION

Read, write or read-modify-write on PCL may have the following results:

Read PC:	$\text{PCH} \rightarrow \text{PCLATH}; \text{PCL} \rightarrow \text{dest}$
Write PCL:	PCLATH \rightarrow PCH; 8-bit destination value \rightarrow PCL
Read-Modify-Write:	$PCL \rightarrow ALU$ operand $PCLATH \rightarrow PCH$; 8-bit result $\rightarrow PCL$

Where PCH = program counter high byte (not an addressable register), PCLATH = Program counter high holding latch, dest = destination, WREG or f.

15.1.3 BIT MANIPULATION

All bit manipulation instructions are done by first reading the entire register, operating on the selected bit and writing the result back (read-modify-write). The user should keep this in mind when operating on special function registers, such as ports.

ANDWF AND WREG with f					
Synt	tax:	[label] A	NDWF	f,d	
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 25 \\ d \in \ [0,1] \end{array}$	5		
Ope	ration:	(WREG) .	AND. (f)	ightarrow (dest)	1
Stat	us Affected:	Z			
Enco	oding:	0000	101d	ffff	ffff
Des	cription:	The conten register 'f'. in WREG. I back in reg	its of WR If 'd' is 0 f 'd' is 1 t ister 'f'.	EG are AN the result he result is	D'ed with is stored s stored
Wor	ds:	1			
Cycl	es:	1			
QC	ycle Activity:				
	Q1	Q2	Q	3	Q4
	Decode	Read register 'f'	Exect	ute V de:	Vrite to stination
<u>Exa</u>	<u>mple</u> :	ANDWF	REG, 1		
	Before Instru WREG REG	iction = 0x17 = 0xC2			
	After Instruct WREG REG	tion = 0x17 = 0x02			

BCF		Bit Clear	f					
Synt	tax:	[label] E	BCF f,I	b				
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 25 \\ 0 \leq b \leq 7 \end{array}$	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \end{array}$					
Ope	ration:	$0 \rightarrow (f < b >$	-)					
Stat	us Affected:	None						
Enc	oding:	1000	1bbb	fff	f	ffff		
Des	cription:	Bit 'b' in re	gister 'f' is	s clear	ed.			
Words:		1	1					
Cycl	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q3	3		Q4		
	Decode	Read register 'f'	Execu	ute	re	Write gister 'f'		
Exa	<u>mple</u> :	BCF	FLAG_R	EG,	7			
Before Instruction FLAG_REG = 0xC7								
	After Instruction FLAG_REG = 0x47							

INC	F	Incre	men	t f			
Synt	tax:	[labe	e/]	INCF f	,d		
Ope	rands:	0 ≤ f : d ∈ [0	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \left[0,1 \right] \end{array}$				
Ope	ration:	(f) + ′	$1 \rightarrow 0$	(dest)			
Stat	us Affected:	OV, C	, DC	C, Z			
Enco	oding:	000)1	010d	ffff	ffff	
Description:		The commenter WREC back i	The contents of register 'f' are incre- mented. If 'd' is 0 the result is placed in WREG. If 'd' is 1 the result is placed back in register 'f'.				
Wor	ds:	1					
Cycl	es:	1					
QC	ycle Activity:						
	Q1	Q2		Q	3	Q4	
	Decode	Rea registe	d er'f'	Exect	ute de	Write to estination	
<u>Exa</u>	mple:	INCF		CNT,	1		
	Before Instru	uction					
	CNT	= 0x	FF				
	Z C	= 0 = ?					
	After Instruct	tion					
	CNT	= 0x	00				
	Z C	= 1 = 1					

INC	NCFSZ Increment f, skip if 0							
Synt	ax:	[label]	[label] INCFSZ f,d					
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 25 \\ d \in \ [0,1] \end{array}$	$0 \le f \le 255$ $d \in [0,1]$					
Operation: $(f) + 1 \rightarrow (dest)$ skip if result = 0								
State	us Affected:	None						
Enco	oding:	0001	111d	ffff	ffff			
Desc	Description: The contents of register 'f' are incre- mented. If 'd' is 0 the result is placed in WREG. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched, is discarded, and an NOP is executed instead makin it a two-cycle instruction.							
Word	ds:	1	1					
Cycl	es:	1(2)						
QC	cle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read register 'f'	Execu	te \ de	Vrite to stination			
lf ski	p:							
	Q1	Q2	Q3		Q4			
	Forced NOP	NOP	Execu	te	NOP			
<u>Exar</u>	<u>mple</u> :	HERE NZERO ZERO	INCFSZ : :	CNT,	1			
	Before Instru PC	iction = Addres	S (HERE)					
	PC = Address (HERE) After Instruction CNT = CNT + 1 If CNT = 0; PC = Address(ZERO) If CNT \neq 0; PC = Address(NZERO)							

RET	URN	Return fr	om Sub	routine	
Synt	ax:	[label]	RETURI	N	
Ope	rands:	None			
Ope	ration:	$TOS\toP$	C;		
Stat	us Affected:	None			
Enco	oding:	0000	0000	0000	0010
Des	cription:	Return from popped an is loaded in	m subrout d the top nto the pro	ine. The sta of the sta ogram co	stack is ack (TOS) ounter.
Wor	ds:	1			
Cycl	es:	2			
QC	ycle Activity:				
	Q1	Q2	Q3		Q4
	Decode	Read register PCL*	Execu	ite	NOP
	Forced NOP	NOP	Execu	ite	NOP

* Remember reading PCL causes PCLATH to be updated. This will be the high address of where the RETURN instruction is located.

Example: RETURN

After Interrupt PC = TOS

RLCF	Rotate L	Rotate Left f through Carry					
Syntax:	[label]	RLCF	f,d				
Operands:	$0 \le f \le 25$	5					
	d ∈ [0,1]						
Operation:	$f < n > \rightarrow d$	<n+1>;</n+1>					
	$t < l > \rightarrow 0$ C $\rightarrow d < 0$;; >					
Status Affected:	C	-					
Encoding:	0001	101d	ffff	ffff			
Description:	The conte one bit to Flag. If 'd' WREG. If back in reg	The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0 the result is placed in WREG. If 'd' is 1 the result is stored back in register 'f'.					
		reg	ister f	_ _			
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3		Q4			
Decode	Read register 'f'	Execu	te V des	/rite to stination			
Example:	RLCF	RE	G,0				
Before Instru	uction						
REG C	= 1110 0 = 0	0110					
After Instruct REG WREG C	tion = 1110 0 = 1100 1 = 1	0110 .100					

SW/	\PF	Swap f			
Synt	ax:	[label]	SWAPF	f,d	
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 25 \\ d \in \ [0,1] \end{array}$	5		
Ope	ration:	$f < 3:0 > \rightarrow f < 7:4 > \rightarrow$	dest<7: dest<3:	4>; 0>	
State	us Affected:	None			
Enco	oding:	0001	110d	ffff	ffff
Description: The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0 the result is placed in WREG. If 'd' is 1 the result is placed in register 'f'.					of register e result is result is
Wor	ds:	1			
Cycl	es:	1			
QC	ycle Activity:				
	Q1	Q2	Q	3	Q4
	Decode	Read register 'f'	Exect	ute V de	Vrite to stination
<u>Exar</u>	<u>mple</u> :	SWAPF	REG,	0	
Before Instruction REG = 0x53					
	After Instruct REG	ion = 0x35			

TAB	LRD	Table Rea	ad				
Synt	ax:	[label]	TABLRD t,i,f				
Ope	rands:	$0 \le f \le 255$ i $\in [0,1]$ t $\in [0,1]$	$0 \le f \le 255$ i $\in [0,1]$ t $\in [0,1]$				
Ope	ration:	If t = 1, TBLATH \rightarrow f; If t = 0, TBLATL \rightarrow f; Prog Mem (TBLPTR) \rightarrow TBLAT; If i = 1, TBLPTR + 1 \rightarrow TBLPTR					
State	us Affected:	None					
Enco	oding:	1010	10ti ff	ff ffff			
Des	cription:	 A byte of the table latch (TBLAT) is moved to register file 'f'. If t = 0: the high byte is moved; If t = 1: the low byte is moved 					
		2. Then the memory the (TBLF) 16-bit	the contents of ry location po 16-bit Tab TR) is loade Table Latch (T	the program binted to by le Pointer ed into the BLAT).			
		3. If i = 1 If i = 0	: TBLPTR is i : TBLPTR is r incremented	ncremented; not			
Wor	ds:	1					
Cycl	es:	2 (3 cycle if f = PCL)					
QC	ycle Activity:						
	Q1	Q2	Q3	Q4			
	Decode	Read register TBLATH or TBLATL	Execute	Write register 'f'			

16.6 <u>PICDEM-1 Low-Cost PIC16/17</u> <u>Demonstration Board</u>

The PICDEM-1 is a simple board which demonstrates the capabilities of several of Microchip's microcontrollers. The microcontrollers supported are: PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The users can program the sample microcontrollers provided with the PICDEM-1 board, on a PRO MATE II or PICSTART-16B programmer, and easily test firmware. The user can also connect the PICDEM-1 board to the PICMASTER emulator and download the firmware to the emulator for testing. Additional prototype area is available for the user to build some additional hardware and connect it to the microcontroller socket(s). Some of the features include an RS-232 interface, a potentiometer for simulated analog input, push-button switches and eight LEDs connected to PORTB.

16.7 <u>PICDEM-2 Low-Cost PIC16CXX</u> Demonstration Board

The PICDEM-2 is a simple demonstration board that supports the PIC16C62, PIC16C64, PIC16C65, PIC16C73 and PIC16C74 microcontrollers. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-2 board, on a PRO MATE II programmer or PICSTART-16C, and easily test firmware. The PICMASTER emulator may also be used with the PICDEM-2 board to test firmware. Additional prototype area has been provided to the user for adding additional hardware and connecting it to the microcontroller socket(s). Some of the features include a RS-232 interface, push-button switches, a potentiometer for simulated analog input, a Serial EEPROM to demonstrate usage of the I²C bus and separate headers for connection to an LCD module and a keypad.

16.8 <u>PICDEM-3 Low-Cost PIC16CXXX</u> <u>Demonstration Board</u>

The PICDEM-3 is a simple demonstration board that supports the PIC16C923 and PIC16C924 in the PLCC package. It will also support future 44-pin PLCC microcontrollers with a LCD Module. All the necessary hardware and software is included to run the basic demonstration programs. The user can program the sample microcontrollers provided with the PICDEM-3 board, on a PRO MATE II programmer or PICSTART Plus with an adapter socket, and easily test firmware. The PICMASTER emulator may also be used with the PICDEM-3 board to test firmware. Additional prototype area has been provided to the user for adding hardware and connecting it to the microcontroller socket(s). Some of the features include an RS-232 interface, push-button switches, a potentiometer for simulated analog input, a thermistor and separate headers for connection to an external LCD module and a keypad. Also provided on the PICDEM-3 board is an LCD panel, with 4 commons and 12 segments, that is capable of displaying time, temperature and day of the week. The PICDEM-3 provides an additional RS-232 interface and Windows 3.1 software for showing the demultiplexed LCD signals on a PC. A simple serial interface allows the user to construct a hardware demultiplexer for the LCD signals. PICDEM-3 will be available in the 3rd quarter of 1996.

16.9 <u>MPLAB Integrated Development</u> <u>Environment Software</u>

The MPLAB IDE Software brings an ease of software development previously unseen in the 8-bit microcontroller market. MPLAB is a windows based application which contains:

- · A full featured editor
- Three operating modes
 - editor
 - emulator
 - simulator
- A project manager
- Customizable tool bar and key mapping
- A status bar with project information
- Extensive on-line help

MPLAB allows you to:

- Edit your source files (either assembly or 'C')
- One touch assemble (or compile) and download to PIC16/17 tools (automatically updates all project information)
- Debug using:
 - source files
 - absolute listing file
- Transfer data dynamically via DDE (soon to be replaced by OLE)
- Run up to four emulators on the same PC

The ability to use MPLAB with Microchip's simulator allows a consistent platform and the ability to easily switch from the low cost simulator to the full featured emulator with minimal retraining due to development tools.

16.10 Assembler (MPASM)

The MPASM Universal Macro Assembler is a PChosted symbolic assembler. It supports all microcontroller series including the PIC12C5XX, PIC14000, PIC16C5X, PIC16CXXX, and PIC17CXX families.

MPASM offers full featured Macro capabilities, conditional assembly, and several source and listing formats. It generates various object code formats to support Microchip's development tools as well as third party programmers.

TABLE 17-1:CROSS REFERENCE OF DEVICE SPECS FOR OSCILLATOR CONFIGURATIONS
AND FREQUENCIES OF OPERATION (COMMERCIAL DEVICES)

OSC	PIC17C42-16	PIC17C42-25
RC	VDD: 4.5V to 5.5V	VDD: 4.5V to 5.5V
	IDD: 6 mA max.	IDD: 6 mA max.
	IPD: 5 μA max. at 5.5V (WDT disabled)	IPD: 5 μA max. at 5.5V (WDT disabled)
	Freq: 4 MHz max.	Freq: 4 MHz max.
XT	VDD: 4.5V to 5.5V	VDD: 4.5V to 5.5V
	IDD: 24 mA max.	IDD: 38 mA max.
	IPD: 5 μA max. at 5.5V (WDT disabled)	IPD: 5 μA max. at 5.5V (WDT disabled)
	Freq: 16 MHz max.	Freq: 25 MHz max.
EC	VDD: 4.5V to 5.5V	VDD: 4.5V to 5.5V
	IDD: 24 mA max.	IDD: 38 mA max.
	IPD: 5 μA max. at 5.5V (WDT disabled)	IPD: 5 μA max. at 5.5V (WDT disabled)
	Freq: 16 MHz max.	Freq: 25 MHz max.
LF	VDD: 4.5V to 5.5V	VDD: 4.5V to 5.5V
	IDD: 150 μA max. at 32 kHz (WDT enabled)	IDD: 150 μA max. at 32 kHz (WDT enabled)
	IPD: 5 μA max. at 5.5V (WDT disabled)	IPD: 5 μA max. at 5.5V (WDT disabled)
	Freq: 2 MHz max.	Freq: 2 MHz max.

DC CHARACTERISTICS			Standard Operating Conditions (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +40^{\circ}C$ Operating voltage VDD range as described in Section 17.1				
Parameter No.	Sym	Characteristic Min Typ† Max Units Conditions				Conditions	
		Internal Program Memory Programming Specs (Note 4)					
D110 D111	Vpp Vddp	Voltage on MCLR/VPP pin Supply voltage during programming	12.75 4.75	_ 5.0	13.25 5.25	V V	Note 5
D112	IPP	Current into MCLR/VPP pin	-	25 ‡	50 ‡	mA	
D113	IDDP	Supply current during programming	-	_	30 ‡	mA	
D114	TPROG	Programming pulse width	10	100	1000	μs	Terminated via internal/exter- nal interrupt or a reset

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC17CXX devices be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in: PIC17CXX Programming Specifications (Literature number DS30139).

5: The MCLR/VPP pin may be kept in this range at times other than programming, but is not recommended.

6: For TTL buffers, the better of the two specifications may be used.

Note: When using the Table Write for internal programming, the device temperature must be less than 40°C.

17.3 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created using one of the following formats:

- 1. TppS2ppS
- 2. TppS

Т				
F	Frequency	Т	Time	
Lowerc	case symbols (pp) and their meanings:			
рр				
ad	Address/Data	ost	Oscillator Start-up Timer	
al	ALE	pwrt	Power-up Timer	
сс	Capture1 and Capture2	rb	PORTB	
ck	CLKOUT or clock	rd	RD	
dt	Data in	rw	RD or WR	
in	INT pin	tO	TOCKI	
io	I/O port	t123	TCLK12 and TCLK3	
mc	MCLR	wdt	Watchdog Timer	
oe	ŌĒ	wr	WR	
os	OSC1			
Upperc	case symbols and their meanings:			
S				
D	Driven	L	Low	
E	Edge	P	Period	
F	Fall	R	Rise	
н	High	V	Valid	
	Invalid (Hi-impedance)	Z	Hi-impedance	

Applicable Devices 42 R42 42A 43 R43 44

19.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created following one of the following formats:

1. TppS2p	1. TppS2ppS		(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			· · · · · · · · · · · · · · · · · · ·
F	Frequency	Т	Time
Lowerca	ase symbols (pp) and their meanings:		
рр			
ad	Address/Data	ost	Oscillator Start-Up Timer
al	ALE	pwrt	Power-Up Timer
сс	Capture1 and Capture2	rb	PORTB
ck	CLKOUT or clock	rd	RD
dt	Data in	rw	RD or WR
in	INT pin	tO	TOCKI
io	I/O port	t123	TCLK12 and TCLK3
mc	MCLR	wdt	Watchdog Timer
oe	ŌĒ	wr	WR
os	OSC1		
Upperca	ase symbols and their meanings:		
S			
D	Driven	L	Low
E	Edge	Р	Period
F	Fall	R	Rise
н	High	V	Valid
1	Invalid (Hi-impedance)	Z	Hi-impedance

TABLE 19-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)		100 *	—	—	ns	VDD = 5V
31	Twdt	Watchdog Timer Time-out Period (Prescale = 1)		5 *	12	25 *	ms	VDD = 5V
32	Tost	Oscillation Start-up Timer Period		—	1024Tosc§	—	ms	Tosc = OSC1 period
33	Tpwrt	Power-up Timer Period		40 *	96	200 *	ms	VDD = 5V
35	TmcL2adl	MCLR to System Inter- face bus (AD15:AD0>)	PIC17CR42/42A/ 43/R43/44	_	—	100 *	ns	
		invalid	PIC17LCR42/ 42A/43/R43/44	—	—	120 *	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

§ This specification ensured by design.

Applicable Devices 42 R42 42A 43 R43 44

E.7 <u>PIC16C9XX Family Of Devices</u>

Figure 6-12:	Program Counter using The CALL and
Figure 6-13:	BSR Operation (PIC17C43/R43/44)
Figure 7-1:	TLWT Instruction Operation43
Figure 7-2:	TABLWT Instruction Operation
Figure 7-3	TI RD Instruction Operation 44
Figure 7-4:	TABLED Instruction Operation 44
Figure 7-4.	TABLERD Instruction Operation
Figure 7-5:	
Figure 7-6:	(External Memory)
	(External Memory)47
Figure 7-7:	TABLRD Timing48
Figure 7-8:	TABLRD Timing (Consecutive TABLRD
0	Instructions) 48
Figure 9-1.	RA0 and RA1 Block Diagram 53
Figure 0.2:	PA2 and PA2 Block Diagram 54
Figure 9-2.	RAZ and RAS block blagram
Figure 9-3:	RA4 and RA5 Block Diagram
Figure 9-4:	Block Diagram of RB<7:4> and RB<1:0>
Figuro 0 5:	Block Diagram of PB2 and PB2 Port Pine 56
Figure 9-5.	Block Diagram of RO 7.0 Bart Bias
Figure 9-6:	BIOCK Diagram of RC<7:0> Port Pins
Figure 9-7:	PORID Block Diagram
	(in I/O Port Mode)60
Figure 9-8:	PORTE Block Diagram
	(in I/O Port Mode)
Figure 9-9:	Successive I/O Operation
Figure 11-1	T0STA Register (Address: 05h
rigulo II I.	Linbanked) 67
Figuro 11 2	Timor() Modulo Block Diagram
Figure 11-2.	TMD0 Timing with External Clash
Figure 11-3:	
	(Increment on Falling Edge)
Figure 11-4:	TMR0 Timing: Write High or Low Byte 69
Figure 11-5:	TMR0 Read/Write in Timer Mode70
Figure 12-1:	TCON1 Register (Address: 16h, Bank 3) 71
Figure 12-2:	TCON2 Register (Address: 17h, Bank 3) 72
Figure 12-3:	Timer1 and Timer2 in Two 8-bit
•	Timer/Counter Mode73
Figure 12-4:	TMR1 and TMR2 in 16-bit Timer/Counter
0.0	Mode 74
Figure 12-5	Simplified PWM Block Diagram 75
Figure 12-6	PW/M Output 75
Figure 12 7:	Timor? with One Conture and One
rigute 12-7.	Pariad Pagister Plack Diagram
	Timer2 with Two Conture Degisters
Figure 12-8.	Timers with two Capture Registers
-	Block Diagram
Figure 12-9:	IMR1, IMR2, and IMR3 Operation in
	External Clock Mode80
Figure 12-10:	TMR1, TMR2, and TMR3 Operation in
	Timer Mode81
Figure 13-1:	TXSTA Register (Address: 15h, Bank 0) 83
Figure 13-2:	RCSTA Register (Address: 13h, Bank 0) 84
Figure 13-3:	USART Transmit
Figure 13-4	LISART Receive 85
Figuro 12 5:	
Figure 13-5.	Acynchronous Master Transmission 00
	Asynchronous Master Transmission
riguie 10-0.	Asynchronous Master Transmission
	Asynchronous Master Transmission
Figure 13-7:	Asynchronous Master Transmission
Figure 13-7: Figure 13-8:	Asynchronous Master Transmission
Figure 13-7: Figure 13-8: Figure 13-9:	Asynchronous Master Transmission
Figure 13-7: Figure 13-8: Figure 13-9: Figure 13-10:	Asynchronous Master Transmission
Figure 13-7: Figure 13-8: Figure 13-9: Figure 13-10:	Asynchronous Master Transmission
Figure 13-7: Figure 13-8: Figure 13-9: Figure 13-10: Figure 13-11:	Asynchronous Master Transmission
Figure 13-7: Figure 13-8: Figure 13-9: Figure 13-10: Figure 13-11:	Asynchronous Master Transmission
Figure 13-7: Figure 13-8: Figure 13-9: Figure 13-10: Figure 13-11: Figure 14-1:	Asynchronous Master Transmission
Figure 13-7: Figure 13-8: Figure 13-9: Figure 13-10: Figure 13-11: Figure 14-1: Figure 14-2:	Asynchronous Master Transmission
Figure 13-7: Figure 13-8: Figure 13-9: Figure 13-10: Figure 13-11: Figure 14-1: Figure 14-2:	Asynchronous Master Transmission

Figure 14-3:	Crystal Operation, Overtone Crystals	
	(XT OSC Configuration)	101
Figure 14-4:	External Clock Input Operation	
	(EC OSC Configuration)	101
Figure 14-5:	External Parallel Resonant Crystal	
	Oscillator Circuit	102
Figure 14-6:	External Series Resonant Crystal	
	Oscillator Circuit	102
Figure 14-7:	RC Oscillator Mode	102
Figure 14-8:	Watchdog Timer Block Diagram	104
Figure 14-9:	Wake-up From Sleep Through Interrupt	105
Figure 15-1:	General Format for Instructions	108
Figure 15-2:	Q Cycle Activity	109
Figure 17-1:	Parameter Measurement Information	154
Figure 17-2:	External Clock Timing	155
Figure 17-3:	CLKOUT and I/O Timing	156
Figure 17-4:	Reset, Watchdog Timer,	
	Oscillator Start-Up Timer and	
	Power-Up Timer Timing	157
Figure 17-5	Timer() Clock Timings	158
Figure 17-6:	Timer1 Timer2 And Timer3 Clock	100
Figure 17-0.	Timinge	150
Figure 17 7	Conturo Timingo	150
Figure 17-7:		159
Figure 17-8:		159
Figure 17-9:	USART Module: Synchronous	
	Transmission (Master/Slave) Timing	160
Figure 17-10	: USART Module: Synchronous Receive	
	(Master/Slave) Timing	160
Figure 17-11	: Memory Interface Write Timing	161
Figure 17-12	: Memory Interface Read Timing	162
Figure 18-1:	Typical RC Oscillator Frequency	
	vs. Temperature	163
Figure 18-2:	Typical RC Oscillator Frequency	
•	vs. VDD	164
Figure 18-3:	Typical RC Oscillator Frequency	
0	vs. VDD	164
Figure 18-4:	Typical RC Oscillator Frequency	
0	vs. VDD	165
Figure 18-5:	Transconductance (gm) of LF Oscillator	
J	vs. Vpp	166
Figure 18-6:	Transconductance (gm) of XT Oscillator	
	vs. VDD	166
Figure 18-7	Typical Jpp vs. Frequency (External	100
rigulo lo l.	Clock 25°C)	167
Figure 18-8	Maximum IDD vs. Frequency (External	107
Figure 10-0.	Clock 125°C to 40°C	167
Figure 19 0.		107
Figure 10-9.	Disabled 2500	400
E:		100
Figure 18-10	Diastriad	400
		168
Figure 18-11	: Typical IPD vs. VDD Watchdog	
	Enabled 25°C	169
Figure 18-12	: Maximum IPD vs. VDD Watchdog	
	Enabled	169
Figure 18-13	: WDT Timer Time-Out Period vs. VDD	170
Figure 18-14	: IOH vs. VOH, VDD = 3V	170
Figure 18-15	: IOH vs. VOH, VDD = 5V	171
Figure 18-16	: IOL vs. VOL, VDD = 3V	171
Figure 18-17	: IOL vs. VOL, VDD = 5V	172
Figure 18-18	VTH (Input Threshold Voltage) of	
3	I/O Pins (TTL) vs. VDD	172
Figure 18-19	VTH, VIL of I/O Pins (Schmitt Trigger) VS	
. igaio 10-19	Von	173
Figure 18-20	· VTH (Input Threshold Voltage) of OSC1	115
- iguie 10-20	Input (In XT and LE Modes) vs. Vpp	172
Figure 10.4	Decomptor Monourcement Information	100
Figure 19-1:	Farameter weasurement information	103