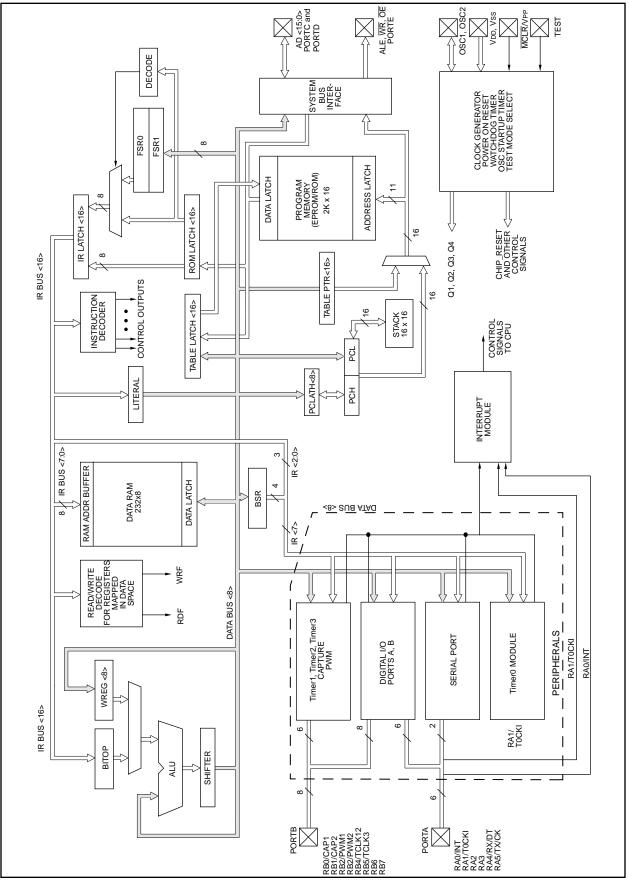


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

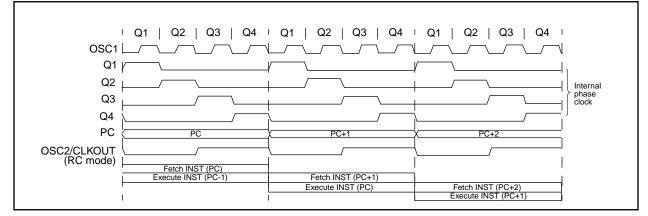

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	33MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (8K x 16)
Program Memory Type	OTP
EEPROM Size	
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17c44t-33i-pq

Email: info@E-XFL.COM

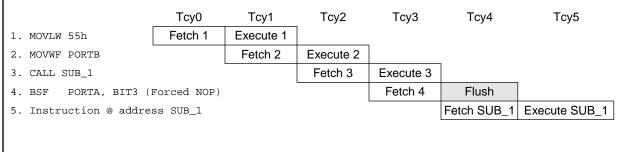
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.1 Clocking Scheme/Instruction Cycle


The clock input (from OSC1) is internally divided by four to generate four non-overlapping quadrature clocks, namely Q1, Q2, Q3, and Q4. Internally, the program counter (PC) is incremented every Q1, and the instruction is fetched from the program memory and latched into the instruction register in Q4. The instruction is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 3-3.

3.2 Instruction Flow/Pipelining

An "Instruction Cycle" consists of four Q cycles (Q1, Q2, Q3, and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the program counter to change (e.g.GOTO) then two cycles are required to complete the instruction (Example 3-2).


A fetch cycle begins with the program counter incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the "Instruction Register (IR)" in cycle Q1. This instruction is then decoded and executed during the Q2, Q3, and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 3-3: CLOCK/INSTRUCTION CYCLE

EXAMPLE 3-2: INSTRUCTION PIPELINE FLOW

All instructions are single cycle, except for any program branches. These take two cycles since the fetch instruction is "flushed" from the pipeline while the new instruction is being fetched and then executed.

5.1 Interrupt Status Register (INTSTA)

The Interrupt Status/Control register (INTSTA) records the individual interrupt requests in flag bits, and contains the individual interrupt enable bits (not for the peripherals).

The PEIF bit is a read only, bit wise OR of all the peripheral flag bits in the PIR register (Figure 5-4).

Note: T0IF, INTF, T0CKIF, or PEIF will be set by the specified condition, even if the corresponding interrupt enable bit is clear (interrupt disabled) or the GLINTD bit is set (all interrupts disabled).

Care should be taken when clearing any of the INTSTA register enable bits when interrupts are enabled (GLINTD is clear). If any of the INTSTA flag bits (T0IF, INTF, T0CKIF, or PEIF) are set in the same instruction cycle as the corresponding interrupt enable bit is cleared, the device will vector to the reset address (0x00).

When disabling any of the INTSTA enable bits, the GLINTD bit should be set (disabled).

FIGURE 5-2: INTSTA REGISTER (ADDRESS: 07h, UNBANKED)

bit $W = V$	eadable bit /ritable bit /alue at POR reset
bit 7: PEIF : Peripheral Interrupt Flag bit This bit is the OR of all peripheral interrupt flag bits AND'ed with their corres 1 = A peripheral interrupt is pending	/alue at POR reset
bit 7: PEIF : Peripheral Interrupt Flag bit This bit is the OR of all peripheral interrupt flag bits AND'ed with their corres 1 = A peripheral interrupt is pending	
	ponding enable bits.
 bit 6: TOCKIF: External Interrupt on TOCKI Pin Flag bit This bit is cleared by hardware, when the interrupt logic forces program exercised 1 = The software specified edge occurred on the RA1/T0CKI pin 0 = The software specified edge did not occur on the RA1/T0CKI pin 	cution to vector (18h).
bit 5: T0IF : TMR0 Overflow Interrupt Flag bit This bit is cleared by hardware, when the interrupt logic forces program exer 1 = TMR0 overflowed 0 = TMR0 did not overflow	cution to vector (10h).
 bit 4: INTF: External Interrupt on INT Pin Flag bit This bit is cleared by hardware, when the interrupt logic forces program exercise 1 = The software specified edge occurred on the RA0/INT pin 0 = The software specified edge did not occur on the RA0/INT pin 	cution to vector (08h).
 bit 3: PEIE: Peripheral Interrupt Enable bit This bit enables all peripheral interrupts that have their corresponding enabl 1 = Enable peripheral interrupts 0 = Disable peripheral interrupts 	e bits set.
bit 2: TOCKIE : External Interrupt on TOCKI Pin Enable bit 1 = Enable software specified edge interrupt on the RA1/TOCKI pin 0 = Disable interrupt on the RA1/TOCKI pin	
bit 1: T0IE : TMR0 Overflow Interrupt Enable bit 1 = Enable TMR0 overflow interrupt 0 = Disable TMR0 overflow interrupt	
bit 0: INTE : External Interrupt on RA0/INT Pin Enable bit 1 = Enable software specified edge interrupt on the RA0/INT pin 0 = Disable software specified edge interrupt on the RA0/INT pin	

9.2 PORTB and DDRB Registers

PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is DDRB. A '1' in DDRB configures the corresponding port pin as an input. A '0' in the DDRB register configures the corresponding port pin as an output. Reading PORTB reads the status of the pins, whereas writing to it will write to the port latch.

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is done by clearing the $\overline{\text{RBPU}}$ (PORTA<7>) bit. The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are enabled on any reset.

PORTB also has an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (i.e. any RB7:RB0 pin configured as an output is excluded from the interrupt on change comparison). The input pins (of RB7:RB0) are compared with the value in the PORTB data latch. The "mismatch" outputs of RB7:RB0 are OR'ed together to generate the PORTB Interrupt Flag RBIF (PIR<7>). This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt by:

- a) Read-Write PORTB (such as; MOVPF PORTB, PORTB). This will end mismatch condition.
- b) Then, clear the RBIF bit.

A mismatch condition will continue to set the RBIF bit. Reading then writing PORTB will end the mismatch condition, and allow the RBIF bit to be cleared.

This interrupt on mismatch feature, together with software configurable pull-ups on this port, allows easy interface to a key pad and make it possible for wake-up on key-depression. For an example, refer to AN552 in the *Embedded Control Handbook*.

The interrupt on change feature is recommended for wake-up on operations where PORTB is only used for the interrupt on change feature and key depression operation.

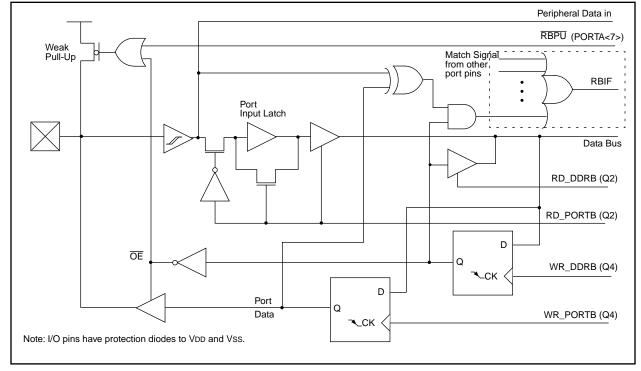


FIGURE 9-4: BLOCK DIAGRAM OF RB<7:4> AND RB<1:0> PORT PINS

Example 9-1 shows the instruction sequence to initialize PORTB. The Bank Select Register (BSR) must be selected to Bank 0 for the port to be initialized.

EXAMPLE 9-1: INITIALIZING PORTB

MOVLB	0	;	Select Bank 0
CLRF	PORTB	;	Initialize PORTB by clearing
		;	output data latches
MOVLW	0xCF	;	Value used to initialize
		;	data direction
MOVWF	DDRB	;	Set RB<3:0> as inputs
		;	RB<5:4> as outputs
		;	RB<7:6> as inputs

Name	Bit	Buffer Type	Function
RB0/CAP1	bit0	ST	Input/Output or the RB0/CAP1 input pin. Software programmable weak pull- up and interrupt on change features.
RB1/CAP2	bit1	ST	Input/Output or the RB1/CAP2 input pin. Software programmable weak pull- up and interrupt on change features.
RB2/PWM1	bit2	ST	Input/Output or the RB2/PWM1 output pin. Software programmable weak pull-up and interrupt on change features.
RB3/PWM2	bit3	ST	Input/Output or the RB3/PWM2 output pin. Software programmable weak pull-up and interrupt on change features.
RB4/TCLK12	bit4	ST	Input/Output or the external clock input to Timer1 and Timer2. Software pro- grammable weak pull-up and interrupt on change features.
RB5/TCLK3	bit5	ST	Input/Output or the external clock input to Timer3. Software programmable weak pull-up and interrupt on change features.
RB6	bit6	ST	Input/Output pin. Software programmable weak pull-up and interrupt on change features.
RB7	bit7	ST	Input/Output pin. Software programmable weak pull-up and interrupt on change features.

TABLE 9-3: PORTB FUNCTIONS

Legend: ST = Schmitt Trigger input.

TABLE 9-4: REGISTERS/BITS ASSOCIATED WITH PORTB

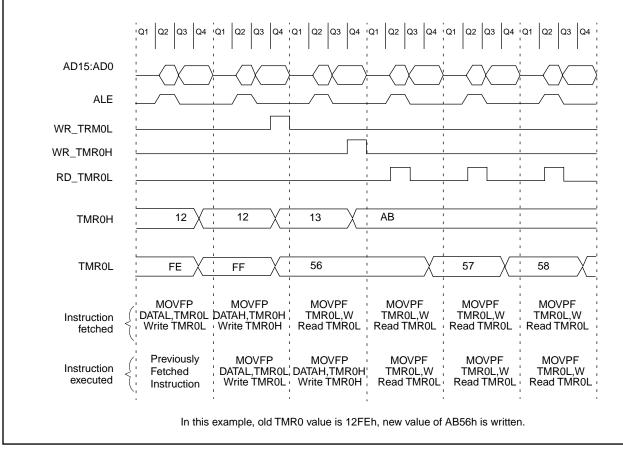
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
12h, Bank 0	PORTB	PORTB d	ata latch		xxxx xxxx	uuuu uuuu					
11h, Bank 0	DDRB	Data dired	ction registe		1111 1111	1111 1111					
10h, Bank 0	PORTA	RBPU	_	RA5	RA4	RA3	RA2	RA1/T0CKI	RA0/INT	0-xx xxxx	0-uu uuuu
06h, Unbanked	CPUSTA	—	_	STKAV	GLINTD	TO	PD	_	_	11 11	11 qq
07h, Unbanked	INTSTA	PEIF	T0CKIF	T0IF	INTF	PEIE	T0CKIE	T0IE	INTE	0000 0000	0000 0000
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
16h, Bank 3	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h, Bank 3	TCON2	CA2OVF	CA10VF	PWM2ON	PWM10N	CA1/PR3	TMR3ON	TMR2ON	TMR10N	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = Value depends on condition.

Shaded cells are not used by PORTB.

Note 1: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

11.0 TIMER0


The Timer0 module consists of a 16-bit timer/counter, TMR0. The high byte is TMR0H and the low byte is TMR0L. A software programmable 8-bit prescaler makes an effective 24-bit overflow timer. The clock source is also software programmable as either the internal instruction clock or the RA1/T0CKI pin. The control bits for this module are in register T0STA (Figure 11-1).

R/W - 0	R/W - 0	R/W - 0	R/W - 0	R/W - 0	R/W - 0	R/W - 0	U - 0	
INTEDG bit7	TOSE	TOCS	PS3	PS2	PS1	PS0	— bit0	R = Readable bit W = Writable bit U = Unimplemented, Read as '0' -n = Value at POR reset
bit 7:	INTEDG : R This bit sele 1 = Rising e 0 = Falling e	ects the ed edge of RA	ge upon w 0/INT pin g	hich the in generates i	terrupt is d nterrupt	etected		-n = value al POR lesel
bit 6:		ects the ed S = 0 edge of RA edge of RA	ge upon w 1/T0CKI pi	hich TMR(nts TMR0 a	and/or gene		CKIF interrupt CKIF interrupt
bit 5:	TOCS : Time This bit sele 1 = Internal 0 = TOCKI	ects the clo instruction	ck source	for TMR0.				
bit 4-1:	PS3:PS0 : T These bits				R0.			
	PS3:PS0	Pre	scale Valu	е				
	0000 0001 0010 0011 0100 0101 0110 0111 1xxx		1:1 1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256					
bit 0:	Unimplem	ented : Rea	id as '0'					

FIGURE 11-1: T0STA REGISTER (ADDRESS: 05h, UNBANKED)

© 1996 Microchip Technology Inc.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
05h, Unbanked	TOSTA	INTEDG	T0SE	TOCS	PS3	PS2	PS1	PS0		0000 000-	0000 000-
06h, Unbanked	CPUSTA	—	_	STKAV	GLINTD	TO	PD	_	_	11 11	11 qq
07h, Unbanked	INTSTA	PEIF	TOCKIF	T0IF	INTF	PEIE	T0CKIE	TOIE	INTE	0000 0000	0000 0000
0Bh, Unbanked TMR0L TMR0 register; low byte										xxxx xxxx	uuuu uuuu
0Ch, Unbanked	d TMR0H TMR0 register; high byte									xxxx xxxx	uuuu uuuu

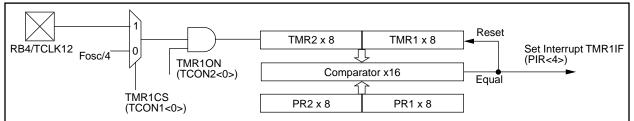
Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', g - value depends on condition, Shaded cells are not used by Timer0. Note 1: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

FIGURE 12-2: TCON2 REGISTER (ADDRESS: 17h, BANK 3)

R - 0	R - 0 R/W - 0
	F CA10VF PWM20N PWM10N CA1/PR3 TMR30N TMR20N TMR10N R = Readable bit
bit7	bit0 W = Writable bit
	-n = Value at POR reset
bit 7:	 CA2OVF: Capture2 Overflow Status bit This bit indicates that the capture value had not been read from the capture register pair (CA2H:CA2L) before the next capture event occurred. The capture register retains the oldest unread capture value (last capture before overflow). Subsequent capture events will not update the capture register with the Timer3 value until the capture register has been read (both bytes). 1 = Overflow occurred on Capture2 register 0 = No overflow occurred on Capture2 register
bit 6:	CA1OVF : Capture1 Overflow Status bit This bit indicates that the capture value had not been read from the capture register pair (PR3H/CA2H:PR3L/CA2L) before the next capture event occurred. The capture register retains the old- est unread capture value (last capture before overflow). Subsequent capture events will not update the capture register with the TMR3 value until the capture register has been read (both bytes). 1 = Overflow occurred on Capture1 register 0 = No overflow occurred on Capture1 register
bit 5:	PWM2ON : PWM2 On bit 1 = PWM2 is enabled (The RB3/PWM2 pin ignores the state of the DDRB<3> bit) 0 = PWM2 is disabled (The RB3/PWM2 pin uses the state of the DDRB<3> bit for data direction)
bit 4:	PWM1ON : PWM1 On bit 1 = PWM1 is enabled (The RB2/PWM1 pin ignores the state of the DDRB<2> bit) 0 = PWM1 is disabled (The RB2/PWM1 pin uses the state of the DDRB<2> bit for data direction)
bit 3:	CA1/PR3 : CA1/PR3 Register Mode Select bit 1 = Enables Capture1 (PR3H/CA1H:PR3L/CA1L is the Capture1 register. Timer3 runs without a period register) 0 = Enables the Period register (PR3H/CA1H:PR3L/CA1L is the Period register for Timer3)
bit 2:	TMR3ON: Timer3 On bit 1 = Starts Timer3 0 = Stops Timer3
bit 1:	TMR2ON : Timer2 On bit This bit controls the incrementing of the Timer2 register. When Timer2:Timer1 form the 16-bit timer (T16 is set), TMR2ON must be set. This allows the MSB of the timer to increment. 1 = Starts Timer2 (Must be enabled if the T16 bit (TCON1<3>) is set) 0 = Stops Timer2
bit 0:	TMR1ON: Timer1 On bit <u>When T16 is set (in 16-bit Timer Mode)</u> 1 = Starts 16-bit Timer2:Timer1 0 = Stops 16-bit Timer2:Timer1
	<u>When T16 is clear (in 8-bit Timer Mode)</u> 1 = Starts 8-bit Timer1 0 = Stops 8-bit Timer1
	•

12.1.2 TIMER1 & TIMER2 IN 16-BIT MODE

To select 16-bit mode, the T16 bit must be set. In this mode TMR1 and TMR2 are concatenated to form a 16-bit timer (TMR2:TMR1). The 16-bit timer increments until it matches the 16-bit period register (PR2:PR1). On the following timer clock, the timer value is reset to 0h, and the TMR1IF bit is set.


When selecting the clock source for the16-bit timer, the TMR1CS bit controls the entire 16-bit timer and TMR2CS is a "don't care." When TMR1CS is clear, the timer increments once every instruction cycle (Fosc/4). When TMR1CS is set, the timer increments on every falling edge of the RB4/TCLK12 pin. For the 16-bit timer to increment, both TMR1ON and TMR2ON bits must be set (Table 12-1).

12.1.2.1 EXTERNAL CLOCK INPUT FOR TMR1:TMR2

When TMR1CS is set, the 16-bit TMR2:TMR1 increments on the falling edge of clock input TCLK12. The input on the RB4/TCLK12 pin is sampled and synchronized by the internal phase clocks twice every instruction cycle. This causes a delay from the time a falling edge appears on RB4/TCLK12 to the time TMR2:TMR1 is actually incremented. For the external clock input timing requirements, see the Electrical Specification section.

TMR2ON	TMR10N	Result
1	1	16-bit timer (TMR2:TMR1) ON
0	1	Only TMR1 increments
x	0	16-bit timer OFF

FIGURE 12-4: TMR1 AND TMR2 IN 16-BIT TIMER/COUNTER MODE

TABLE 12-2: SUMMARY OF TIMER1 AND TIMER2 REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 3	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h, Bank 3	TCON2	CA2OVF	CA10VF	PWM2ON	PWM1ON	CA1/PR3	TMR3ON	TMR2ON	TMR10N	0000 0000	0000 0000
10h, Bank 2	TMR1	Timer1 reg	gister							xxxx xxxx	uuuu uuuu
11h, Bank 2	TMR2	Timer2 reg	gister		xxxx xxxx	uuuu uuuu					
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
07h, Unbanked	INTSTA	PEIF	T0CKIF	T0IF	INTF	PEIE	T0CKIE	TOIE	INTE	0000 0000	0000 0000
06h, Unbanked	CPUSTA	_	-	STKAV	GLINTD	TO	PD	_	_	11 11	11 qq
14h, Bank 2	PR1	Timer1 pe	riod registe	r						xxxx xxxx	uuuu uuuu
15h, Bank 2	PR2	Timer2 pe	riod registe	r						xxxx xxxx	uuuu uuuu
10h, Bank 3	PW1DCL	DC1	DC0	—	_	—	—	—	—	xx	uu
11h, Bank 3	PW2DCL	DC1	DC0	TM2PW2		—	_	_	_	xx0	uu0
12h, Bank 3	PW1DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	xxxx xxxx	uuuu uuuu
13h, Bank 3	PW2DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	xxxx xxxx	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', q - value depends on condition,

shaded cells are not used by Timer1 or Timer2.

Note 1: Other (non power-up) resets include: external reset through MCLR and WDT Timer Reset.

BAUD	Fosc = 3	3 MHz	SPBRG	Fosc = 2	5 MHz	SPBRG	Fosc = 2	0 MHz	SPBRG	Fosc = 1	6 MHz	SPBRG
RATE (K)	KBAUD	%ERROR	value (decimal)									
0.3	NA	_	—	NA	_		NA	_	_	NA	_	-
1.2	NA	_	_	NA	_	_	1.221	+1.73	255	1.202	+0.16	207
2.4	2.398	-0.07	214	2.396	0.14	162	2.404	+0.16	129	2.404	+0.16	103
9.6	9.548	-0.54	53	9.53	-0.76	40	9.469	-1.36	32	9.615	+0.16	25
19.2	19.09	-0.54	26	19.53	+1.73	19	19.53	+1.73	15	19.23	+0.16	12
76.8	73.66	-4.09	6	78.13	+1.73	4	78.13	+1.73	3	83.33	+8.51	2
96	103.12	+7.42	4	97.65	+1.73	3	104.2	+8.51	2	NA	_	_
300	257.81	-14.06	1	390.63	+30.21	0	312.5	+4.17	0	NA	_	-
500	515.62	+3.13	0	NA	_	_	NA	_	_	NA	_	-
HIGH	515.62	_	0	_	_	0	312.5	_	0	250	_	0
LOW	2.014	—	255	1.53	—	255	1.221	—	255	0.977	_	255

TABLE 13-4: BAUD RATES FOR ASYNCHRONOUS MODE

BAUD RATE	Fosc = 10 MH	Iz	SPBRG value	Fosc = 7.159) MHz	SPBRG value	FOSC = 5.068	8 MHz	SPBRG value
(K)	KBAUD	%ERROR	(decimal)	KBAUD	%ERROR	(decimal)	KBAUD	%ERROR	(decimal)
0.3	NA	_	_	NA	_	_	0.31	+3.13	255
1.2	1.202	+0.16	129	1.203	_0.23	92	1.2	0	65
2.4	2.404	+0.16	64	2.380	-0.83	46	2.4	0	32
9.6	9.766	+1.73	15	9.322	-2.90	11	9.9	-3.13	7
19.2	19.53	+1.73	7	18.64	-2.90	5	19.8	+3.13	3
76.8	78.13	+1.73	1	NA	_	—	79.2	+3.13	0
96	NA	—	—	NA	—	—	NA	—	—
300	NA	_	—	NA	_	—	NA	_	_
500	NA	_	_	NA	_	_	NA	_	_
HIGH	156.3	_	0	111.9	_	0	79.2	_	0
LOW	0.610	—	255	0.437	—	255	0.309	_	2 55
BAUD	Fosc = 3.579	MHz	SPBRG	Fosc = 1 MH	z	SPBRG	FOSC = 32.76	8 kHz	SPBRG
RATE (K)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)
0.3	0.301	+0.23	185	0.300	+0.16	51	0.256	-14.67	1
1.2	1.190	-0.83	46	1.202	+0.16	12	NA	—	—
2.4	2.432	+1.32	22	2.232	-6.99	6	NA	—	—
9.6	9.322	-2.90	5	NA	_	_	NA	_	_
19.2	18.64	-2.90	2	NA	—	—	NA	—	—
76.8	NA	—	—	NA	—	—	NA	—	—
96	NA	_	_	NA	_	_	NA	_	_
300	NA	—	—	NA	—	—	NA	—	—
500	NA	—	—	NA	—	—	NA	—	—
HIGH	55.93	_	0	15.63	_	0	0.512	_	0
l mon									

13.2 USART Asynchronous Mode

In this mode, the USART uses standard nonreturn-to-zero (NRZ) format (one start bit, eight or nine data bits, and one stop bit). The most common data format is 8-bits. An on-chip dedicated 8-bit baud rate generator can be used to derive standard baud rate frequencies from the oscillator. The USART's transmitter and receiver are functionally independent but use the same data format and baud rate. The baud rate generator produces a clock x64 of the bit shift rate. Parity is not supported by the hardware, but can be implemented in software (and stored as the ninth data bit). Asynchronous mode is stopped during SLEEP.

The asynchronous mode is selected by clearing the SYNC bit (TXSTA<4>).

The USART Asynchronous module consists of the following important elements:

- Baud Rate Generator
- Sampling Circuit
- Asynchronous Transmitter
- Asynchronous Receiver

13.2.1 USART ASYNCHRONOUS TRANSMITTER

The USART transmitter block diagram is shown in Figure 13-3. The heart of the transmitter is the transmit shift register (TSR). The shift register obtains its data from the read/write transmit buffer (TXREG). TXREG is loaded with data in software. The TSR is not loaded until the stop bit has been transmitted from the previous load. As soon as the stop bit is transmitted, the TSR is loaded with new data from the TXREG (if available). Once TXREG transfers the data to the TSR (occurs in one TCY at the end of the current BRG cycle), the TXREG is empty and an interrupt bit, TXIF (PIR<1>) is set. This interrupt can be enabled or disabled by the TXIE bit (PIE<1>). TXIF will be set regardless of TXIE and cannot be reset in software. It will reset only when new data is loaded into TXREG. While TXIF indicates the status of the TXREG, the TRMT (TXSTA<1>) bit shows the status of the TSR. TRMT is a read only bit which is set when the TSR is empty. No interrupt logic is tied to this bit, so the user has to poll this bit in order to determine if the TSR is empty.

Note:	The TSR is not mapped in data memory,
	so it is not available to the user.

Transmission enabled setting is by the TXEN (TXSTA<5>) bit. The actual transmission will not occur until TXREG has been loaded with data and the baud rate generator (BRG) has produced a shift clock (Figure 13-5). The transmission can also be started by first loading TXREG and then setting TXEN. Normally when transmission is first started, the TSR is empty, so a transfer to TXREG will result in an immediate transfer to TSR resulting in an empty TXREG. A back-to-back transfer is thus possible (Figure 13-6). Clearing TXEN during a transmission will cause the transmission to be aborted. This will reset the transmitter and the RA5/TX/CK pin will revert to hi-impedance.

In order to select 9-bit transmission, the TX9 (TXSTA<6>) bit should be set and the ninth bit should be written to TX9D (TXSTA<0>). The ninth bit must be written before writing the 8-bit data to the TXREG. This is because a data write to TXREG can result in an immediate transfer of the data to the TSR (if the TSR is empty).

Steps to follow when setting up an Asynchronous Transmission:

- 1. Initialize the SPBRG register for the appropriate baud rate.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If interrupts are desired, then set the TXIE bit.
- 4. If 9-bit transmission is desired, then set the TX9 bit.
- 5. Load data to the TXREG register.
- 6. If 9-bit transmission is selected, the ninth bit should be loaded in TX9D.
- 7. Enable the transmission by setting TXEN (starts transmission).

Writing the transmit data to the TXREG, then enabling the transmit (setting TXEN) allows transmission to start sooner then doing these two events in the opposite order.

Note: To terminate a transmission, either clear the SPEN bit, or the TXEN bit. This will reset the transmit logic, so that it will be in the proper state when transmit is re-enabled.

14.2.4 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with series resonance, or one with parallel resonance.

Figure 14-5 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometer biases the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 14-5: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

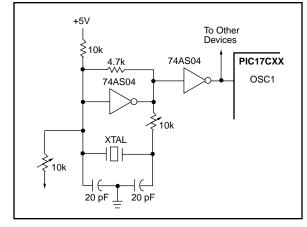
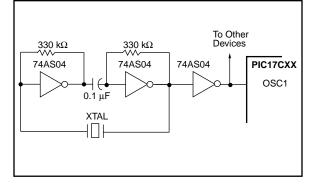
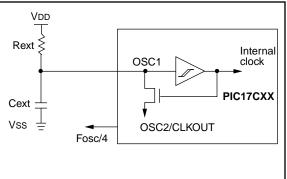



Figure 14-6 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 14-6: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

14.2.5 RC OSCILLATOR

For timing insensitive applications, the RC device option offers additional cost savings. RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 14-6 shows how the R/C combination is connected to the PIC17CXX. For Rext values below 2.2 kQ, the oscillator operation may become unstable, or stop completely. For very high Rext values (e.g. 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend to keep Rext between 3 $k\Omega$ and 100 $k\Omega$.


Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With little or no external capacitance, oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

See Section 18.0 for RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

See Section 18.0 for variation of oscillator frequency due to VDD for given Rext/Cext values as well as frequency variation due to operating temperature for given R, C, and VDD values.

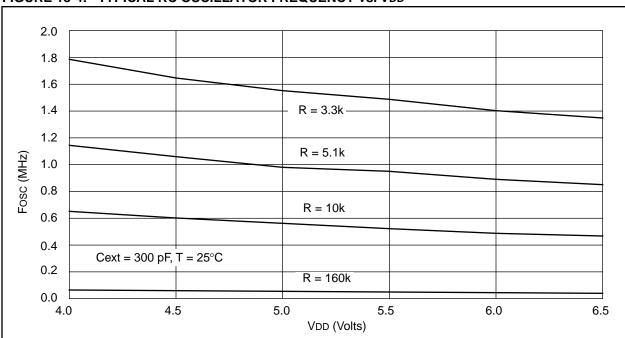
The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin, and can be used for test purposes or to synchronize other logic (see Figure 3-2 for waveform).

FIGURE 14-7: RC OSCILLATOR MODE

CALL	Subroutir	ne Call		CLF	RF	Clear f			
Syntax:	[label] (CALL k		Syn	tax:	[<i>label</i>] CL	RF f,s		
Operands:	$0 \le k \le 40$	95		Ope	erands:	$0 \le f \le 25$	5		
Operation:	k<12:8> –			$k<12:8> \rightarrow PCLATH<4:0>;$			$\begin{array}{llllllllllllllllllllllllllllllllllll$		
Status Affecte				Stat	None				
				ר Enc	oding:	0010	100s	ffff	ffff
Encoding: Description:	return addr the stack. T PC bits<12 bits of the F	kkkk kkl call within 8K ess (PC+1) is he 13-bit value :0>. Then the p PC are copied	page. First, pushed onto is loaded into upper-eight into PCLATH.		scription:	Clears the ister(s). s = 0: Data WREG are s = 1: Data cleared.	memory cleared.	location	
		wo-cycle instru		Woi	rds:	1			
	See LCALL space.	for calls outsid	le 8K memory	Сус	les:	1			
Words:	1			QC	cycle Activity:				
Cycles:	2				Q1	Q2	Q		Q4
Q Cycle Activ	ity:				Decode	Read register 'f'	Exec		Write register 'f'
Q1	Q2	Q3	Q4						and other
Decode	e Read literal 'k'<7:0>	Execute	NOP						specified register
Forced N	OP NOP	Execute	NOP	<u>Exa</u>	mple:	CLRF	FLAC	G_REG	
<u>Example</u> : Before In PC		CALL THE	RE		Before Instru FLAG_R After Instruc	EG = 0	κ5Α		
After Inst PC		ERE)			FLAG_R	EG = 0>	(00		

PC = Address(THERE) TOS = Address(HERE + 1)

CPFS	-SLT Compare f with WREG, skip if f < WREG							
Synta	ax:	[<i>label</i>] CPFSLT f						
Opera								
Opera	ation:	G), (WREG) comparison)						
Statu	s Affected:	None						
Enco	ding:	0011	0000 ffi	ff ffff				
Description: Compares the contents of data mem location 'f' to the contents of WREG performing an unsigned subtraction. If the contents of 'f' < the contents of WREG, then the fetched instruction discarded and an NOP is executed instead making this a two-cycle instr tion.								
Word	s:	1						
Cycle	es:	1 (2)	1 (2)					
Q Cy	cle Activity:							
	Q1	Q2	Q3	Q4				
	Decode	Read register 'f'	Execute	NOP				
lf skip	o:							
-	Q1	Q2	Q3	Q4				
	Forced NOP	NOP	Execute	NOP				
<u>Exarr</u>	nple:	HERE NLESS LESS	CPFSLT REG : :					
E	Before Instru PC W		ddress (HERE)					
ŀ	After Instruct If REG PC If REG PC	< W = Ac ≥ W	REG; ddress (LESS) REG; ddress (NLESS					


DAW		Decimal	Adjust WRE	G Register			
Syntax	K:	[<i>label</i>] D	AW f,s				
Opera	nds:	$0 \le f \le 25$ s $\in [0,1]$	5				
Opera	tion:	⁻ WREG else	If [WREG<3:0> >9] .OR. [DC = 1] then WREG<3:0> + 6 \rightarrow f<3:0>, s<3:0>; else WREG<3:0> \rightarrow f<3:0>, s<3:0>;				
		WREG		f<7:4>, s<7:4>			
Status	Affected:	C	$<7:4> \rightarrow f<7:$	4>, S<7:4>			
Encod		0010	111s ff	ff ffff			
Descri	U		ts the eight bi				
		tion of two BCD forma packed BC s = 0: Ro m W	WREG resulting from the earlier addi- tion of two variables (each in packed BCD format) and produces a correct packed BCD result. s = 0: Result is placed in Data memory location 'f' and WREG.				
			esult is placed emory locatio				
Words	:	1					
Cycles	8:	1					
Q Cyc	le Activity:			•			
	Q1 Decode	Q2 Read	Q3 Execute	Q4 Write			
	Decode	register 'f'	Execute	register 'f' and other specified register			
Exam	ole1:	DAW RE	G1, 0				
B	 efore Instru	iction					
	WREG REG1 C DC	= 0xA5 = ?? = 0 = 0					
Ai <u>Exam</u> t	fter Instruct WREG REG1 C DC DC	ion = 0x05 = 0x05 = 1 = 0					
В	efore Instru						
	WREG REG1 C	= 0xCE = ?? = 0					

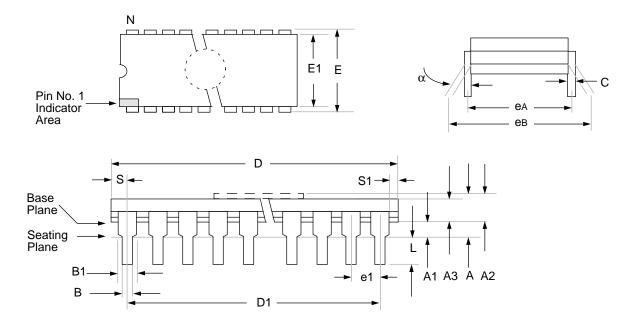
U	-	0
DC	=	0
After Instruc	tion	
WREG	=	0x24
REG1	=	0x24
С	=	1
DC	=	0

RETFIE Return from Interrupt							
Syntax:		[label]	RETFIE				
Operands:		None	None				
$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Status Affe	ected:	GLINTD					
Encoding:		0000	0000	0000	0101		
Description	n:	Return from and Top of PC. Interrut the GLINT interrupt di	Stack (To pts are ei D bit. GLI	DS) is load nabled by NTD is the	ded in the clearing e global		
Words:		1					
Cycles:		2					
Q Cycle A	ctivity:						
	21	Q2	Q3	3	Q4		
Dec	ode	Read register T0STA	register		NOP		
Force	d NOP	NOP	Execu	ute	NOP		
Р	nterrup C LINTD	RETFIE t = TOS = 0					

RETL	w	Return Li	teral to WRE	EG				
Synta	ax:	[label]	RETLW k					
Opera	ands:	$0 \le k \le 25$	$0 \le k \le 255$					
Opera	ation:	•	$k \rightarrow (WREG); TOS \rightarrow (PC);$ PCLATH is unchanged					
Statu	s Affected:	None						
Enco	ding:	1011	0110 kkl	kk kkkk				
Desci	ription:	'k'. The proo the top of th	gram counter i le stack (the re Idress latch (F	turn address).				
Word	s:	1						
Cycle	es:	2						
O Cv	cle Activity:							
Q Oy	CIE ACTIVITY.							
Q 0 y	Q1	Q2	Q3	Q4				
	-	Q2 Read literal 'k'	Q3 Execute	Q4 Write to WREG				
	Q1	Read		Write to				
	Q1 Decode Forced NOP	Read literal 'k'	Execute	Write to WREG NOP				
	Q1 Decode Forced NOP	Read literal 'k' NOP	Execute Execute BLE ; WREG co; ; offset ; WREG n; ; table c ; wREG = 0 ; Begin t;	Write to WREG NOP ntains table value ow has value				
Exam	Q1 Decode Forced NOP	Read literal 'k' NOP CALL TAN CALL TAN CALL TAN : TABLE ADDWF PC RETLW ki : : RETLW ki	Execute Execute BLE ; WREG coi ; offset ; WREG n; ; table coi ; table coi ; wREG = 0 ; Begin t; ; ;	Write to WREG NOP ntains table value ow has value				

Applicable Devices 42 R42 42A 43 R43 44

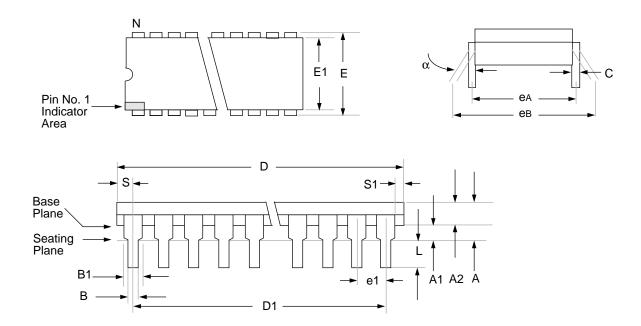
FIGURE 18-4: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD


TABLE 18-2: RC OSCILLATOR FREQUENCIES

Cext	Rext		rage 5V, 25°C
22 pF	10k	3.33 MHz	± 12%
	100k	353 kHz	± 13%
100 pF	3.3k	3.54 MHz	± 10%
	5.1k	2.43 MHz	± 14%
	10k	1.30 MHz	± 17%
	100k	129 kHz	± 10%
300 pF	3.3k	1.54 MHz	± 14%
	5.1k	980 kHz	± 12%
	10k	564 kHz	± 16%
	160k	35 kHz	± 18%

NOTES:

21.0 PACKAGING INFORMATION


21.1 40-Lead Ceramic CERDIP Dual In-line, and CERDIP Dual In-line with Window (600 mil)

Package Group: Ceramic CERDIP Dual In-Line (CDP)							
		Millimeters					
Symbol	Min	Мах	Notes	Min	Мах	Notes	
α	0°	10°		0°	10°		
А	4.318	5.715		0.170	0.225		
A1	0.381	1.778		0.015	0.070		
A2	3.810	4.699		0.150	0.185		
A3	3.810	4.445		0.150	0.175		
В	0.355	0.585		0.014	0.023		
B1	1.270	1.651	Typical	0.050	0.065	Typical	
С	0.203	0.381	Typical	0.008	0.015	Typical	
D	51.435	52.705		2.025	2.075		
D1	48.260	48.260	Reference	1.900	1.900	Reference	
E	15.240	15.875		0.600	0.625		
E1	12.954	15.240		0.510	0.600		
e1	2.540	2.540	Reference	0.100	0.100	Reference	
eA	14.986	16.002	Typical	0.590	0.630	Typical	
eB	15.240	18.034		0.600	0.710		
L	3.175	3.810		0.125	0.150		
Ν	40	40		40	40		
S	1.016	2.286		0.040	0.090		
S1	0.381	1.778		0.015	0.070		

© 1996 Microchip Technology Inc.

21.2 <u>40-Lead Plastic Dual In-line (600 mil)</u>

Package Group: Plastic Dual In-Line (PLA)							
		Millimeters			Inches		
Symbol	Min	Мах	Notes	Min	Max	Notes	
α	0°	10°		0°	10°		
Α	_	5.080		_	0.200		
A1	0.381	_		0.015	_		
A2	3.175	4.064		0.125	0.160		
В	0.355	0.559		0.014	0.022		
B1	1.270	1.778	Typical	0.050	0.070	Typical	
С	0.203	0.381	Typical	0.008	0.015	Typical	
D	51.181	52.197		2.015	2.055		
D1	48.260	48.260	Reference	1.900	1.900	Reference	
E	15.240	15.875		0.600	0.625		
E1	13.462	13.970		0.530	0.550		
e1	2.489	2.591	Typical	0.098	0.102	Typical	
eA	15.240	15.240	Reference	0.600	0.600	Reference	
eB	15.240	17.272		0.600	0.680		
L	2.921	3.683		0.115	0.145		
N	40	40		40	40		
S	1.270	_		0.050	_		
S1	0.508	-		0.020	_		

MP-C C Compiler	145
MPSIM Software Simulator	
MULLW	129
Multiply Examples	
16 x 16 Routine	50
16 x 16 Signed Routine	51
8 x 8 Routine	49
8 x 8 Signed Routine	49
MULWF	129

Ν

NEGW)
NOP 130	`
NOP	'

0

OERR	
Opcode Field Descriptions	
OSC Selection	
Oscillator	
Configuration	
Crystal	
External Clock	
External Crystal Circuit	
External Parallel Resonant Crystal Circuit	
External Series Resonant Crystal Circuit	
RC	
RC Frequencies	165, 195
Oscillator Start-up Time (Figure)	
Oscillator Start-up Timer (OST)	15, 99
OST	
OV	
Overflow (OV)	9

Ρ

Package Marking Information	210
Packaging Information	
Parameter Measurement Information	
PC (Program Counter)	
PCH	
PCL	34, 41, 108
PCLATH	
PD	
PEIE	
PEIF	
Peripheral Bank	
Peripheral Interrupt Enable	23
Peripheral Interrupt Request (PIR)	24
PICDEM-1 Low-Cost PIC16/17 Demo Board	143, 144
PICDEM-2 Low-Cost PIC16CXX Demo Board	143, 144
PICDEM-3 Low-Cost PIC16C9XXX Demo Boar	
PICMASTER [®] RT In-Circuit Emulator	
PICSTART [®] Low-Cost Development System	
PIE	34, 92, 96, 98
Pin Compatible Devices	
PIR	34, 92, 96, 98
PM0	
PM1	
POP	
POR	
PORTA	19, 34, 53
PORTB	19, 34, 55
PORTC	19, 34, 58

PORTD			
PORTE	19,	34,	62
Power-down Mode		1	05
Power-on Reset (POR)		15.	99
Power-up Timer (PWRT)			
PR1			
PR2			
PR3/CA1H			
PR3/CA1L			
PR3H/CA1H			
PR3L/CA1L			
Prescaler Assignments			
PRO MATE [®] Universal Programmer			42
PRODH			
PRODL			
Program Counter (PC)	•••••		41
Program Memory			
External Access Waveforms			
External Connection Diagram			
Мар			29
Modes			
Extended Microcontroller			29
Microcontroller			29
Microprocessor			29
Protected Microcontroller			29
Operation			29
Organization			29
Transfers from Data Memory			43
Protected Microcontroller			
PS0			
PS1			
PS2			
PS3			
PUSH			
PW1DCH			
PW1DCL			
PW2DCH			
PW2DCL			
PW2DCL			
Duty Cycle			
External Clock Source			
Frequency vs. Resolution			
Interrupts	•••••		10
Max Resolution/Frequency for External			
Clock Input			
Output			
Periods			
PWM1			
PWM10N			
PWM2			
PWM2ON			
PWRT		15,	99

R

RA1/T0CKI pin	
RBIE	
RBIF	
RBPU	
RC Oscillator	
RC Oscillator Frequencies	
RCIE	
RCIF	
RCREG	19, 34, 91, 92, 96, 97
RCSTA	
Reading 16-bit Value	
5	