

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	33MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (8K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c44t-33-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

			-		-	
Name	DIP No.	PLCC No.	QFP No.	I/O/P Type	Buffer Type	Description
						PORTD is a bi-directional I/O Port.
RD0/AD8	40	43	15	I/O	TTL	This is also the upper byte of the 16-bit system bus in
RD1/AD9	39	42	14	I/O	TTL	microprocessor mode or extended microprocessor mode
RD2/AD10	38	41	13	I/O	TTL	or extended microcontroller mode. In multiplexed system
RD3/AD11	37	40	12	I/O	TTL	as data input or output
RD4/AD12	36	39	11	I/O	TTL	
RD5/AD13	35	38	10	I/O	TTL	
RD6/AD14	34	37	9	I/O	TTL	
RD7/AD15	33	36	8	I/O	TTL	
RE0/ALE	30	32	4	I/O	TTL	PORTE is a bi-directional I/O Port. In microprocessor mode or extended microcontroller mode, it is the Address Latch Enable (ALE) output. Address should be latched on the falling edge of ALE output.
RE1/OE	29	31	3	I/O	TTL	In microprocessor or extended microcontroller mode, it is the Output Enable (\overline{OE}) control output (active low).
RE2/WR	28	30	2	I/O	TTL	In microprocessor or extended microcontroller mode, it is the Write Enable (WR) control output (active low).
TEST	27	29	1	I	ST	Test mode selection control input. Always tie to Vss for nor- mal operation.
Vss	10, 31	11, 12, 33, 34	5, 6, 27, 28	Р		Ground reference for logic and I/O pins.
Vdd	1	1, 44	16, 17	Р		Positive supply for logic and I/O pins.

١S
l

Legend: I = Input only; O = Output only; I/O = Input/Output; P = Power; — = Not Used; TTL = TTL input; ST = Schmitt Trigger input.

FIGURE 4-2: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

FIGURE 4-3: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD)

FIGURE 4-4: SLOW RISE TIME (MCLR TIED TO VDD)

Register	Address	Power-on Reset WDT Reset		Wake-up from SLEEP through interrupt
Bank 2			1	÷
TMR1	10h	XXXX XXXX	uuuu uuuu	uuuu uuuu
TMR2	11h	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR3L	12h	xxxx xxxx	uuuu uuuu	uuuu uuuu
TMR3H	13h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PR1	14h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PR2	15h	XXXX XXXX	uuuu uuuu	uuuu uuuu
PR3/CA1L	16h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PR3/CA1H	17h	XXXX XXXX	uuuu uuuu	uuuu uuuu
Bank 3				
PW1DCL	10h	xx	uu	uu
PW2DCL	11h	xx	uu	uu
PW1DCH	12h	xxxx xxxx	uuuu uuuu	uuuu uuuu
PW2DCH	13h	xxxx xxxx	uuuu uuuu	uuuu uuuu
CA2L	14h	xxxx xxxx	uuuu uuuu	uuuu uuuu
CA2H	15h	xxxx xxxx	uuuu uuuu	uuuu uuuu
TCON1	16h	0000 0000	0000 0000	uuuu uuuu
TCON2	17h	0000 0000	0000 0000	uuuu uuuu
Unbanked				
PRODL ⁽⁵⁾	18h	XXXX XXXX	uuuu uuuu	uuuu uuuu
PRODH ⁽⁵⁾	19h	XXXX XXXX	นนนน นนนน	uuuu uuuu

TABLE 4-4: INITIALIZATION CONDITIONS FOR SPECIAL FUNCTION REGISTERS (Cont.'d)

Legend: u = unchanged, x = unknown, - = unimplemented read as '0', q = value depends on condition. Note 1: One or more bits in INTSTA, PIR will be affected (to cause wake-up).

2: When the wake-up is due to an interrupt and the GLINTD bit is cleared, the PC is loaded with the interrupt vector.

3: See Table 4-3 for reset value of specific condition.

4: Only applies to the PIC17C42.

5: Does not apply to the PIC17C42.

6.2 Data Memory Organization

Data memory is partitioned into two areas. The first is the General Purpose Registers (GPR) area, while the second is the Special Function Registers (SFR) area. The SFRs control the operation of the device.

Portions of data memory are banked, this is for both areas. The GPR area is banked to allow greater than 232 bytes of general purpose RAM. SFRs are for the registers that control the peripheral functions. Banking requires the use of control bits for bank selection. These control bits are located in the Bank Select Register (BSR). If an access is made to a location outside this banked region, the BSR bits are ignored. Figure 6-5 shows the data memory map organization for the PIC17C42 and Figure 6-6 for all of the other PIC17C4X devices.

Instructions MOVPF and MOVFP provide the means to move values from the peripheral area ("P") to any location in the register file ("F"), and vice-versa. The definition of the "P" range is from 0h to 1Fh, while the "F" range is 0h to FFh. The "P" range has six more locations than peripheral registers (eight locations for the PIC17C42 device) which can be used as General Purpose Registers. This can be useful in some applications where variables need to be copied to other locations in the general purpose RAM (such as saving status information during an interrupt).

The entire data memory can be accessed either directly or indirectly through file select registers FSR0 and FSR1 (Section 6.4). Indirect addressing uses the appropriate control bits of the BSR for accesses into the banked areas of data memory. The BSR is explained in greater detail in Section 6.8.

6.2.1 GENERAL PURPOSE REGISTER (GPR)

All devices have some amount of GPR area. The GPRs are 8-bits wide. When the GPR area is greater than 232, it must be banked to allow access to the additional memory space.

Only the PIC17C43 and PIC17C44 devices have banked memory in the GPR area. To facilitate switching between these banks, the MOVLR bank instruction has been added to the instruction set. GPRs are not initialized by a Power-on Reset and are unchanged on all other resets.

6.2.2 SPECIAL FUNCTION REGISTERS (SFR)

The SFRs are used by the CPU and peripheral functions to control the operation of the device (Figure 6-5 and Figure 6-6). These registers are static RAM.

The SFRs can be classified into two sets, those associated with the "core" function and those related to the peripheral functions. Those registers related to the "core" are described here, while those related to a peripheral feature are described in the section for each peripheral feature.

The peripheral registers are in the banked portion of memory, while the core registers are in the unbanked region. To facilitate switching between the peripheral banks, the MOVLB bank instruction has been provided.

7.0 TABLE READS AND TABLE WRITES

The PIC17C4X has four instructions that allow the processor to move data from the data memory space to the program memory space, and vice versa. Since the program memory space is 16-bits wide and the data memory space is 8-bits wide, two operations are required to move 16-bit values to/from the data memory.

The TLWT t,f and TABLWT t,i,f instructions are used to write data from the data memory space to the program memory space. The TLRD t,f and TABLRD t,i,f instructions are used to write data from the program memory space to the data memory space.

The program memory can be internal or external. For the program memory access to be external, the device needs to be operating in extended microcontroller or microprocessor mode.

Figure 7-1 through Figure 7-4 show the operation of these four instructions.

FIGURE 7-2: TABLWT INSTRUCTION OPERATION

© 1996 Microchip Technology Inc.

7.3 <u>Table Reads</u>

FIGURE 7-7:

The table read allows the program memory to be read. This allows constant data to be stored in the program memory space, and retrieved into data memory when needed. Example 7-2 reads the 16-bit value at program memory address TBLPTR. After the dummy byte has been read from the TABLATH, the TABLATH is loaded with the 16-bit data from program memory address TBLPTR + 1. The first read loads the data into the latch, and can be considered a dummy read (unknown data loaded into 'f'). INDF0 should be configured for either auto-increment or auto-decrement.

+ 1. The first read loads the data into TABLRD 0,1,INDF0 ; Read LO byte ; of TABLATCH and ; of TABLATCH and ; Update TABLATCH auto-increment or auto-decrement.

MOVLW

MOVWF

MOVLW

MOVWF

TLRD

TABLRD

EXAMPLE 7-2: TABLE READ

LOW (TBL_ADDR)

TBLPTRH

TBLPTRL

0,0,DUMMY

1, INDF0

HIGH (TBL_ADDR) ; Load the Table

;

;

;

;

address

; Dummy read,

; Read HI byte

; Updates TABLATCH

of TABLATCH

Q4 | AD15:AD0 Data in PC PC-TBL PC4 Instruction TABLRD INST (PC+1) INST (PC+2) fetched Instruction INST (PC-1) TABLRD cycle1 TABLRD cycle2 INST (PC+1) executed Data read cycle ALE ŌĒ $\overline{\mathsf{WR}}$

FIGURE 7-8: TABLRD TIMING (CONSECUTIVE TABLRD INSTRUCTIONS)

DS30412C-page 48

12.1.3.1 PWM PERIODS

The period of the PWM1 output is determined by Timer1 and its period register (PR1). The period of the PWM2 output can be software configured to use either Timer1 or Timer2 as the time-base. When TM2PW2 bit (PW2DCL<5>) is clear, the time-base is determined by TMR1 and PR1. When TM2PW2 is set, the time-base is determined by Timer2 and PR2.

Running two different PWM outputs on two different timers allows different PWM periods. Running both PWMs from Timer1 allows the best use of resources by freeing Timer2 to operate as an 8-bit timer. Timer1 and Timer2 can not be used as a 16-bit timer if either PWM is being used.

The PWM periods can be calculated as follows:

period of PWM1 =[(PR1) + 1] x 4Tosc

period of PWM2 =[(PR1) + 1] x 4Tosc or [(PR2) + 1] x 4Tosc

The duty cycle of PWMx is determined by the 10-bit value DCx<9:0>. The upper 8-bits are from register PWxDCH and the lower 2-bits are from PWxDCL<7:6> (PWxDCH:PWxDCL<7:6>). Table 12-3 shows the maximum PWM frequency (FPWM) given the value in the period register.

The number of bits of resolution that the PWM can achieve depends on the operation frequency of the device as well as the PWM frequency (FPWM).

Maximum PWM resolution (bits) for a given PWM frequency:

$$= \frac{\log\left(\frac{FOSC}{FPWM}\right)}{\log\left(2\right)} \quad \text{bits}$$

The PWMx duty cycle is as follows:

PWMx Duty Cycle = $(DCx) \times TOSC$

where DCx represents the 10-bit value from PWxDCH:PWxDCL.

If DCx = 0, then the duty cycle is zero. If PRx = PWxDCH, then the PWM output will be low for one to four Q-clock (depending on the state of the PWxDCL<7:6> bits). For a Duty Cycle to be 100%, the PWxDCH value must be greater then the PRx value.

The duty cycle registers for both PWM outputs are double buffered. When the user writes to these registers, they are stored in master latches. When TMR1 (or TMR2) overflows and a new PWM period begins, the master latch values are transferred to the slave latches and the PWMx pin is forced high.

Note:	For PW1DCH, PW1DCL, PW2DCH and
	PW2DCL registers, a write operation
	writes to the "master latches" while a read
	operation reads the "slave latches". As a
	result, the user may not read back what
	was just written to the duty cycle registers.

The user should also avoid any "read-modify-write" operations on the duty cycle registers, such as: ADDWF PW1DCH. This may cause duty cycle outputs that are unpredictable.

TABLE 12-3:	PWM FREQUENCY vs.
	RESOLUTION AT 25 MHz

PWM	Frequency (kHz)								
Frequency	24.4 48.8 65.104 97.66 390								
PRx Value	0xFF	0x7F	0x5F	0x3F	0x0F				
High Resolution	10-bit	9-bit	8.5-bit	8-bit	6-bit				
Standard Resolution	8-bit	7-bit	6.5-bit	6-bit	4-bit				

12.1.3.2 PWM INTERRUPTS

The PWM module makes use of TMR1 or TMR2 interrupts. A timer interrupt is generated when TMR1 or TMR2 equals its period register and is cleared to zero. This interrupt also marks the beginning of a PWM cycle. The user can write new duty cycle values before the timer roll-over. The TMR1 interrupt is latched into the TMR1IF bit and the TMR2 interrupt is latched into the TMR2IF bit. These flags must be cleared in software.

12.1.3.3 EXTERNAL CLOCK SOURCE

The PWMs will operate regardless of the clock source of the timer. The use of an external clock has ramifications that must be understood. Because the external TCLK12 input is synchronized internally (sampled once per instruction cycle), the time TCLK12 changes to the time the timer increments will vary by as much as TCY (one instruction cycle). This will cause jitter in the duty cycle as well as the period of the PWM output.

This jitter will be \pm TCY, unless the external clock is synchronized with the processor clock. Use of one of the PWM outputs as the clock source to the TCLKx input, will supply a synchronized clock.

In general, when using an external clock source for PWM, its frequency should be much less than the device frequency (Fosc).

12.2.1 ONE CAPTURE AND ONE PERIOD REGISTER MODE

In this mode registers PR3H/CA1H and PR3L/CA1L constitute a 16-bit period register. A block diagram is shown in Figure 12-7. The timer increments until it equals the period register and then resets to 0000h. TMR3 Interrupt Flag bit (TMR3IF) is set at this point. This interrupt can be disabled by clearing the TMR3 Interrupt Enable bit (TMR3IE). TMR3IF must be cleared in software.

This mode is selected if control bit CA1/PR3 is clear. In this mode, the Capture1 register, consisting of high byte (PR3H/CA1H) and low byte (PR3L/CA1L), is configured as the period control register for TMR3. Capture1 is disabled in this mode, and the corresponding Interrupt bit CA1IF is never set. TMR3 increments until it equals the value in the period register and then resets to 0000h.

Capture2 is active in this mode. The CA2ED1 and CA2ED0 bits determine the event on which capture will occur. The possible events are:

- · Capture on every falling edge
- Capture on every rising edge
- · Capture every 4th rising edge
- · Capture every 16th rising edge

When a capture takes place, an interrupt flag is latched into the CA2IF bit. This interrupt can be enabled by setting the corresponding mask bit CA2IE. The Peripheral Interrupt Enable bit (PEIE) must be set and the Global Interrupt Disable bit (GLINTD) must be cleared for the interrupt to be acknowledged. The CA2IF interrupt flag bit must be cleared in software.

When the capture prescale select is changed, the prescaler is not reset and an event may be generated. Therefore, the first capture after such a change will be ambiguous. However, it sets the time-base for the next capture. The prescaler is reset upon chip reset. Capture pin RB1/CAP2 is a multiplexed pin. When used as a port pin, Capture2 is not disabled. However, the user can simply disable the Capture2 interrupt by clearing CA2IE. If RB1/CAP2 is used as an output pin, the user can activate a capture by writing to the port pin. This may be useful during development phase to emulate a capture interrupt.

The input on capture pin RB1/CAP2 is synchronized internally to internal phase clocks. This imposes certain restrictions on the input waveform (see the Electrical Specification section for timing).

The Capture2 overflow status flag bit is double buffered. The master bit is set if one captured word is already residing in the Capture2 register and another "event" has occurred on the RB1/CA2 pin. The new event will not transfer the Timer3 value to the capture register, protecting the previous unread capture value. When the user reads both the high and the low bytes (in any order) of the Capture2 register, the master overflow bit is transferred to the slave overflow bit (CA2OVF) and then the master bit is reset. The user can then read TCON2 to determine the value of CA2OVF.

The recommended sequence to read capture registers and capture overflow flag bits is shown in Example 12-1.

EXAMPLE 12-1: SEQUENCE TO READ CAPTURE REGISTERS

MOVLB	3	;Select Bank 3
MOVPF	CA2L,LO_BYTE	;Read Capture2 low
		;byte, store in LO_BYTE
MOVPF	CA2H,HI_BYTE	;Read Capture2 high
		;byte, store in HI_BYTE
MOVPF	TCON2,STAT_VAL	;Read TCON2 into file
		;STAT_VAL

FIGURE 12-7: TIMER3 WITH ONE CAPTURE AND ONE PERIOD REGISTER BLOCK DIAGRAM

13.0 UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (USART) MODULE

The USART module is a serial I/O module. The USART can be configured as a full duplex asynchronous system that can communicate with peripheral devices such as CRT terminals and personal computers, or it can be configured as a half duplex synchronous system that can communicate with peripheral devices such as A/D or D/A integrated circuits, Serial EEPROMs etc. The USART can be configured in the following modes:

- Asynchronous (full duplex)
- Synchronous Master (half duplex)
- Synchronous Slave (half duplex)

The SPEN (RCSTA<7>) bit has to be set in order to configure RA4 and RA5 as the Serial Communication Interface.

The USART module will control the direction of the RA4/RX/DT and RA5/TX/CK pins, depending on the states of the USART configuration bits in the RCSTA and TXSTA registers. The bits that control I/O direction are:

- SPEN
- TXEN
- SREN
- CREN
- CSRC

The Transmit Status And Control Register is shown in Figure 13-1, while the Receive Status And Control Register is shown in Figure 13-2.

R/M - 0	P/M - 0	P/M - 0	P/M - 0	11 - 0	11 - 0	P - 1	P/// - v	
CSRC	TX9	TXEN	SYNC			TRMT	TX9D	R = Readable bit
bit7	L						bit0	W = Writable bit -n = Value at POR reset (x = unknown)
bit 7:	CSRC : C Synchron 1 = Maste 0 = Slave <u>Asynchro</u> Don't care	lock Source ous mode r Mode (Cla mode (Cla nous mod e	ce Select t <u>:</u> lock gene ock from e <u>e</u> :	bit rated inter xternal so	nally from E urce)	BRG)		
bit 6:	TX9 : 9-bit 1 = Select 0 = Select	Transmit ts 9-bit tra ts 8-bit tra	Enable bit nsmission nsmission					
bit 5:	TXEN : Tra 1 = Transr 0 = Transr SREN/CF	ansmit Ena mit enable mit disable REN overri	able bit d d des TXEN	in SYNC	mode			
bit 4:	SYNC: US (Synchror 1 = Synch 0 = Async	SART moo nous/Asyn nronous m chronous n	le Select b chronous) ode node	vit				
bit 3-2:	Unimpler	nented: R	ead as '0'					
bit 1:	TRMT : Tra 1 = TSR e 0 = TSR f	ansmit Shi empty ull	ft Register	[·] (TSR) Er	npty bit			
bit 0:	TX9D : 9th	h bit of trar	nsmit data	(can be u	sed to calcu	lated the	parity in sof	ftware)

FIGURE 13-1: TXSTA REGISTER (ADDRESS: 15h, BANK 0)

© 1996 Microchip Technology Inc.

14.0 SPECIAL FEATURES OF THE CPU

What sets a microcontroller apart from other processors are special circuits to deal with the needs of real time applications. The PIC17CXX family has a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide power saving operating modes and offer code protection. These are:

- OSC selection
- Reset
 - Power-on Reset (POR)
 - Power-up Timer (PWRT)
 - Oscillator Start-up Timer (OST)
- Interrupts
- Watchdog Timer (WDT)
- SLEEP
- · Code protection

The PIC17CXX has a Watchdog Timer which can be shut off only through EPROM bits. It runs off its own RC oscillator for added reliability. There are two timers that offer necessary delays on power-up. One is the Oscillator Start-up Timer (OST), intended to keep the chip in RESET until the crystal oscillator is stable. The other is the Power-up Timer (PWRT), which provides a fixed delay of 96 ms (nominal) on power-up only, designed to keep the part in RESET while the power supply stabilizes. With these two timers on-chip, most applications need no external reset circuitry.

The SLEEP mode is designed to offer a very low current power-down mode. The user can wake from SLEEP through external reset, Watchdog Timer Reset or through an interrupt. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost while the LF crystal option saves power. Configuration bits are used to select various options. This configuration word has the format shown in Figure 14-1.

R/P - 1	U - x	U - x	<u>U-x</u>	U - x	U - x	U - x	U - x	
bit15-7							bit0	
	R/P - 1 PM1	U - x —	<u>R/P - 1</u> PM0	R/P - 1 WDTPS1	R/P - 1 WDTPS0	R/P - 1 FOSC1	R/P - 1 FOSC0	R = Readable bit P = Programmable bit
Dil 15-7							DIIO	U = Unimplemented - n = Value for Erased Device (x = unknown)
bit 15,6,	4: PM2, PM 111 = Mic 110 = Mic 101 = Ext 000 = Coo	roprocess rocontrolle ended mic de protecte	rocessor or Mode er mode crocontrol ed microc	Mode Sele ler mode ontroller m	ect bits ode			
bit 7, 5:	Unimpler	nented: R	ead as a	'0'				
bit 3-2:	bit 3-2: WDTPS1:WDTPS0 , WDT Postscaler Select bits 11 = WDT enabled, postscaler = 1 10 = WDT enabled, postscaler = 256 01 = WDT enabled, postscaler = 64 00 = WDT disabled, 16-bit overflow timer							
bit 1-0:	FOSC1:F 11 = EC (10 = XT (01 = RC (00 = LF (OSCO , Os oscillator oscillator oscillator oscillator	cillator So	elect bits				
Note 1:	This bit do	oes not ex	ist on the	PIC17C42	. Reading t	his bit will	return an u	inknown value (x).

FIGURE 14-1: CONFIGURATION WORD

^{© 1996} Microchip Technology Inc.

14.4 Power-down Mode (SLEEP)

The Power-down mode is entered by executing a SLEEP instruction. This clears the Watchdog Timer and postscaler (if enabled). The \overrightarrow{PD} bit is cleared and the \overrightarrow{TO} bit is set (in the CPUSTA register). In SLEEP mode, the oscillator driver is turned off. The I/O ports maintain their status (driving high, low, or hi-impedance).

The $\overline{\text{MCLR}}/\text{VPP}$ pin must be at a logic high level (VIHMC). A WDT time-out RESET does not drive the $\overline{\text{MCLR}}/\text{VPP}$ pin low.

14.4.1 WAKE-UP FROM SLEEP

The device can wake up from SLEEP through one of the following events:

- A POR reset
- External reset input on MCLR/VPP pin
- WDT Reset (if WDT was enabled)
- Interrupt from RA0/INT pin, RB port change, T0CKI interrupt, or some Peripheral Interrupts

The following peripheral interrupts can wake-up from SLEEP:

- · Capture1 interrupt
- Capture2 interrupt
- · USART synchronous slave transmit interrupt
- · USART synchronous slave receive interrupt

Other peripherals can not generate interrupts since during SLEEP, no on-chip Q clocks are present.

Any reset event will cause a device reset. Any interrupt event is considered a continuation of program execution. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits in the CPUSTA register can be used to determine the cause of device reset. The

 \overline{PD} bit, which is set on power-up, is cleared when SLEEP is invoked. The \overline{TO} bit is cleared if WDT time-out occurred (and caused wake-up).

When the SLEEP instruction is being executed, the next instruction (PC + 1) is pre-fetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be set (enabled). Wake-up is regardless of the state of the GLINTD bit. If the GLINTD bit is set (disabled), the device continues execution at the instruction after the SLEEP instruction. If the GLINTD bit is clear (enabled), the device executes the instruction after the SLEEP instruction and then branches to the interrupt vector address. In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

Note: If the global interrupts are disabled (GLINTD is set), but any interrupt source has both its interrupt enable bit and the corresponding interrupt flag bits set, the device will immediately wake-up from sleep. The TO bit is set, and the PD bit is cleared.

The WDT is cleared when the device wake from SLEEP, regardless of the source of wake-up.

14.4.1.1 WAKE-UP DELAY

When the oscillator type is configured in XT or LF mode, the Oscillator Start-up Timer (OST) is activated on wake-up. The OST will keep the device in reset for 1024Tosc. This needs to be taken into account when considering the interrupt response time when coming out of SLEEP.

FIGURE 14-9: WAKE-UP FROM SLEEP THROUGH INTERRUPT

	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2	Q3 Q4	Q1 Q2	Q3 Q4	Q1 Q2 Q3 Q4
OSC1						$\frown \frown \frown$	
CLKOUT(4)		/		lost(2)	\/ \/		
INT					I I		
(RA0/INT pin)	ı ı		: (1		<u>1 </u>
INTF flag			<u>`</u>		I		Interrupt Latency (2)
GLINTD bit	1 11		· ·		I		·
	i i		Processor		1		1 I
INSTRUCTION	FLOW		in SLEEP		1 1		I I I I
PC	C PC	PC+1		+2	× 0004	h	× <u>0005h</u>
Instruction (fetched	Inst (PC) = SLEEP	Inst (PC+1)			Inst (PC	+2)	
Instruction {	Inst (PC-1)	SLEEP			Inst (PC	+1)	Dummy Cycle
Note 1: XT or LF o 2: Tost = 102 3: When GLII 4: CLKOUT is	scillator mode assume 4Tosc (drawing not to s NTD = 0 processor jum s not available in these	d. scale). This delay will ops to interrupt routin osc modes, but show	not be there e after wake wn here for ti	for RC osc -up. If GLIN	c mode. ITD = 1, exec ence.	ution will	continue in line.

BSF	:	Bit Set f									
Synt	ax:	[label] E	BSF f,b)							
Ope	Operands: $0 \le f \le 255$ $0 \le b \le 7$										
Ope	Operation: $1 \rightarrow (f < b >)$										
Status Affected: None											
Enco	oding:	1000	0bbb	fff	f	ffff					
Des	cription:	Bit 'b' in re	gister 'f' is	s set.							
Wor	ds:	1									
Cycl	es:	1	1								
QC	ycle Activity:										
	Q1	Q2	Q	3	Q4						
	Decode	Read register 'f'	Exect	ute	re	Write gister 'f'					
<u>Exa</u>	mple:	BSF	FLAG_RE	G, 7							
Before Instruction FLAG_REG= 0x0A											
	After Instruction FLAG_REG= 0x8A										

BTFSC	Bit Test, s	kip if Cle	ear	
Syntax:	[<i>label</i>] B	TFSC f,I	b	
Operands:	$0 \le f \le 255$ $0 \le b \le 7$	5		
Operation:	skip if (f <b< td=""><td>) = 0</td><td></td><td></td></b<>) = 0		
Status Affected:	None			
Encoding:	1001	1bbb	ffff	ffff
Description:	If bit 'b' in r instruction i	egister 'f' i s skipped.	s 0 then th	e next
	If bit 'b' is 0 fetched dur cution is dis cuted instea instruction.	then the n ing the cur scarded, ar ad, making	ext instruction rent instruction nd a NOP is this a two	tion ction exe- s exe- o-cycle
Words:	1			
Cycles:	1(2)			
Q Cycle Activity	:			
Q1	Q2	Q3		Q4
Decode	Read register 'f'	Execu	ite	NOP
lf skip:			•	
Q1	Q2	Q3		Q4
Forced NO	P NOP	Execu	ite	NOP
Example:	HERE E FALSE : TRUE :	STFSC	FLAG,1	
Before Inst	ruction			
PC	= ad	dress (HE	RE)	
After Instru If FLAG PC	ction <1> = 0; ; = ad	dress (TR	UE)	
If FLAG	<1> = 1;		>	
PC	, = ad	aress (FA	LSE)	

CAL	.L	Subroutir	ne Call		С	LRF	Clear f			
Synt	ax:	[label] C	CALL k		S	yntax:	[<i>label</i>] CL	.RF f,s	;	
Ope	rands:	$0 \le k \le 40$	95		0	perands:	$0 \le f \le 25$	5		
Ope	ration:	PC+ 1→ T k<12:8> –	$OS, k \rightarrow PC \rightarrow PCLATH < 4$	<12:0>, :0>;	0	peration:	$00h \rightarrow f, s$ $00h \rightarrow de$	s ∈ [0,1] est	l	
		PC<15:13	$> \rightarrow PCLATH$	1<7:5>	S	atus Affected:	None			
Stat	us Affected:	None			E	ncoding:	0010	100s	ffff	ffff
Enc	oding:	111k	kkkk kkl	k kkkk	D	escription:	Clears the	contents	of the sp	pecified rea-
Des	cription:	Subroutine return addre the stack. T PC bits<12 bits of the F	call within 8K ess (PC+1) is he 13-bit value :0>. Then the u PC are copied	page. First, pushed onto is loaded into upper-eight into PCLATH.		·	ister(s). s = 0: Data WREG are s = 1: Data cleared.	a memory e cleared. a memory	v location	'f' and 'f' is
		Call is a ty	wo-cycle instru	iction.	W	ords:	1			
		See LCALL space.	for calls outsic	le 8K memory	С	ycles:	1			
Wor	ds:	1			Q	Cycle Activity:				
Cycl	es:	2				Q1	Q2	Q	3	Q4
QC	vcle Activity:					Decode	Read	Exec	ute	Write
	Q1	Q2	Q3	Q4						and other
	Decode	Read literal 'k'<7:0>	Execute	NOP						specified register
	Forced NOP	NOP	Execute	NOP] <u>E</u>	<u>kample</u> :	CLRF	FLAC	G_REG	
<u>Exa</u>	<u>mple</u> : Before Instru	HERE	CALL THE	RE		Before Instr FLAG_R	uction EG = 0	κ5A		
	PC =	Address (HEI	RE)			After Instruc	tion			
	After Instruct PC =	tion Address(THI	ERE)			FLAG_R	EG = 0	« 00		

PC = Address(THERE) TOS = Address(HERE + 1)

RRN	ICF	Rotate R	light f (n	o carry)	
Syn	tax:	[label]	RRNCF	f,d	
Ope	rands:	0 ≤ f ≤ 25 d ∈ [0,1]	55		
Ope	ration:	$f < n > \rightarrow c$ $f < 0 > \rightarrow c$	l <n-1>; l<7></n-1>		
Stat	us Affected:	None			
Enc	oding:	0010	000d	ffff	ffff
Des	cription:	The conte one bit to placed in ^v placed ba	nts of regi the right. I WREG. If ck in regis	ster 'f' are f 'd' is 0 the 'd' is 1 the ter 'f'.	rotated e result is result is
				9.0101 1	
Wor	ds:	1			
Cycl	es:	1			
$\cap \cap$	vcle Activity				
QU	yolo / totivity.				
QU	Q1	Q2	Q	3	Q4
QU	Q1 Decode	Q2 Read register 'f'	Q3 Exect	B ute V des	Q4 Vrite to stination
Exa	Q1 Decode mple 1:	Q2 Read register 'f'	Q3 Exect REG, 1	3 ute V des	Q4 Vrite to stination
Exa	Q1 Decode mple 1: Before Instru WREG REG	Q2 Read register 'f' RRNCF Inction = ? = 1101	Q3 Exect REG, 1 0111	3 ute V de:	Q4 Vrite to stination
Exa	Q1 Decode mple 1: Before Instru WREG REG After Instruct	Q2 Read register 'f' RRNCF Iction = ? = 1101 tion	Q3 Exect REG, 1 0111	3 ute V de:	Q4 Vrite to stination
Exa	Q1 Decode mple 1: Before Instru WREG REG After Instruct WREG REG	Q2 Read register 'f' RRNCF action = ? = 1101 tion = 0 = 1110	Q3 Exect REG, 1 0111 1011	3 ute V de:	Q4 Vrite to stination
<u>Exa</u>	Q1 Decode mple 1: Before Instru WREG REG After Instruct WREG REG	Q2 Read register 'f' RRNCF action = ? = 1101 tion = 0 = 1110 RRNCF	Q3 Exect REG, 1 0111 1011 REG, 0	3 ute V des	Q4 Vrite to stination
Exa Exa	Q1 Decode mple 1: Before Instru WREG REG After Instruct WREG REG mple 2: Before Instru WREG REG	Q2 Read register 'f' RRNCF action = ? = 1101 tion = 0 = 1110 RRNCF action = ? = 1101	Q3 Exect REG, 1 0111 REG, 0 0111	3 ute V des	Q4 Vrite to stination
Exa	Q1 Decode mple 1: Before Instru WREG REG After Instruct WREG REG Before Instru WREG REG After Instruct WREG	Q2 Read register 'f' RRNCF action = ? = 1101 tion RRNCF action = ? = 1110 RRNCF action = ? = 1110	Q3 Exect REG, 1 0111 REG, 0 0111	3 ute V des	Q4 Vrite to stination

SETF	S	et f			
Syntax:	[/	abel]	SETF	f,s	
Operands:	0 s	≤ f ≤ 25 ∈ [0,1]	5		
Operation:	FI FI	$Fh \rightarrow f;$ $Fh \rightarrow d$			
Status Affected:	Ν	one			
Encoding:		0010	101s	ffff	ffff
Description:	lf 'f' or to	's' is 0, b and WR nly the da FFh.	oth the da EG are se ata memo	ta memo et to FFh. ry locatio	ry location If 's' is 1 n 'f' is set
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1		Q2	Q	3	Q4
Decode	re	Read gister 'f'	Exect	ute re a s	Write egister 'f' nd other pecified register
Example1:	SI	STF	REG, 0		
Before Instru REG WREG	uctio = =	n 0xDA 0x05			
After Instruct REG WREG	tion = =	0xFF 0xFF			
Example2:	SE	TF	REG, 1		
Before Instru REG WREG	uctio = =	n 0xDA 0x05			
After Instruct REG WREG	tion = =	0xFF 0x05			

SUBWF	Subtract	WREG fr	rom f	
Syntax:	[label]	SUBWF	f,d	
Operands:	0 ≤ f ≤ 25 d ∈ [0,1]	55		
Operation:	(f) – (W)	\rightarrow (dest)		
Status Affected:	OV, C, D	C, Z		
Encoding:	0000	010d	ffff	ffff
Description:	Subtract V compleme result is st result is st	VREG from ent method) cored in WR cored back i	registe . If 'd' is EG. If 'd n regist	r 'f' (2's 0 the d' is 1 the er 'f'.
Words:	1			
Cycles:	1			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read	Execute	v e	Vrite to stination
Example 1:		PEC1 1		30112001
<u>Example 1</u> .	otion	REGI, I		
REG1 WREG C After Instructi	= 3 = 2 = ? on			
REG1 WREG C Z	= 1 = 2 = 1 ; = 0	result is po	sitive	
Example 2:				
Before Instruc REG1 WREG C After Instructi	ction = 2 = 2 = ? on			
REG1 WREG C Z	= 0 = 2 = 1 ; = 1	result is zei	ro	
Example 3:				
Before Instruc REG1 WREG C	ction = 1 = 2 = ?			
After Instructi REG1 WREG C Z	on = FF = 2 = 0 ; = 0	result is ne	gative	

SUE	BWFB	Sub Bor	tract row	WREG	from	n f v	/ith
Synt	tax:	[lab	<i>el</i>] S	SUBWF	B f,o	b	
Ope	rands:	0 ≤ f	⁵ ≤ 25	5			
One	ration.	(f)	(\\\/) -	$-\overline{C} \rightarrow 0$	dest)		
Stat		(i) – OV		- C → ((- 7	Jesij		
Enc	odina:	οv,		0 01d	ffi	FF	fff
Des	cription:	Subt (borr ment store store	ract W ow) fr t meth ed in W ed bac	/REG an om regis iod). If 'd' VREG. If k in regis	d the ter 'f' is 0 t 'd' is ' ster 'f'	carr (2's he r 1 the	y flag comple- esult is e result is
Wor	ds:	1					
Cycl	les:	1					
QC	ycle Activity:						
	Q1	Q2	<u>}</u>	Q3			Q4
	Decode	Rea registe	d er 'f'	Execu	ute	V de	Vrite to stination
Exa	<u>mple 1</u> :	SUB	VFB	REG1,	1		
	Before Instru	iction					
	REG1 WREG C	= 0x = 0x = 1	:19 :0D	(0001 (0000	100 110	1) 1)	
	After Instruct	tion					
	REG1 WREG C Z	= 0x $= 0x$ $= 1$ $= 0$:0C :0D	(0000 (0000 ; resul t	101 110 t is po	1) 1) ositiv	е
Exa	mple2:	SUBWE	FB R	EG1,0			
	Before Instru	iction					
	REG1 WREG C	= 0x = 0x = 0	:1B :1A	(0001 (0001	101 101	1) 0)	
	After Instruct REG1 WREG	tion = 0x = 0x	:1B :00	(0001	101	1)	
	C Z	= 1 = 1		; resul	t is ze	ro	
<u>Exa</u>	mple3:	SUBWE	FB R	EG1,1			
	Before Instru REG1 WREG C	iction = 0x = 0x = 1	:03 :0E	(0000 (0000	001: 110	1) 1)	
	After Instruct	tion					
	REG1 WREG C Z	= 0x $= 0x$ $= 0$ $= 0$:F5 :0E	(1111 (0000 ; resul t	010 110 t is ne	0) [2 1) egati	?'s comp] ve

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 17-11: MEMORY INTERFACE WRITE TIMING

TABLE 17-11: MEMORY INTERFACE WRITE REQUIREMENTS

Parameter							
No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
150	TadV2alL	AD<15:0> (address) valid to ALE↓ (address setup time)	0.25Tcy - 30	_	_	ns	
151	TalL2adl	ALE↓ to address out invalid (address hold time)	0	_	—	ns	
152	TadV2wrL	Data out valid to $\overline{WR} \downarrow$ (data setup time)	0.25Tcy - 40	—	_	ns	
153	TwrH2adl	WR [↑] to data out invalid (data hold time)	_	0.25Tcy §	_	ns	
154	TwrL	WR pulse width	—	0.25Tcy §	_	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification is guaranteed by design.

Applicable Devices 42 R42 42A 43 R43 44

19.4 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created following one of the following formats:

1. TppS2p	pS	3. Tcc:st	(I ² C specifications only)
2. TppS		4. Ts	(I ² C specifications only)
Т			· · · · · · · · · · · · · · · · · · ·
F	Frequency	Т	Time
Lowerca	ase symbols (pp) and their meanings:		
рр			
ad	Address/Data	ost	Oscillator Start-Up Timer
al	ALE	pwrt	Power-Up Timer
сс	Capture1 and Capture2	rb	PORTB
ck	CLKOUT or clock	rd	RD
dt	Data in	rw	RD or WR
in	INT pin	tO	TOCKI
io	I/O port	t123	TCLK12 and TCLK3
mc	MCLR	wdt	Watchdog Timer
oe	OE	wr	WR
os	OSC1		
Upperca	ase symbols and their meanings:		
S			
D	Driven	L	Low
E	Edge	P	Period
F	Fall	R	Rise
н	High	V	Valid
1	Invalid (Hi-impedance)	Z	Hi-impedance

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 19-5: TIMER0 CLOCK TIMINGS

TABLE 19-5: TIMER0 CLOCK REQUIREMENTS

Parameter								
No.	Sym	Characteristic		Min	Тур†	Мах	Units	Conditions
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5Tcy + 20 §	-	—	ns	
			With Prescaler	10*	-	—	ns	
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5Tcy + 20 §	-	—	ns	
			With Prescaler	10*	-	—	ns	
42	Tt0P	T0CKI Period	•	Greater of:	-		ns	N = prescale value
				20 ns or <u>Tcy + 40 §</u>				(1, 2, 4,, 256)
				N				

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

FIGURE 19-6: TIMER1, TIMER2, AND TIMER3 CLOCK TIMINGS

TABLE 19-6: TIMER1, TIMER2, AND TIMER3 CLOCK REQUIREMENTS

Parameter				Тур			
No.	Sym	Characteristic	Min	†	Max	Units	Conditions
45	Tt123H	TCLK12 and TCLK3 high time	0.5TCY + 20 §	_	_	ns	
46	Tt123L	TCLK12 and TCLK3 low time	0.5Tcy + 20 §	_	_	ns	
47	Tt123P	TCLK12 and TCLK3 input period	<u>Tcy + 40</u> § N		_	ns	N = prescale value (1, 2, 4, 8)
48	TckE2tmrI	Delay from selected External Clock Edge to Timer increment	2Tosc §		6Tosc §		

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

21.0 PACKAGING INFORMATION

21.1 40-Lead Ceramic CERDIP Dual In-line, and CERDIP Dual In-line with Window (600 mil)

	Pa	ckage Group: C	eramic CERDIP	Dual In-Line (C	DP)	
		Millimeters			Inches	
Symbol	Min	Max	Notes	Min	Max	Notes
α	0°	10°		0°	10°	
A	4.318	5.715		0.170	0.225	
A1	0.381	1.778		0.015	0.070	
A2	3.810	4.699		0.150	0.185	
A3	3.810	4.445		0.150	0.175	
В	0.355	0.585		0.014	0.023	
B1	1.270	1.651	Typical	0.050	0.065	Typical
С	0.203	0.381	Typical	0.008	0.015	Typical
D	51.435	52.705		2.025	2.075	
D1	48.260	48.260	Reference	1.900	1.900	Reference
E	15.240	15.875		0.600	0.625	
E1	12.954	15.240		0.510	0.600	
e1	2.540	2.540	Reference	0.100	0.100	Reference
eA	14.986	16.002	Typical	0.590	0.630	Typical
eB	15.240	18.034		0.600	0.710	
L	3.175	3.810		0.125	0.150	
N	40	40		40	40	
S	1.016	2.286		0.040	0.090	
S1	0.381	1.778		0.015	0.070	

© 1996 Microchip Technology Inc.

E.2 PIC16C5X Family of Devices

				0	lock Me	mory	Perip	herals	Features
		STREIT UN	10-10-10-10-1-1-1-1-1-1-1-1-1-1-1-1-1-1	SHIN LOUBEISC	(Selfor Louisen eier	(S) SIM		Norver and they	Selder Stolionisting (Stic
	"ten			MA W		0,1	ioeilon	N/	Ased and
PIC16C52	4	384	Ι	25	TMRO	12	2.5-6.25	33	18-pin DIP, SOIC
PIC16C54	20	512	I	25	TMRO	12	2.5-6.25	33	18-pin DIP, SOIC; 20-pin SSOP
PIC16C54A	20	512	I	25	TMRO	12	2.0-6.25	33	18-pin DIP, SOIC; 20-pin SSOP
PIC16CR54A	20		512	25	TMRO	12	2.0-6.25	33	18-pin DIP, SOIC; 20-pin SSOP
PIC16C55	20	512	I	24	TMRO	20	2.5-6.25	33	28-pin DIP, SOIC, SSOP
PIC16C56	20	1 K	I	25	TMR0	12	2.5-6.25	33	18-pin DIP, SOIC; 20-pin SSOP
PIC16C57	20	2K	I	72	TMRO	20	2.5-6.25	33	28-pin DIP, SOIC, SSOP
PIC16CR57B	20		2K	72	TMR0	20	2.5-6.25	33	28-pin DIP, SOIC, SSOP
PIC16C58A	20	2K	I	73	TMR0	12	2.0-6.25	33	18-pin DIP, SOIC; 20-pin SSOP
PIC16CR58A	20		2K	73	TMR0	12	2.5-6.25	33	18-pin DIP, SOIC; 20-pin SSOP
All PIC16/17	Family (devices	have F	⁻ ower-On	ו Reset, selectat	le Watch	ndog Timer, s	selectab	le code protect and high I/O current capability.

DS30412C-page 214