

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	8MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	4KB (2K x 16)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	232 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17lc42a-08-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.5 RA0/INT Interrupt

The external interrupt on the RA0/INT pin is edge triggered. Either the rising edge, if INTEDG bit (T0STA<7>) is set, or the falling edge, if INTEDG bit is clear. When a valid edge appears on the RA0/INT pin, the INTF bit (INTSTA<4>) is set. This interrupt can be disabled by clearing the INTE control bit (INTSTA<0>). The INT interrupt can wake the processor from SLEEP. See Section 14.4 for details on SLEEP operation.

5.6 TMR0 Interrupt

An overflow (FFFFh \rightarrow 0000h) in TMR0 will set the T0IF (INTSTA<5>) bit. The interrupt can be enabled/ disabled by setting/clearing the T0IE control bit (INTSTA<1>). For operation of the Timer0 module, see Section 11.0.

5.7 TOCKI Interrupt

The external interrupt on the RA1/T0CKI pin is edge triggered. Either the rising edge, if the T0SE bit (T0STA<6>) is set, or the falling edge, if the T0SE bit is clear. When a valid edge appears on the RA1/T0CKI pin, the T0CKIF bit (INTSTA<6>) is set. This interrupt can be disabled by clearing the T0CKIE control bit (INTSTA<2>). The T0CKI interrupt can wake up the processor from SLEEP. See Section 14.4 for details on SLEEP operation.

5.8 Peripheral Interrupt

The peripheral interrupt flag indicates that at least one of the peripheral interrupts occurred (PEIF is set). The PEIF bit is a read only bit, and is a bit wise OR of all the flag bits in the PIR register AND'ed with the corresponding enable bits in the PIE register. Some of the peripheral interrupts can wake the processor from SLEEP. See Section 14.4 for details on SLEEP operation.

FIGURE 5-5: INT PIN / TOCKI PIN INTERRUPT TIMING

5.9 Context Saving During Interrupts

During an interrupt, only the returned PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt; e.g. WREG, ALUSTA and the BSR registers. This requires implementation in software. Example 5-1 shows the saving and restoring of information for an interrupt service routine. The PUSH and POP routines could either be in each interrupt service routine or could be subroutines that were called. Depending on the application, other registers may also need to be saved, such as PCLATH.

EXAMPLE 5-1: SAVING STATUS AND WREG IN RAM

;											
; The ac	The addresses that are used to store the CPUSTA and WREG values										
; must b	must be in the data memory address range of 18h - 1Fh. Up to										
; 8 loca	8 locations can be saved and restored using										
; the MG	the MOVFP instruction. This instruction neither affects the status										
; bits,	nor cori	rupts the WREG registe	er.								
;											
;											
PUSH	MOVFP	WREG, TEMP_W	;	Save WREG							
	MOVFP	ALUSTA, TEMP_STATUS	;	Save ALUSTA							
	MOVFP	BSR, TEMP_BSR	;	Save BSR							
ISR	:		;	This is the interrupt service routine							
	:										
POP	MOVFP	TEMP_W, WREG	;	Restore WREG							
	MOVFP	TEMP_STATUS, ALUSTA	;	Restore ALUSTA							
	MOVFP	TEMP_BSR, BSR	;	Restore BSR							
	RETFIE		;	Return from Interrupts enabled							

TABLE 6-1: MODE MEMORY ACCESS

Operating Mode	Internal Program Memory	Configuration Bits, Test Memory, Boot ROM			
Microprocessor	No Access	No Access			
Microcontroller	Access	Access			
Extended Microcontroller	Access	No Access			
Protected Microcontroller	Access	Access			

The PIC17C4X can operate in modes where the program memory is off-chip. They are the microprocessor and extended microcontroller modes. The microprocessor mode is the default for an unprogrammed device.

Regardless of the processor mode, data memory is always on-chip.

FIGURE 6-2: MEMORY MAP IN DIFFERENT MODES

9.4 PORTD and DDRD Registers

PORTD is an 8-bit bi-directional port. The corresponding data direction register is DDRD. A '1' in DDRD configures the corresponding port pin as an input. A '0' in the DDRC register configures the corresponding port pin as an output. Reading PORTD reads the status of the pins, whereas writing to it will write to the port latch. PORTD is multiplexed with the system bus. When operating as the system bus, PORTD is the high order byte of the address/data bus (AD15:AD8). The timing for the system bus is shown in the Electrical Characteristics section.

Note: This port is configured as the system bus when the device's configuration bits are selected to Microprocessor or Extended Microcontroller modes. In the two other microcontroller modes, this port is a general purpose I/O. Example 9-3 shows the instruction sequence to initialize PORTD. The Bank Select Register (BSR) must be selected to Bank 1 for the port to be initialized.

EXAMPLE 9-3: INITIALIZING PORTD

MOVLB	1	;	Select Bank 1
CLRF	PORTD	;	Initialize PORTD data
		;	latches before setting
		;	the data direction
		;	register
MOVLW	0xCF	;	Value used to initialize
		;	data direction
MOVWF	DDRD	;	Set RD<3:0> as inputs
		;	RD<5:4> as outputs
		;	RD<7:6> as inputs

11.1 <u>Timer0 Operation</u>

When the TOCS (TOSTA<5>) bit is set, TMR0 increments on the internal clock. When TOCS is clear, TMR0 increments on the external clock (RA1/T0CKI pin). The external clock edge can be configured in software. When the TOSE (TOSTA<6>) bit is set, the timer will increment on the rising edge of the RA1/T0CKI pin. When T0SE is clear, the timer will increment on the falling edge of the RA1/T0CKI pin. The prescaler can be programmed to introduce a prescale of 1:1 to 1:256. The timer increments from 0000h to FFFFh and rolls over to 0000h. On overflow, the TMR0 Interrupt Flag bit (T0IF) is set. The TMR0 interrupt can be masked by clearing the corresponding TMR0 Interrupt Enable bit (T0IE). The TMR0 Interrupt Flag bit (T0IF) is automatically cleared when vectoring to the TMR0 interrupt vector.

11.2 Using Timer0 with External Clock

When the external clock input is used for Timer0, it is synchronized with the internal phase clocks. Figure 11-3 shows the synchronization of the external clock. This synchronization is done after the prescaler. The output of the prescaler (PSOUT) is sampled twice in every instruction cycle to detect a rising or a falling edge. The timing requirements for the external clock are detailed in the electrical specification section for the desired device.

11.2.1 DELAY FROM EXTERNAL CLOCK EDGE

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time TMR0 is actually incremented. Figure 11-3 shows that this delay is between 3Tosc and 7Tosc. Thus, for example, measuring the interval between two edges (e.g. period) will be accurate within \pm 4Tosc (\pm 121 ns @ 33 MHz).

FIGURE 11-2: TIMER0 MODULE BLOCK DIAGRAM

12.1.2 TIMER1 & TIMER2 IN 16-BIT MODE

To select 16-bit mode, the T16 bit must be set. In this mode TMR1 and TMR2 are concatenated to form a 16-bit timer (TMR2:TMR1). The 16-bit timer increments until it matches the 16-bit period register (PR2:PR1). On the following timer clock, the timer value is reset to 0h, and the TMR1IF bit is set.

When selecting the clock source for the16-bit timer, the TMR1CS bit controls the entire 16-bit timer and TMR2CS is a "don't care." When TMR1CS is clear, the timer increments once every instruction cycle (Fosc/4). When TMR1CS is set, the timer increments on every falling edge of the RB4/TCLK12 pin. For the 16-bit timer to increment, both TMR1ON and TMR2ON bits must be set (Table 12-1).

12.1.2.1 EXTERNAL CLOCK INPUT FOR TMR1:TMR2

When TMR1CS is set, the 16-bit TMR2:TMR1 increments on the falling edge of clock input TCLK12. The input on the RB4/TCLK12 pin is sampled and synchronized by the internal phase clocks twice every instruction cycle. This causes a delay from the time a falling edge appears on RB4/TCLK12 to the time TMR2:TMR1 is actually incremented. For the external clock input timing requirements, see the Electrical Specification section.

TABLE 12-1. TORINING ON TO-DIT TIME

TMR2ON	TMR10N	Result
1	1	16-bit timer (TMR2:TMR1) ON
0	1	Only TMR1 increments
x	0	16-bit timer OFF

FIGURE 12-4: TMR1 AND TMR2 IN 16-BIT TIMER/COUNTER MODE

TABLE 12-2: SUMMARY OF TIMER1 AND TIMER2 REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 3	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h, Bank 3	TCON2	CA2OVF	CA10VF	PWM2ON	PWM10N	CA1/PR3	TMR3ON	TMR2ON	TMR10N	0000 0000	0000 0000
10h, Bank 2	TMR1	Timer1 re	gister							xxxx xxxx	uuuu uuuu
11h, Bank 2	TMR2	Timer2 re	gister							xxxx xxxx	uuuu uuuu
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
07h, Unbanked	INTSTA	PEIF	TOCKIF	T0IF	INTF	PEIE	T0CKIE	TOIE	INTE	0000 0000	0000 0000
06h, Unbanked	CPUSTA	—	—	STKAV	GLINTD	TO	PD		_	11 11	11 qq
14h, Bank 2	PR1	Timer1 pe	riod registe	r						xxxx xxxx	uuuu uuuu
15h, Bank 2	PR2	Timer2 pe	riod registe	r						xxxx xxxx	uuuu uuuu
10h, Bank 3	PW1DCL	DC1	DC0	—	_	—	_	_	—	xx	uu
11h, Bank 3	PW2DCL	DC1	DC0	TM2PW2	_	_	_	_	_	xx0	uu0
12h, Bank 3	PW1DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	xxxx xxxx	uuuu uuuu
13h, Bank 3	PW2DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	xxxx xxxx	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', q - value depends on condition,

shaded cells are not used by Timer1 or Timer2.

Note 1: Other (non power-up) resets include: external reset through MCLR and WDT Timer Reset.

12.1.3.3.1 MAX RESOLUTION/FREQUENCY FOR EXTERNAL CLOCK INPUT

The use of an external clock for the PWM time-base (Timer1 or Timer2) limits the PWM output to a maximum resolution of 8-bits. The PWxDCL<7:6> bits must be kept cleared. Use of any other value will distort the PWM output. All resolutions are supported when internal clock mode is selected. The maximum attainable frequency is also lower. This is a result of the timing requirements of an external clock input for a timer (see the Electrical Specification section). The maximum PWM frequency, when the timers clock source is the RB4/TCLK12 pin, is shown in Table 12-3 (standard resolution mode).

12.2 <u>Timer3</u>

Timer3 is a 16-bit timer consisting of the TMR3H and TMR3L registers. TMR3H is the high byte of the timer and TMR3L is the low byte. This timer has an associated 16-bit period register (PR3H/CA1H:PR3L/CA1L). This period register can be software configured to be a second 16-bit capture register.

When the TMR3CS bit (TCON1<2>) is clear, the timer increments every instruction cycle (Fosc/4). When TMR3CS is set, the timer increments on every falling edge of the RB5/TCLK3 pin. In either mode, the TMR3ON bit must be set for the timer to increment. When TMR3ON is clear, the timer will not increment or set the TMR3IF bit.

Timer3 has two modes of operation, depending on the CA1/PR3 bit (TCON2<3>). These modes are:

- · One capture and one period register mode
- Dual capture register mode

The PIC17C4X has up to two 16-bit capture registers that capture the 16-bit value of TMR3 when events are detected on capture pins. There are two capture pins (RB0/CAP1 and RB1/CAP2), one for each capture register. The capture pins are multiplexed with PORTB pins. An event can be:

- · a rising edge
- a falling edge
- every 4th rising edge
- every 16th rising edge

Each 16-bit capture register has an interrupt flag associated with it. The flag is set when a capture is made. The capture module is truly part of the Timer3 block. Figure 12-7 and Figure 12-8 show the block diagrams for the two modes of operation.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 3	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h, Bank 3	TCON2	CA2OVF	CA10VF	PWM2ON	PWM1ON	CA1/PR3	TMR3ON	TMR2ON	TMR1ON	0000 0000	0000 0000
10h, Bank 2	TMR1	Timer1 reg	ister							XXXX XXXX	uuuu uuuu
11h, Bank 2	TMR2	Timer2 reg	ister							XXXX XXXX	uuuu uuuu
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
07h, Unbanked	INTSTA	PEIF	TOCKIF	T0IF	INTF	PEIE	T0CKIE	TOIE	INTE	0000 0000	0000 0000
06h, Unbanked	CPUSTA	_	_	STKAV	GLINTD	TO	PD	_	_	11 11	11 qq
10h, Bank 3	PW1DCL	DC1	DC0	—	-	—	—	—	_	xx	uu
11h, Bank 3	PW2DCL	DC1	DC0	TM2PW2	—	_	—	—	_	xx0	uu0
12h, Bank 3	PW1DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	XXXX XXXX	uuuu uuuu
13h, Bank 3	PW2DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	XXXX XXXX	uuuu uuuu

TABLE 12-4: REGISTERS/BITS ASSOCIATED WITH PWM

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends on conditions, shaded cells are not used by PWM.

12.2.2 DUAL CAPTURE REGISTER MODE

This mode is selected by setting CA1/PR3. A block diagram is shown in Figure 12-8. In this mode, TMR3 runs without a period register and increments from 0000h to FFFFh and rolls over to 0000h. The TMR3 interrupt Flag (TMR3IF) is set on this roll over. The TMR3IF bit must be cleared in software.

Registers PR3H/CA1H and PR3L/CA1L make a 16-bit capture register (Capture1). It captures events on pin RB0/CAP1. Capture mode is configured by the CA1ED1 and CA1ED0 bits. Capture1 Interrupt Flag bit (CA1IF) is set on the capture event. The corresponding interrupt mask bit is CA1IE. The Capture1 Overflow Status bit is CA1OVF.

The Capture2 overflow status flag bit is double buffered. The master bit is set if one captured word is already residing in the Capture2 register and another "event" has occurred on the RB1/CA2 pin. The new event will not transfer the TMR3 value to the capture register which protects the previous unread capture value. When the user reads both the high and the low bytes (in any order) of the Capture2 register, the master overflow bit is transferred to the slave overflow bit (CA2OVF) and then the master bit is reset. The user can then read TCON2 to determine the value of CA2OVF.

The operation of the Capture1 feature is identical to Capture2 (as described in Section 12.2.1).

TABLE 12-5: REGISTERS ASSOCIATED WITH CAPTURE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 3	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h, Bank 3	TCON2	CA2OVF	CA10VF	PWM2ON	PWM1ON	CA1/PR3	TMR3ON	TMR2ON	TMR10N	0000 0000	0000 0000
12h, Bank 2	TMR3L	TMR3 reg	ister; low by	/te						xxxx xxxx	uuuu uuuu
13h, Bank 2	TMR3H	TMR3 reg	ister; high b	oyte						xxxx xxxx	uuuu uuuu
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
07h, Unbanked	INTSTA	PEIF	T0CKIF	T0IF	INTF	PEIE	T0CKIE	T0IE	INTE	0000 0000	0000 0000
06h, Unbanked	CPUSTA	—	_	STKAV	GLINTD	TO	PD	—	—	11 11	11 qq
16h, Bank 2	PR3L/CA1L	Timer3 pe	riod registe	r, low byte/ca	apture1 regis	ter, low byte	e			xxxx xxxx	uuuu uuuu
17h, Bank 2	PR3H/CA1H	Timer3 pe	Timer3 period register, high byte/capture1 register, high byte								uuuu uuuu
14h, Bank 3	CA2L	Capture2	low byte							xxxx xxxx	uuuu uuuu
15h, Bank 3	CA2H	Capture2	high byte							xxxx xxxx	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q - value depends on condition, shaded cells are not used by Capture.

Note 1: Other (non power-up) resets include: external reset through MCLR and WDT Timer Reset.

13.0 UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (USART) MODULE

The USART module is a serial I/O module. The USART can be configured as a full duplex asynchronous system that can communicate with peripheral devices such as CRT terminals and personal computers, or it can be configured as a half duplex synchronous system that can communicate with peripheral devices such as A/D or D/A integrated circuits, Serial EEPROMs etc. The USART can be configured in the following modes:

- Asynchronous (full duplex)
- Synchronous Master (half duplex)
- Synchronous Slave (half duplex)

The SPEN (RCSTA<7>) bit has to be set in order to configure RA4 and RA5 as the Serial Communication Interface.

The USART module will control the direction of the RA4/RX/DT and RA5/TX/CK pins, depending on the states of the USART configuration bits in the RCSTA and TXSTA registers. The bits that control I/O direction are:

- SPEN
- TXEN
- SREN
- CREN
- CSRC

The Transmit Status And Control Register is shown in Figure 13-1, while the Receive Status And Control Register is shown in Figure 13-2.

P/M - 0	P/M - 0	P/M - 0	P/M - 0	11 - 0	11 - 0	P - 1	P/// - v			
CSRC	TX9	TXEN	SYNC			TRMT	TX9D	R = Readable bit		
bit7							bit0	W = Writable bit -n = Value at POR reset (x = unknown)		
bit 7:	CSRC : C Synchron 1 = Maste 0 = Slave <u>Asynchro</u> Don't care	lock Source ous mode r Mode (Clo mode (Clo nous mod e	ce Select t <u>:</u> lock gene ock from e <u>e</u> :	bit rated inter xternal so	nally from E urce)	BRG)				
bit 6:	TX9 : 9-bit 1 = Select 0 = Select	Transmit ts 9-bit tra ts 8-bit tra	Enable bit nsmission nsmission							
bit 5:	TXEN : Transmit Enable bit 1 = Transmit enabled 0 = Transmit disabled SREN/CREN overrides TXEN in SYNC mode									
bit 4:	SYNC: USART mode Select bit (Synchronous/Asynchronous) 1 = Synchronous mode 0 = Asynchronous mode									
bit 3-2:	Unimpler	nented: R	ead as '0'							
bit 1:	TRMT : Tra 1 = TSR e 0 = TSR f	ansmit Shi empty ull	ft Register	[·] (TSR) Er	npty bit					
bit 0:	TX9D : 9th	h bit of trar	nsmit data	(can be u	sed to calcu	lated the	parity in sof	ftware)		

FIGURE 13-1: TXSTA REGISTER (ADDRESS: 15h, BANK 0)

© 1996 Microchip Technology Inc.

13.2.2 USART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 13-4. The data comes in the RA4/RX/DT pin and drives the data recovery block. The data recovery block is actually a high speed shifter operating at 16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at Fosc.

Once asynchronous mode is selected, reception is enabled by setting bit CREN (RCSTA<4>).

The heart of the receiver is the receive (serial) shift register (RSR). After sampling the stop bit, the received data in the RSR is transferred to the RCREG (if it is empty). If the transfer is complete, the interrupt bit RCIF (PIR<0>) is set. The actual interrupt can be enabled/disabled by setting/clearing the RCIE (PIE<0>) bit. RCIF is a read only bit which is cleared by the hardware. It is cleared when RCREG has been read and is empty. RCREG is a double buffered register; (i.e. it is a two deep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte begin shifting to the RSR. On detection of the stop bit of the third byte, if the RCREG is still full, then the overrun error bit, OERR (RCSTA<1>) will be set. The word in the RSR will be lost. RCREG can be read twice to retrieve the two bytes in the FIFO. The OERR bit has to be cleared in software which is done by resetting the receive logic (CREN is set). If the OERR bit is set, transfers from the RSR to RCREG are inhibited, so it is essential to clear the OERR bit if it is set. The framing error bit FERR (RCSTA<2>) is set if a stop bit is not detected.

FIGURE 13-7: RX PIN SAMPLING SCHEME

Note: The FERR and the 9th receive bit are buffered the same way as the receive data. Reading the RCREG register will allow the RX9D and FERR bits to be loaded with values for the next received Received data; therefore, it is essential for the user to read the RCSTA register before reading RCREG in order not to lose the old FERR and RX9D information.

13.2.3 SAMPLING

The data on the RA4/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RA4/RX/DT pin. The sampling is done on the seventh, eighth and ninth falling edges of a x16 clock (Figure 11-3).

The x16 clock is a free running clock, and the three sample points occur at a frequency of every 16 falling edges.

RX		Start bit						
(RA4/RX/DT pin)	-	Baud CLK for all but start bit						
Jaud CLK	1							
x16 CLK		2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1						
		Samples						

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
13h, Bank 0	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00u
16h, Bank 0	TXREG	TX7	TX6	TX5	TX4	TX3	TX2	TX1	TX0	xxxx xxxx	uuuu uuuu
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	—	_	TRMT	TX9D	00001x	00001u
17h, Bank 0	17h, Bank 0 SPBRG Baud rate generator register									xxxx xxxx	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used for synchronous slave transmission.

Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

TABLE 13-10: REGISTERS ASSOCIATED WITH SYNCHRONOUS SLAVE RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
13h, Bank0	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00u
14h, Bank0	RCREG	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	XXXX XXXX	uuuu uuuu
17h, Bank1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	—	—	TRMT	TX9D	00001x	00001u
17h, Bank0	SPBRG	Baud rate generator register								xxxx xxxx	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used for synchronous slave reception.

Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

FIGURE 14-8: WATCHDOG TIMER BLOCK DIAGRAM

TABLE 14-4: REGISTERS/BITS ASSOCIATED WITH THE WATCHDOG TIMER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
_	Config	—	PM1	—	PM0	WDTPS1	WDTPS0	FOSC1	FOSC0	(Note 2)	(Note 2)
06h, Unbanked	CPUSTA	—	—	STKAV	GLINTD	TO	PD		—	11 11	11 qq

Legend: - = unimplemented read as '0', q - value depends on condition, shaded cells are not used by the WDT.

Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

2: This value will be as the device was programmed, or if unprogrammed, will read as all '1's.

PIC17C4X

ADD	DLW	ADD Lite	ADD Literal to WREG							
Synt	ax:	[label] A	ADDLW	k						
Ope	rands:	$0 \le k \le 25$	55							
Ope	ration:	(WREG)	+ k \rightarrow (V	VREG	i)					
State	us Affected:	OV, C, DC, Z								
Encoding:		1011	0001	kkk	k	kkkk				
Description: The contents of WREG are added to t 8-bit literal 'k' and the result is placed WREG.					ded to the placed in					
Wor	ds:	1	1							
Cycl	es:	1								
QC	vcle Activity:									
	Q1	Q2	Q3	3		Q4				
	Decode	Read literal 'k'	Exect	ute	V V	Vrite to VREG				
<u>Exa</u>	mple:	ADDLW	0x15							
	Before Instrue WREG =	ction 0x10								

ADD	WF	A	DD WR	EG to f						
Synta	ax:	[<i>l</i> á	abel]A	DDWF	f,d					
Oper	ands:	0 ≤ d ∉	≤ f ≤ 25 ≡ [0,1]	5						
Oper	ation:	(W	/REG)	+ (f) \rightarrow (dest)					
Statu	is Affected:	O\	/, C, D0	C, Z						
Enco	oding:		0000	111d	fff	f	ffff			
Desc	ription:	Ad res res	d WREC sult is sto sult is sto	G to regis pred in W pred back	ter 'f'. I REG. in reg	f 'd' If 'd' jiste	is 0 the is 1 the r 'f'.			
Words:		1								
Cycle	es:	1	1							
Q Cy	cle Activity:									
	Q1		Q2	Q	3	Q4				
	Decode	F reg	Read ister 'f'	Exec	ute	V de:	Vrite to stination			
<u>Exan</u>	nple:	AD	DWF	REG,	0					
I	Before Instru WREG REG	ictior = =	0x17 0xC2							
,	After Instruct WREG REG	ion = =	0xD9 0xC2							

After Instruction WREG = 0x25

PIC17C4X

INFS	SNZ	Incremer	nt f, skip	if no	t 0					
Synt	tax:	[label]	NFSNZ	f,d						
Ope	rands:	0 ≤ f ≤ 25 d ∈ [0,1]	5							
Ope	ration:	(f) + 1 \rightarrow	(dest), s	kip if ı	not 0					
Stat	us Affected:	None								
Enco	oding:	0010	010d	fff	f ffff					
Des	cription:	The conter mented. If WREG. If ' back in reg If the resul which is al and an NO it a two-cyc	nts of reg 'd' is 0 the d' is 1 the jister 'f'. t is not 0, ready feto P is exect cle instruc	the ne the ne ched, is uted in	are incre- t is placed in is placed xt instruction, s discarded, stead making					
Wor	ds:	1	1							
Cycles:		1(2)	1(2)							
QC	ycle Activity:									
	Q1	Q2	Q	3	Q4					
	Decode	Read register 'f'	Exec	ute	Write to destination					
lf sk	ip:		•	•						
	Q1	Q2	Q	3	Q4					
	Forced NOP	NOP	Exec	ute	NOP					
<u>Exa</u>	<u>mple</u> :	HERE ZERO NZERO	INFSNZ	REG	, 1					
	Before Instruction REG = REG									
	After Instruct REG If REG PC If REG PC	tion = REG + = 1; = Addres = 0; = Addres	1 s (zero s (nzer))						

IORL	w	Inclusiv	Inclusive OR Literal with WREG							
Synta	ax:	[label]	IORLW	k						
Oper	ands:	$0 \le k \le 2$	255							
Oper	ation:	(WREG)	.OR. (k)	\rightarrow (W	RE	G)				
Statu	s Affected:	Z	Z							
Enco	Encoding:		0011	kkk	ĸk	kkkk				
Desc	ription:	The content the eight placed in	ents of WR bit literal 'k WREG.	EG ar .'. The	e Ol resu	R'ed with Ilt is				
Words:		1								
Cycle	es:	1								
Q Cy	cle Activity:									
_	Q1	Q2	Q	3	Q4					
	Decode	Read literal 'k'	Exect	ute	V V	Vrite to VREG				
<u>Exan</u>	<u>nple</u> :	IORLW	0x35							
E	Before Instru	iction								
	WREG	= 0x9A								
/	After Instruct WREG	tion = 0xBF								

RET	FIE	Return fi	rom Inte	rrupt					
Syn	tax:	[label]	RETFIE						
Ope	rands:	None							
Ope	eration:	$\begin{array}{l} TOS \rightarrow (I \\ 0 \rightarrow GLIN \\ PCLATH \end{array}$	$\begin{array}{l} TOS \rightarrow (PC);\\ 0 \rightarrow GLINTD;\\ PCLATH \text{ is unchanged}. \end{array}$						
Stat	us Affected:	GLINTD	GLINTD						
Encoding:		0000	0000	0000	0101				
Des	cription:	Return from and Top of PC. Interru the GLINT interrupt d	m Interrup Stack (TC opts are ei D bit. GLI isable bit	ot. Stack is OS) is load nabled by NTD is the (CPUSTA+	POP'ed ded in the clearing global <4>).				
Wor	ds:	1	1						
Сус	les:	2							
QC	ycle Activity:								
	Q1	Q2	Q3	3	Q4				
	Decode	Read register T0STA	Execu	ute	NOP				
	Forced NOP	NOP	Execu	ute	NOP				
<u>Exa</u>	mple:	RETFIE							
After Interrupt PC = TOS GLINTD = 0									

RET	LW	Return Li	Return Literal to WREG							
Synt	tax:	[label]	RETLW k							
Ope	rands:	$0 \le k \le 25$	5							
Ope	ration:	k ightarrow (WRE PCLATH is	$G; TOS \rightarrow 0$ s unchanged	(PC);						
Stat	us Affected:	None								
Enc	oding:	1011	0110 kkł	k kkkk						
Description:		WREG is lo 'k'. The prog the top of th The high ac remains un	WREG is loaded with the eight bit literal 'k'. The program counter is loaded from the top of the stack (the return address). The high address latch (PCLATH) remains unchanged.							
Wor	ds:	1	1							
Cycl	les:	2								
QC	ycle Activity:									
	Q1	Q2	Q3	Q4						
	Q1 Decode	Q2 Read literal 'k'	Q3 Execute	Q4 Write to WREG						
	Q1 Decode Forced NOP	Q2 Read literal 'k' NOP	Q3 Execute Execute	Q4 Write to WREG NOP						
<u>Exa</u>	Q1 Decode Forced NOP mple:	Q2 Read literal 'k' NOP CALL TAI : TABLE ADDWF PC RETLW k	Q3 Execute Execute BLE ; WREG con ; offset ; WREG nu ; table of ; WREG = (0) ; Begin to	Q4 Write to WREG NOP ntains table value ow has value						
<u>Exa</u>	Q1 Decode Forced NOP mple:	Q2 Read literal 'k' NOP CALL TAI : TABLE ADDWF PK RETLW kI RETLW kI :	Q3 Execute Execute BLE ; WREG con ; offset ; WREG no ; table v C ; WREG = (0) ; Begin table v ; ;	Q4 Write to WREG NOP ntains table value ow has value						
Exa	Q1 Decode Forced NOP mple:	Q2 Read literal 'k' NOP CALL TAI : TABLE ADDWF PC RETLW ki RETLW ki : : RETLW ki	Q3 Execute Execute BLE ; WREG con ; offset ; WREG n ; table of ; WREG = (0 ; Begin t; ; n ; End of f	Q4 Write to WREG NOP						
Exa	Q1 Decode Forced NOP mple: Before Instru WREG	Q2 Read literal 'k' NOP CALL TAI CALL TAI CALL TAI : TABLE ADDWF P(RETLW ki : : RETLW ki : : RETLW ki	Q3 Execute Execute BLE ; WREG con ; offset ; WREG nd ; table v C ; WREG = o ; Begin ta ; h ; End of t	Q4 Write to WREG NOP ntains table value ow has value						

Applicable Devices 42 R42 42A 43 R43 44

17.3 <u>Timing Parameter Symbology</u>

The timing parameter symbols have been created using one of the following formats:

- 1. TppS2ppS
- 2. TppS

Т				
F	Frequency	Т	Time	
Lowerc	case symbols (pp) and their meanings:			
рр				
ad	Address/Data	ost	Oscillator Start-up Timer	
al	ALE	pwrt	Power-up Timer	
сс	Capture1 and Capture2	rb	PORTB	
ck	CLKOUT or clock	rd	RD	
dt	Data in	rw	RD or WR	
in	INT pin	tO	ТОСКІ	
io	I/O port	t123	TCLK12 and TCLK3	
mc	MCLR	wdt	Watchdog Timer	
oe	ŌĒ	wr	WR	
os	OSC1			
Upperc	case symbols and their meanings:			
S				
D	Driven	L	Low	
E	Edge	P	Period	
F	Fall	R	Rise	
н	High	V	Valid	
	Invalid (Hi-impedance)	Z	Hi-impedance	

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 17-12: MEMORY INTERFACE READ TIMING

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
150	TadV2alL	AD<15:0> (address) valid to ALE↓ (address setup time)	0.25Tcy - 30	_	_	ns	
151	TalL2adl	ALE↓ to address out invalid (address hold time)	5*	_	_	ns	
160	TadZ2oeL	AD<15:0> high impedance to $\overline{OE}\downarrow$	0*	_	—	ns	
161	ToeH2adD	OE↑ to AD<15:0> driven	0.25Tcy - 15	—	_	ns	
162	TadV2oeH	Data in valid before OE↑ (data setup time)	35	—	_	ns	
163	ToeH2adl	OE to data in invalid (data hold time)	0	_	_	ns	
164	TalH	ALE pulse width	—	0.25Tcy §	—	ns	
165	ToeL	OE pulse width	0.5Tcy - 35 §	_	_	ns	
166	TalH2alH	ALE↑ to ALE↑ (cycle time)	—	TCY §	—	ns	
167	Tacc	Address access time	—	_	0.75 Tcy-40	ns	
168	Тое	Output enable access time (OE low to Data Valid)	_		0.5 TCY - 60	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification guaranteed by design.

Applicable Devices 42 R42 42A 43 R43 44

19.2 **DC CHARACTERISTICS:**

PIC17LC42A/43/LC44 (Commercial, Industrial) PIC17LCR42/43 (Commercial, Industrial)

DC CHARA Parameter No.	Operating	g tempe	erature Max	-40°C 0°C Units	\leq TA \leq +85°C for industrial and \leq TA \leq +70°C for commercial Conditions		
D001	VDD	Supply Voltage	2.5	_	6.0	V	
D002	Vdr	RAM Data Retention Voltage (Note 1)	1.5 *	-	_	V	Device in SLEEP mode
D003	VPOR	VDD start voltage to ensure internal Power-on Reset signal	_	Vss	_	V	See section on Power-on Reset for details
D004	SVDD	VDD rise rate to ensure internal Power-on Reset signal	0.060 *	-	-	mV/ms	See section on Power-on Reset for details
D010 D011 D014	IDD	Supply Current (Note 2)	_ _ _	3 6 95	6 12 * 150	mA mA μA	Fosc = 4 MHz (Note 4) Fosc = 8 MHz Fosc = 32 kHz, WDT disabled (EC osc configuration)
D020 D021	IPD	Power-down Current (Note 3)	-	10 < 1	40 5	μA μA	VDD = 5.5V, WDT enabled VDD = 5.5V, WDT disabled

These parameters are characterized but not tested.

+ Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1=external square wave, from rail to rail; all I/O pins tristated, pulled to VDD or VSS, TOCKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.

Current consumed from the oscillator and I/O's driving external capacitive or resistive loads needs to be considered.

For the RC oscillator, the current through the external pull-up resistor (R) can be estimated as: VbD / (2 • R). For capacitive loads, the current can be estimated (for an individual I/O pin) as (CL • VDD) • f

CL = Total capacitive load on the I/O pin; f = average frequency the I/O pin switches.

The capacitive currents are most significant when the device is configured for external execution (includes extended microcontroller mode).

- 3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula IR = VDD/2Rext (mA) with Rext in kOhm.

Standard Operating Conditions (unloss otherwise stated)

Applicable Devices	42	R42	42A	43	R43	44

			Standard Operating Conditions (unless otherwise stated)						
DC CHARACTERISTICS			-40°C \leq TA \leq +40°C						
		Operating voltage VDD range as described in Section 19.1							
Parameter									
No.	Sym	Characteristic	Min	Typ†	Max	Units	Conditions		
		Internal Program Memory Programming Specs (Note 4)							
D110 D111	Vpp Vddp	Voltage on MCLR/VPP pin Supply voltage during programming	12.75 4.75	_ 5.0	13.25 5.25	V V	Note 5		
D112 D113	Ipp Iddp	Current into MCLR/VPP pin Supply current during programming		25 ‡ _	50 ‡ 30 ‡	mA mA			
D114	TPROG	Programming pulse width	10	100	1000	μs	Terminated via internal/ external interrupt or a reset		

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC17CXX devices be driven with external clock in RC mode.

The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in: PIC17CXX Programming Specifications (Literature number DS30139).

5: The MCLR/VPP pin may be kept in this range at times other than programming, but is not recommended.

6: For TTL buffers, the better of the two specifications may be used.

Note: When using the Table Write for internal programming, the device temperature must be less than 40°C.

21.3 44-Lead Plastic Leaded Chip Carrier (Square)

Package Group: Plastic Leaded Chip Carrier (PLCC)									
	Millimeters				Inches				
Symbol	Min	Max	Notes	Min	Мах	Notes			
Α	4.191	4.572		0.165	0.180				
A1	2.413	2.921		0.095	0.115				
D	17.399	17.653		0.685	0.695				
D1	16.510	16.663		0.650	0.656				
D2	15.494	16.002		0.610	0.630				
D3	12.700	12.700	Reference	0.500	0.500	Reference			
E	17.399	17.653		0.685	0.695				
E1	16.510	16.663		0.650	0.656				
E2	15.494	16.002		0.610	0.630				
E3	12.700	12.700	Reference	0.500	0.500	Reference			
N	44	44		44	44				
CP	_	0.102		_	0.004				
LT	0.203	0.381		0.008	0.015				