
Microchip Technology - PIC17C44T-33/L Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated
circuits designed to perform specific tasks within larger
systems. These microcontrollers are essentially compact
computers on a single chip, containing a processor core,
memory, and programmable input/output peripherals.
They are called "embedded" because they are embedded
within electronic devices to control various functions,
rather than serving as standalone computers.
Microcontrollers are crucial in modern electronics,
providing the intelligence and control needed for a wide
range of applications.

Applications of "Embedded -
Microcontrollers"

Embedded microcontrollers are used in virtually every
sector of electronics, providing the necessary control and
processing power for a multitude of applications. In
consumer electronics, they manage the operations of
smartphones, home appliances, and wearable devices. In
automotive systems, microcontrollers control engine
functions, safety features, and infotainment systems.
Industrial applications rely on microcontrollers for
automation, robotics, and process control. Additionally,
microcontrollers are integral in medical devices, handling
functions such as monitoring, diagnostics, and control of
therapeutic equipment. Their versatility and
programmability make them essential components in
creating efficient, responsive, and intelligent electronic
systems.

Common Subcategories of "Embedded -
Microcontrollers"

Embedded microcontrollers can be categorized based on
their architecture, performance, and application focus.
Common subcategories include 8-bit, 16-bit, and 32-bit
microcontrollers, differentiated by their processing power
and memory capacity. 8-bit microcontrollers are typically
used in simple applications like basic control systems and
small devices. 16-bit microcontrollers offer a balance
between performance and complexity, suitable for
medium-scale applications like industrial automation. 32-
bit microcontrollers provide high performance and are
used in complex applications requiring advanced
processing, such as automotive systems and sophisticated
consumer electronics. Each subcategory serves a specific
range of applications, providing tailored solutions for
different performance and complexity needs.

Types of "Embedded - Microcontrollers"

There are various types of embedded microcontrollers,
each designed to meet specific application requirements.
General-purpose microcontrollers are versatile and used in
a wide range of applications, offering a balance of
performance, memory, and peripheral options. Special-
purpose microcontrollers are tailored for specific tasks,
such as automotive controllers, which include features like
built-in motor control peripherals and automotive-grade

Details

Product Status Obsolete

Core Processor PIC

Core Size 8-Bit

Speed 33MHz

Connectivity UART/USART

Peripherals POR, PWM, WDT

Number of I/O 33

Program Memory Size 16KB (8K x 16)

Program Memory Type OTP

EEPROM Size -

RAM Size 454 x 8

Voltage - Supply (Vcc/Vdd) 4.5V ~ 6V

Data Converters -

Oscillator Type External

Operating Temperature 0°C ~ 70°C (TA)

Mounting Type Surface Mount

Package / Case 44-LCC (J-Lead)

Supplier Device Package 44-PLCC (16.59x16.59)

Purchase URL https://www.e-xfl.com/product-detail/microchip-technology/pic17c44t-33-l

Email: info@E-XFL.COM Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

https://www.e-xfl.com/product/pdf/pic17c44t-33-l-4425386
https://www.e-xfl.com
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers
https://www.e-xfl.com/product/filter/embedded-microcontrollers

PIC17C4X

DS30412C-page 4



 1996 Microchip Technology Inc.

NOTES:

PIC17C4X

DS30412C-page 6



 1996 Microchip Technology Inc.

TABLE 1-1: PIC17CXX FAMILY OF DEVICES

Features PIC17C42 PIC17CR42 PIC17C42A PIC17C43 PIC17CR43 PIC17C44

Maximum Frequency of Operation 25 MHz 33 MHz 33 MHz 33 MHz 33 MHz 33 MHz

Operating Voltage Range 4.5 - 5.5V 2.5 - 6.0V 2.5 - 6.0V 2.5 - 6.0V 2.5 - 6.0V 2.5 - 6.0V

Program Memory x16 (EPROM) 2K - 2K 4K - 8K

(ROM) - 2K - - 4K -

Data Memory (bytes) 232 232 232 454 454 454

Hardware Multiplier (8 x 8) - Yes Yes Yes Yes Yes

Timer0 (16-bit + 8-bit postscaler) Yes Yes Yes Yes Yes Yes

Timer1 (8-bit) Yes Yes Yes Yes Yes Yes

Timer2 (8-bit) Yes Yes Yes Yes Yes Yes

Timer3 (16-bit) Yes Yes Yes Yes Yes Yes

Capture inputs (16-bit) 2 2 2 2 2 2

PWM outputs (up to 10-bit) 2 2 2 2 2 2

USART/SCI Yes Yes Yes Yes Yes Yes

Power-on Reset Yes Yes Yes Yes Yes Yes

Watchdog Timer Yes Yes Yes Yes Yes Yes

External Interrupts Yes Yes Yes Yes Yes Yes

Interrupt Sources 11 11 11 11 11 11

Program Memory Code Protect Yes Yes Yes Yes Yes Yes

I/O Pins 33 33 33 33 33 33

I/O High Current Capabil-
ity

Source 25 mA 25 mA 25 mA 25 mA 25 mA 25 mA

Sink 25 mA

(1)

25 mA

(1)

25 mA

(1)

25 mA

(1)

25 mA

(1)

25 mA

(1)

Package Types 40-pin DIP
44-pin PLCC
44-pin MQFP

40-pin DIP
44-pin PLCC
44-pin MQFP
44-pin TQFP

40-pin DIP
44-pin PLCC
44-pin MQFP
44-pin TQFP

40-pin DIP
44-pin PLCC
44-pin MQFP
44-pin TQFP

40-pin DIP
44-pin PLCC
44-pin MQFP
44-pin TQFP

40-pin DIP
44-pin PLCC
44-pin MQFP
44-pin TQFP

Note 1: Pins RA2 and RA3 can sink up to 60 mA.

PIC17C4X

DS30412C-page 30



 1996 Microchip Technology Inc.

TABLE 6-1: MODE MEMORY ACCESS

Operating
Mode

Internal
Program
Memory

Configuration Bits,
Test Memory,

Boot ROM

Microprocessor No Access No Access

Microcontroller Access Access

Extended
Microcontroller

Access No Access

Protected
Microcontroller

Access Access

The PIC17C4X can operate in modes where the pro-
gram memory is off-chip. They are the microprocessor
and extended microcontroller modes. The micropro-
cessor mode is the default for an unprogrammed
device.

Regardless of the processor mode, data memory is
always on-chip.

FIGURE 6-2: MEMORY MAP IN DIFFERENT MODES

Microprocessor
Mode

0000h

FFFFh

External
Program
Memory

External
Program
Memory

0800h

FFFFh

0000h

07FFh

On-chip
Program
Memory

Extended
Microcontroller
Mode

Microcontroller
Modes

0000h

07FFh
0800h

FE00h

FFFFh

OFF-CHIP ON-CHIP OFF-CHIP ON-CHIP OFF-CHIP ON-CHIP

00h

FFh

00h

FFh

00h

FFh

OFF-CHIP ON-CHIP OFF-CHIP ON-CHIP OFF-CHIP ON-CHIP

P
R

O
G

R
A

M
 S

PA
C

E
D

AT
A

 S
PA

C
E

Config. Bits
Test Memory
Boot ROM

PIC17C42,

0000h

FFFFh

External
Program
Memory

External
Program
Memory

1000h/

FFFFh

0000h 0000h

0FFFh/1FFFh
1000h/2000h

FE00h

FFFFh

OFF-CHIP ON-CHIP OFF-CHIP ON-CHIP OFF-CHIP ON-CHIP

Config. Bits
Test Memory
Boot ROM

P
R

O
G

R
A

M
 S

PA
C

E
D

AT
A

 S
PA

C
E

00h

FFh 1FFh

120h

OFF-CHIP ON-CHIP

00h

FFh 1FFh

120h

OFF-CHIP ON-CHIP

00h

FFh 1FFh

120h

OFF-CHIP ON-CHIP

0FFFh/1FFFh

2000h

PIC17CR42,
PIC17C42A

PIC17C43,
PIC17CR43,
PIC17C44

On-chip
Program
Memory

On-chip
Program
Memory

On-chip
Program
Memory

PIC17C4X

DS30412C-page 38  1996 Microchip Technology Inc.

6.2.2.3 TMR0 STATUS/CONTROL REGISTER
(T0STA)

This register contains various control bits. Bit7
(INTEDG) is used to control the edge upon which a sig-
nal on the RA0/INT pin will set the RB0/INT interrupt
flag. The other bits configure the Timer0 prescaler and
clock source. (Figure 11-1).

FIGURE 6-9: T0STA REGISTER (ADDRESS: 05h, UNBANKED)

R/W - 0 R/W - 0 R/W - 0 R/W - 0 R/W - 0 R/W - 0 R/W - 0 U - 0
INTEDG T0SE T0CS PS3 PS2 PS1 PS0 — R = Readable bit

W = Writable bit
U = Unimplemented,
 reads as ‘0’
-n = Value at POR reset

bit7 bit0

bit 7: INTEDG: RA0/INT Pin Interrupt Edge Select bit
This bit selects the edge upon which the interrupt is detected.
1 = Rising edge of RA0/INT pin generates interrupt
0 = Falling edge of RA0/INT pin generates interrupt

bit 6: T0SE: Timer0 Clock Input Edge Select bit
This bit selects the edge upon which TMR0 will increment.
When T0CS = 0
1 = Rising edge of RA1/T0CKI pin increments TMR0 and/or generates a T0CKIF interrupt
0 = Falling edge of RA1/T0CKI pin increments TMR0 and/or generates a T0CKIF interrupt
When T0CS = 1
Don’t care

bit 5: T0CS: Timer0 Clock Source Select bit
This bit selects the clock source for Timer0.
1 = Internal instruction clock cycle (TCY)
0 = T0CKI pin

bit 4-1: PS3:PS0: Timer0 Prescale Selection bits
These bits select the prescale value for Timer0.

bit 0: Unimplemented: Read as '0'

PS3:PS0 Prescale Value

0000
0001
0010
0011
0100
0101
0110
0111
1xxx

1:1
1:2
1:4
1:8
1:16
1:32
1:64
1:128
1:256

 1996 Microchip Technology Inc. DS30412C-page 39

PIC17C4X

6.3 Stack Operation

The PIC17C4X devices have a 16 x 16-bit wide hard-
ware stack (Figure 6-1). The stack is not part of either
the program or data memory space, and the stack
pointer is neither readable nor writable. The PC is
“PUSHed” onto the stack when a CALL instruction is
executed or an interrupt is acknowledged. The stack is
“POPed” in the event of a RETURN, RETLW, or a RETFIE
instruction execution. PCLATH is not affected by a
“PUSH” or a “POP” operation.

The stack operates as a circular buffer, with the stack
pointer initialized to '0' after all resets. There is a stack
available bit (STKAV) to allow software to ensure that
the stack has not overflowed. The STKAV bit is set after
a device reset. When the stack pointer equals Fh,
STKAV is cleared. When the stack pointer rolls over
from Fh to 0h, the STKAV bit will be held clear until a
device reset.

After the device is “PUSHed” sixteen times (without a
“POP”), the seventeenth push overwrites the value
from the first push. The eighteenth push overwrites the
second push (and so on).

Note 1: There is not a status bit for stack under-
flow. The STKAV bit can be used to detect
the underflow which results in the stack
pointer being at the top of stack.

Note 2: There are no instruction mnemonics
called PUSH or POP. These are actions
that occur from the execution of the CALL,
RETURN, RETLW, and RETFIE instruc-
tions, or the vectoring to an interrupt vec-
tor.

Note 3: After a reset, if a “POP” operation occurs
before a “PUSH” operation, the STKAV bit
will be cleared. This will appear as if the
stack is full (underflow has occurred). If a
“PUSH” operation occurs next (before
another “POP”), the STKAV bit will be
locked clear. Only a device reset will
cause this bit to set.

6.4 Indirect Addressing

Indirect addressing is a mode of addressing data
memory where the data memory address in the
instruction is not fixed. That is, the register that is to be
read or written can be modified by the program. This
can be useful for data tables in the data memory.
Figure 6-10 shows the operation of indirect address-
ing. This shows the moving of the value to the data
memory address specified by the value of the FSR
register.

Example 6-1 shows the use of indirect addressing to
clear RAM in a minimum number of instructions. A
similar concept could be used to move a defined num-
ber of bytes (block) of data to the USART transmit reg-
ister (TXREG). The starting address of the block of
data to be transmitted could easily be modified by the
program.

FIGURE 6-10: INDIRECT ADDRESSING

Opcode Address

File = INDFx

FSR

Instruction
Executed

Instruction
Fetched

RAM

Opcode File



 1996 Microchip Technology Inc. DS30412C-page 43

PIC17C4X

7.0 TABLE READS AND TABLE
WRITES

The PIC17C4X has four instructions that allow the pro-
cessor to move data from the data memory space to
the program memory space, and vice versa. Since the
program memory space is 16-bits wide and the data
memory space is 8-bits wide, two operations are
required to move 16-bit values to/from the data mem-
ory.

The

TLWT t,f

 and

TABLWT t,i,f

 instructions are
used to write data from the data memory space to the
program memory space. The

TLRD t,f

 and

TABLRD
t,i,f

 instructions are used to write data from the pro-
gram memory space to the data memory space.

The program memory can be internal or external. For
the program memory access to be external, the device
needs to be operating in extended microcontroller or
microprocessor mode.

Figure 7-1 through Figure 7-4 show the operation of
these four instructions.

FIGURE 7-1: TLWT INSTRUCTION
OPERATION

TABLE POINTER

TABLE LATCH (16-bit)

PROGRAM MEMORY
DATA

MEMORY

TBLPTRH TBLPTRL

TABLATH TABLATL

f

TLWT 1,f TLWT 0,f

1

Note 1: 8-bit value, from register 'f', loaded into the
high or low byte in TABLAT (16-bit).

FIGURE 7-2: TABLWT INSTRUCTION
OPERATION

TABLE POINTER

TABLE LATCH (16-bit)

PROGRAM MEMORY
DATA

MEMORY

TBLPTRH TBLPTRL

TABLATH TABLATL

f

TABLWT 1,i,f TABLWT 0,i,f

1

Prog-Mem
(TBLPTR)

2

Note 1: 8-bit value, from register 'f', loaded into
the high or low byte in TABLAT (16-bit).

2: 16-bit TABLAT value written to address
Program Memory (TBLPTR).

3: If “i” = 1, then TBLPTR = TBLPTR + 1,
If “i” = 0, then TBLPTR is unchanged.

3 3

This document was created with FrameMaker 4 0 4

PIC17C4X

DS30412C-page 76



 1996 Microchip Technology Inc.

12.1.3.1 PWM PERIODS

The period of the PWM1 output is determined by
Timer1 and its period register (PR1). The period of the
PWM2 output can be software configured to use either
Timer1 or Timer2 as the time-base. When TM2PW2 bit
(PW2DCL<5>) is clear, the time-base is determined by
TMR1 and PR1. When TM2PW2 is set, the time-base
is determined by Timer2 and PR2.

Running two different PWM outputs on two different
timers allows different PWM periods. Running both
PWMs from Timer1 allows the best use of resources by
freeing Timer2 to operate as an 8-bit timer. Timer1 and
Timer2 can not be used as a 16-bit timer if either PWM
is being used.

The PWM periods can be calculated as follows:

period of PWM1 =[(PR1) + 1] x 4T

OSC

period of PWM2 =[(PR1) + 1] x 4T

OSC

 or
[(PR2) + 1] x 4T

OSC

The duty cycle of PWMx is determined by the 10-bit
value DCx<9:0>. The upper 8-bits are from register
PWxDCH and the lower 2-bits are from PWxDCL<7:6>
(PWxDCH:PWxDCL<7:6>). Table 12-3 shows the
maximum PWM frequency (F

PWM

) given the value in
the period register.

The number of bits of resolution that the PWM can
achieve depends on the operation frequency of the
device as well as the PWM frequency (F

PWM

).

Maximum PWM resolution (bits) for a given PWM fre-
quency:

The PWMx duty cycle is as follows:

PWMx Duty Cycle = (DCx) x T

OSC

where DCx represents the 10-bit value from
PWxDCH:PWxDCL.

If DCx = 0, then the duty cycle is zero. If PRx =
PWxDCH, then the PWM output will be low for one to
four Q-clock (depending on the state of the
PWxDCL<7:6> bits). For a Duty Cycle to be 100%, the
PWxDCH value must be greater then the PRx value.

The duty cycle registers for both PWM outputs are dou-
ble buffered. When the user writes to these registers,
they are stored in master latches. When TMR1 (or
TMR2) overflows and a new PWM period begins, the
master latch values are transferred to the slave latches
and the PWMx pin is forced high.

Note:

For PW1DCH, PW1DCL, PW2DCH and
PW2DCL registers, a write operation
writes to the "master latches" while a read
operation reads the "slave latches". As a
result, the user may not read back what
was just written to the duty cycle registers.

log (FPWM

log (2)

FOSC)
bits=

The user should also avoid any "read-modify-write"
operations on the duty cycle registers, such as:

ADDWF
PW1DCH

. This may cause duty cycle outputs that are
unpredictable.

TABLE 12-3: PWM FREQUENCY vs.
RESOLUTION AT 25 MHz

12.1.3.2 PWM INTERRUPTS

The PWM module makes use of TMR1 or TMR2 inter-
rupts. A timer interrupt is generated when TMR1 or
TMR2 equals its period register and is cleared to zero.
This interrupt also marks the beginning of a PWM
cycle. The user can write new duty cycle values before
the timer roll-over. The TMR1 interrupt is latched into
the TMR1IF bit and the TMR2 interrupt is latched into
the TMR2IF bit. These flags must be cleared in soft-
ware.

12.1.3.3 EXTERNAL CLOCK SOURCE

The PWMs will operate regardless of the clock source
of the timer. The use of an external clock has ramifica-
tions that must be understood. Because the external
TCLK12 input is synchronized internally (sampled once
per instruction cycle), the time TCLK12 changes to the
time the timer increments will vary by as much as T

CY

(one instruction cycle). This will cause jitter in the duty
cycle as well as the period of the PWM output.

This jitter will be

±

T

CY

, unless the external clock is syn-
chronized with the processor clock. Use of one of the
PWM outputs as the clock source to the TCLKx input,
will supply a synchronized clock.

In general, when using an external clock source for
PWM, its frequency should be much less than the
device frequency (Fosc).

PWM
Frequency

Frequency (kHz)

24.4 48.8 65.104 97.66 390.6

PRx Value 0xFF 0x7F 0x5F 0x3F 0x0F
High
Resolution

10-bit 9-bit 8.5-bit 8-bit 6-bit

Standard
Resolution

8-bit 7-bit 6.5-bit 6-bit 4-bit

PIC17C4X

DS30412C-page 84



 1996 Microchip Technology Inc.

FIGURE 13-2: RCSTA REGISTER (ADDRESS: 13h, BANK 0)

R/W - 0 R/W - 0 R/W - 0 R/W - 0 U - 0 R - 0 R - 0 R - x
SPEN RX9 SREN CREN — FERR OERR RX9D

R = Readable bit
W = Writable bit
-n = Value at POR reset
 (x = unknown)

bit7 bit 0

bit 7:

SPEN

: Serial Port Enable bit
1 = Configures RA5/RX/DT and RA4/TX/CK pins as serial port pins
0 = Serial port disabled

bit 6:

RX9

: 9-bit Receive Enable bit
1 = Selects 9-bit reception
0 = Selects 8-bit reception

bit 5:

SREN

: Single Receive Enable bit
This bit enables the reception of a single byte. After receiving the byte, this bit is automatically cleared.
Synchronous mode:
1 = Enable reception
0 = Disable reception
Note: This bit is ignored in synchronous slave reception.
Asynchronous mode:
Don’t care

bit 4:

CREN

: Continuous Receive Enable bit
This bit enables the continuous reception of serial data.
Asynchronous mode:
1 = Enable reception
0 = Disables reception
Synchronous mode:
1 = Enables continuous reception until CREN is cleared (CREN overrides SREN)
0 = Disables continuous reception

bit 3:

Unimplemented

: Read as '0'

bit 2:

FERR

: Framing Error bit
1 = Framing error (Updated by reading RCREG)
0 = No framing error

bit 1:

OERR

: Overrun Error bit
1 = Overrun (Cleared by clearing CREN)
0 = No overrun error

bit 0:

RX9D

: 9th bit of receive data (can be the software calculated parity bit)

PIC17C4X

DS30412C-page 86



 1996 Microchip Technology Inc.

13.1 USART Baud Rate Generator (BRG)

The BRG supports both the Asynchronous and Syn-
chronous modes of the USART. It is a dedicated 8-bit
baud rate generator. The SPBRG register controls the
period of a free running 8-bit timer. Table 13-1 shows
the formula for computation of the baud rate for differ-
ent USART modes. These only apply when the USART
is in synchronous master mode (internal clock) and
asynchronous mode.

Given the desired baud rate and Fosc, the nearest inte-
ger value between 0 and 255 can be calculated using
the formula below. The error in baud rate can then be
determined.

TABLE 13-1: BAUD RATE FORMULA

SYNC Mode Baud Rate

0
1

Asynchronous
Synchronous

F

OSC

/(64(X+1))
F

OSC

/(4(X+1))
X = value in SPBRG (0 to 255)

Example 13-1 shows the calculation of the baud rate
error for the following conditions:

F

OSC

 = 16 MHz
Desired Baud Rate = 9600
SYNC = 0

EXAMPLE 13-1: CALCULATING BAUD
RATE ERROR

Writing a new value to the SPBRG, causes the BRG
timer to be reset (or cleared), this ensures that the BRG
does not wait for a timer overflow before outputting the
new baud rate.

Desired Baud rate=Fosc / (64 (X + 1))

9600 = 16000000 /(64 (X + 1))

X = 25.042 = 25

Calculated Baud Rate=16000000 / (64 (25 + 1))

= 9615

Error = (Calculated Baud Rate - Desired Baud Rate)
Desired Baud Rate

= (9615 - 9600) / 9600

= 0.16%

TABLE 13-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

Address Name Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1 Bit 0
Value on
Power-on

Reset

Value on all
other resets

(Note1)

13h, Bank 0 RCSTA SPEN RX9 SREN CREN — FERR OERR RX9D

0000 -00x 0000 -00u

15h, Bank 0 TXSTA CSRC TX9 TXEN SYNC — — TRMT TX9D

0000 --1x 0000 --1u

17h, Bank 0 SPBRG Baud rate generator register

xxxx xxxx uuuu uuuu

Legend:

x

 = unknown,

u

 = unchanged,

-

 = unimplemented read as a '0', shaded cells are not used by the Baud Rate Generator.
Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.



 1996 Microchip Technology Inc. DS30412C-page 89

PIC17C4X

13.2 USART Asynchronous Mode

In this mode, the USART uses standard nonre-
turn-to-zero (NRZ) format (one start bit, eight or nine
data bits, and one stop bit). The most common data for-
mat is 8-bits. An on-chip dedicated 8-bit baud rate gen-
erator can be used to derive standard baud rate
frequencies from the oscillator. The USART’s transmit-
ter and receiver are functionally independent but use
the same data format and baud rate. The baud rate
generator produces a clock x64 of the bit shift rate. Par-
ity is not supported by the hardware, but can be imple-
mented in software (and stored as the ninth data bit).
Asynchronous mode is stopped during SLEEP.

The asynchronous mode is selected by clearing the
SYNC bit (TXSTA<4>).

The USART Asynchronous module consists of the fol-
lowing important elements:

• Baud Rate Generator
• Sampling Circuit
• Asynchronous Transmitter
• Asynchronous Receiver

13.2.1 USART ASYNCHRONOUS TRANSMITTER

The USART transmitter block diagram is shown in
Figure 13-3. The heart of the transmitter is the transmit
shift register (TSR). The shift register obtains its data
from the read/write transmit buffer (TXREG). TXREG is
loaded with data in software. The TSR is not loaded
until the stop bit has been transmitted from the previous
load. As soon as the stop bit is transmitted, the TSR is
loaded with new data from the TXREG (if available).
Once TXREG transfers the data to the TSR (occurs in
one T

CY

 at the end of the current BRG cycle), the
TXREG is empty and an interrupt bit, TXIF (PIR<1>) is
set. This interrupt can be enabled or disabled by the
TXIE bit (PIE<1>). TXIF will be set regardless of TXIE
and cannot be reset in software. It will reset only when
new data is loaded into TXREG. While TXIF indicates
the status of the TXREG, the TRMT (TXSTA<1>) bit
shows the status of the TSR. TRMT is a read only bit
which is set when the TSR is empty. No interrupt logic
is tied to this bit, so the user has to poll this bit in order
to determine if the TSR is empty.

Note:

The TSR is not mapped in data memory,
so it is not available to the user.

Transmission is enabled by setting the
TXEN (TXSTA<5>) bit. The actual transmission will not
occur until TXREG has been loaded with data and the
baud rate generator (BRG) has produced a shift clock
(Figure 13-5). The transmission can also be started by
first loading TXREG and then setting TXEN. Normally
when transmission is first started, the TSR is empty, so
a transfer to TXREG will result in an immediate transfer
to TSR resulting in an empty TXREG. A back-to-back
transfer is thus possible (Figure 13-6). Clearing TXEN
during a transmission will cause the transmission to be
aborted. This will reset the transmitter and the
RA5/TX/CK pin will revert to hi-impedance.

In order to select 9-bit transmission, the
TX9 (TXSTA<6>) bit should be set and the ninth bit
should be written to TX9D (TXSTA<0>). The ninth bit
must be written before writing the 8-bit data to the
TXREG. This is because a data write to TXREG can
result in an immediate transfer of the data to the TSR
(if the TSR is empty).

Steps to follow when setting up an Asynchronous
Transmission:

1. Initialize the SPBRG register for the appropriate
baud rate.

2. Enable the asynchronous serial port by clearing
the SYNC bit and setting the SPEN bit.

3. If interrupts are desired, then set the TXIE bit.
4. If 9-bit transmission is desired, then set the TX9

bit.
5. Load data to the TXREG register.
6. If 9-bit transmission is selected, the ninth bit

should be loaded in TX9D.
7. Enable the transmission by setting TXEN (starts

transmission).

Writing the transmit data to the TXREG, then enabling
the transmit (setting TXEN) allows transmission to start
sooner then doing these two events in the opposite
order.

Note:

To terminate a transmission, either clear
the SPEN bit, or the TXEN bit. This will
reset the transmit logic, so that it will be in
the proper state when transmit is
re-enabled.

 1996 Microchip Technology Inc. DS30412C-page 97

PIC17C4X

13.4 USART Synchronous Slave Mode

The synchronous slave mode differs from the master
mode in the fact that the shift clock is supplied exter-
nally at the RA5/TX/CK pin (instead of being supplied
internally in the master mode). This allows the device
to transfer or receive data in the SLEEP mode. The
slave mode is entered by clearing the
CSRC (TXSTA<7>) bit.

13.4.1 USART SYNCHRONOUS SLAVE
TRANSMIT

The operation of the sync master and slave modes are
identical except in the case of the SLEEP mode.

If two words are written to TXREG and then the SLEEP
instruction executes, the following will occur. The first
word will immediately transfer to the TSR and will trans-
mit as the shift clock is supplied. The second word will
remain in TXREG. TXIF will not be set. When the first
word has been shifted out of TSR, TXREG will transfer
the second word to the TSR and the TXIF flag will now
be set. If TXIE is enabled, the interrupt will wake the
chip from SLEEP and if the global interrupt is enabled,
then the program will branch to interrupt vector
(0020h).

Steps to follow when setting up a Synchronous Slave
Transmission:

1. Enable the synchronous slave serial port by set-
ting the SYNC and SPEN bits and clearing the
CSRC bit.

2. Clear the CREN bit.
3. If interrupts are desired, then set the TXIE bit.
4. If 9-bit transmission is desired, then set the TX9

bit.
5. Start transmission by loading data to TXREG.
6. If 9-bit transmission is selected, the ninth bit

should be loaded in TX9D.
7. Enable the transmission by setting TXEN.

Writing the transmit data to the TXREG, then enabling
the transmit (setting TXEN) allows transmission to start
sooner then doing these two events in the reverse
order.

Note: To terminate a transmission, either clear
the SPEN bit, or the TXEN bit. This will
reset the transmit logic, so that it will be in
the proper state when transmit is
re-enabled.

13.4.2 USART SYNCHRONOUS SLAVE
RECEPTION

Operation of the synchronous master and slave modes
are identical except in the case of the SLEEP mode.
Also, SREN is a don't care in slave mode.

If receive is enabled (CREN) prior to the SLEEP instruc-
tion, then a word may be received during SLEEP. On
completely receiving the word, the RSR will transfer the
data to RCREG (setting RCIF) and if the RCIE bit is set,
the interrupt generated will wake the chip from SLEEP.
If the global interrupt is enabled, the program will
branch to the interrupt vector (0020h).

Steps to follow when setting up a Synchronous Slave
Reception:

1. Enable the synchronous master serial port by
setting the SYNC and SPEN bits and clearing
the CSRC bit.

2. If interrupts are desired, then set the RCIE bit.
3. If 9-bit reception is desired, then set the RX9 bit.
4. To enable reception, set the CREN bit.
5. The RCIF bit will be set when reception is com-

plete and an interrupt will be generated if the
RCIE bit was set.

6. Read RCSTA to get the ninth bit (if enabled) and
determine if any error occurred during reception.

7. Read the 8-bit received data by reading
RCREG.

8. If any error occurred, clear the error by clearing
the CREN bit.

Note: To abort reception, either clear the SPEN
bit, the SREN bit (when in single receive
mode), or the CREN bit (when in continu-
ous receive mode). This will reset the
receive logic, so that it will be in the proper
state when receive is re-enabled.

PIC17C4X

DS30412C-page 108



 1996 Microchip Technology Inc.

Table 15-2 lists the instructions recognized by the
MPASM assembler.

All instruction examples use the following format to rep-
resent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

To represent a binary number:

0000 0100b

where b signifies a binary string.

FIGURE 15-1: GENERAL FORMAT FOR
INSTRUCTIONS

Note 1:

Any unused opcode is Reserved. Use of
any reserved opcode may cause unex-
pected operation.

Note 2:

The shaded instructions are not available
in the PIC17C42

Byte-oriented file register operations

15 9 8 7 0

d = 0 for destination WREG

OPCODE d f (FILE #)

d = 1 for destination f
f = 8-bit file register address

Bit-oriented file register operations

15 11 10 8 7 0

OPCODE b (BIT #) f (FILE #)

b = 3-bit address
f = 8-bit file register address

Literal and control operations

15 8 7 0

OPCODE k (literal)

k = 8-bit immediate value

Byte to Byte move operations

15 13 12 8 7 0

OPCODE p (FILE #) f (FILE #)

Call and GOTO operations

15 13 12 0

OPCODE k (literal)

k = 13-bit immediate value

p = peripheral register file address
f = 8-bit file register address

15.1 Special Function Registers as
Source/Destination

The PIC17C4X’s orthogonal instruction set allows read
and write of all file registers, including special function
registers. There are some special situations the user
should be aware of:

15.1.1 ALUSTA AS DESTINATION

If an instruction writes to ALUSTA, the Z, C, DC and OV
bits may be set or cleared as a result of the instruction
and overwrite the original data bits written. For exam-
ple, executing

CLRF ALUSTA

 will clear register
ALUSTA, and then set the Z bit leaving

0000 0100b

 in
the register.

15.1.2 PCL AS SOURCE OR DESTINATION

Read, write or read-modify-write on PCL may have the
following results:

Read PC: PCH

→

 PCLATH; PCL

→

 dest

Write PCL: PCLATH

→

 PCH;
8-bit destination value

→

 PCL

Read-Modify-Write: PCL

→

 ALU operand
PCLATH

→

 PCH;
8-bit result

→

 PCL

Where PCH = program counter high byte (not an
addressable register), PCLATH = Program counter
high holding latch, dest = destination, WREG or f.

15.1.3 BIT MANIPULATION

All bit manipulation instructions are done by first read-
ing the entire register, operating on the selected bit and
writing the result back (read-modify-write). The user
should keep this in mind when operating on special
function registers, such as ports.

PIC17C4X

DS30412C-page 112  1996 Microchip Technology Inc.

ADDLW ADD Literal to WREG

Syntax: [label] ADDLW k

Operands: 0 ≤ k ≤ 255

Operation: (WREG) + k → (WREG)

Status Affected: OV, C, DC, Z

Encoding: 1011 0001 kkkk kkkk

Description: The contents of WREG are added to the
8-bit literal 'k' and the result is placed in
WREG.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
literal 'k'

Execute Write to
WREG

Example: ADDLW 0x15

Before Instruction
WREG = 0x10

After Instruction
WREG = 0x25

ADDWF ADD WREG to f

Syntax: [label] ADDWF f,d

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]

Operation: (WREG) + (f) → (dest)

Status Affected: OV, C, DC, Z

Encoding: 0000 111d ffff ffff

Description: Add WREG to register 'f'. If 'd' is 0 the
result is stored in WREG. If 'd' is 1 the
result is stored back in register 'f'.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register 'f'

Execute Write to
destination

Example: ADDWF REG, 0

Before Instruction
WREG = 0x17
REG = 0xC2

After Instruction
WREG = 0xD9
REG = 0xC2

PIC17C4X

DS30412C-page 124  1996 Microchip Technology Inc.

INFSNZ Increment f, skip if not 0

Syntax: [label] INFSNZ f,d

Operands: 0 ≤ f ≤ 255
d ∈ [0,1]

Operation: (f) + 1 → (dest), skip if not 0

Status Affected: None

Encoding: 0010 010d ffff ffff

Description: The contents of register 'f' are incre-
mented. If 'd' is 0 the result is placed in
WREG. If 'd' is 1 the result is placed
back in register 'f'.

If the result is not 0, the next instruction,
which is already fetched, is discarded,
and an NOP is executed instead making
it a two-cycle instruction.

Words: 1

Cycles: 1(2)

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
register 'f'

Execute Write to
destination

If skip:
Q1 Q2 Q3 Q4

Forced NOP NOP Execute NOP

Example: HERE INFSNZ REG, 1
ZERO
NZERO

Before Instruction
REG = REG

After Instruction
REG = REG + 1
If REG = 1;

PC = Address (ZERO)
If REG = 0;

PC = Address (NZERO)

IORLW Inclusive OR Literal with WREG

Syntax: [label] IORLW k

Operands: 0 ≤ k ≤ 255

Operation: (WREG) .OR. (k) → (WREG)

Status Affected: Z

Encoding: 1011 0011 kkkk kkkk

Description: The contents of WREG are OR’ed with
the eight bit literal 'k'. The result is
placed in WREG.

Words: 1

Cycles: 1

Q Cycle Activity:
Q1 Q2 Q3 Q4

Decode Read
literal 'k'

Execute Write to
WREG

Example: IORLW 0x35

Before Instruction
WREG = 0x9A

After Instruction
WREG = 0xBF

PIC17C4X

DS30412C-page 154  1996 Microchip Technology Inc.

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 17-1: PARAMETER MEASUREMENT INFORMATION

All timings are measure between high and low measurement points as indicated in the figures below.

0.9VDD
0.1VDD

Rise Time Fall Time

VOH = 0.7VDD
VDD/2

VOL = 0.3VDD

Data out valid

Data out invalid Output
hi-impedance

Output
driven

0.25V

0.25V

0.25V
0.25V

OUTPUT LEVEL CONDITIONS

PORTC, D and E pins

All other input pins

VIH = 2.4V

VIL = 0.4V

Data in valid

Data in invalid

VIH = 0.9VDD

VIL = 0.1VDD

Data in valid

Data in invalid

INPUT LEVEL CONDITIONS

LOAD CONDITIONS

CL

Load Condition 1 Load Condition 2

RL

Pin

VSS

VDD/2

Pin
CL

VSS

RL = 464
CL ≤ 50 pF

PIC17C4X

DS30412C-page 168



 1996 Microchip Technology Inc.

Applicable Devices

42 R42 42A 43 R43 44

FIGURE 18-9: TYPICAL I

PD

 vs. V

DD

 WATCHDOG DISABLED 25

°

C

FIGURE 18-10: MAXIMUM I

PD

 vs. V

DD

 WATCHDOG DISABLED

12

10

8

6

4

4.0 4.5 5.0 5.5 6.0

IP
D

(n
A

)

VDD (Volts)

2

0
6.5 7.0

600
500
400
300
200

4.0 4.5 5.0 5.5 6.0

IP
D

(n
A

)

VDD (Volts)

100
0

6.5 7.0

1300
1200
1100
1000
900
800
700

1900
1800
1700
1600
1500
1400

Temp. = 85°C

Temp. = 70°C

Temp. = 0°C

Temp. = -40°C

PIC17C4X

DS30412C-page 172  1996 Microchip Technology Inc.

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 18-17: IOL vs. VOL, VDD = 5V

FIGURE 18-18: VTH (INPUT THRESHOLD VOLTAGE) OF I/O PINS (TTL) VS. VDD

90

80

70

60

50

40

30

20

0.0 0.5 1.0 1.5 2.0 2.5

IO
H

(m
A

)

VDD (Volts)

Min @ +85°C

10

0
3.0

Max @ -40°C
Typ @ 25°C

Typ @ 25°C

2.5

V
T

H
(V

ol
ts

)

VDD (Volts)

0.6

Max (-40°C to +85°C)

3.0 3.5 4.0 4.5 5.0 5.5 6.0

0.8

1.0

1.2

1.4

1.6

1.8

2.0

Min (-40°C to +85°C)

 1996 Microchip Technology Inc. DS30412C-page 183

PIC17C4X
Applicable Devices 42 R42 42A 43 R43 44

FIGURE 19-1: PARAMETER MEASUREMENT INFORMATION

All timings are measure between high and low measurement points as indicated in the figures below.

0.9 VDD
0.1 VDD

Rise Time Fall Time

VOH = 0.7VDD
VDD/2

VOL = 0.3VDD

Data out valid

Data out invalid Output
hi-impedance

Output
driven

0.25V

0.25V

0.25V
0.25V

OUTPUT LEVEL CONDITIONS

PORTC, D and E pins

All other input pins

VIH = 2.4V

VIL = 0.4V

Data in valid

Data in invalid

VIH = 0.9VDD

VIL = 0.1VDD

Data in valid

Data in invalid

INPUT LEVEL CONDITIONS

LOAD CONDITIONS

Load Condition 1

Pin
CL

VSS

50 pF ≤ CL

PIC17C4X

DS30412C-page 194



 1996 Microchip Technology Inc.

Applicable Devices

42 R42 42A 43 R43 44

FIGURE 20-2: TYPICAL RC OSCILLATOR FREQUENCY vs. V

DD

FIGURE 20-3: TYPICAL RC OSCILLATOR FREQUENCY vs. V

DD

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0
4.0 4.5 5.0 5.5 6.0 6.5

F
O

S
C

 (
M

H
z)

VDD (Volts)

R = 10k

Cext = 22 pF, T = 25°C

R = 100k

4.0

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0
4.0 4.5 5.0 5.5 6.0 6.5

F
O

S
C

 (
M

H
z)

VDD (Volts)

R = 10k
Cext = 100 pF, T = 25°C

R = 100k

R = 3.3k

R = 5.1k

PIC17C4X

DS30412C-page 238



 1996 Microchip Technology Inc.

NOTES:

