

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	8MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	4KB (2K × 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	232 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17lc42a-08-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Overview	5
2.0	PIC17C4X Device Varieties	7
3.0	Architectural Overview	9
4.0	Reset	15
5.0	Interrupts	21
6.0	Memory Organization	29
7.0	Table Reads and Table Writes	43
8.0	Hardware Multiplier	49
9.0	I/O Ports	53
10.0	Overview of Timer Resources	
11.0	Timer0	
12.0	Timer1, Timer2, Timer3, PWMs and Captures	
13.0	Universal Synchronous Asynchronous Receiver Transmitter (USART) Module	83
14.0	Special Features of the CPU	99
15.0	Instruction Set Summary	107
16.0	Development Support	143
17.0	PIC17C42 Electrical Characteristics	
18.0	PIC17C42 DC and AC Characteristics	
19.0	PIC17CR42/42A/43/R43/44 Electrical Characteristics	175
20.0	PIC17CR42/42A/43/R43/44 DC and AC Characteristics	
21.0	Packaging Information	205
	dix A: Modifications	
	dix B: Compatibility	
Appen	dix C: What's New	212
Appen	dix D: What's Changed	212
	dix E: PIC16/17 Microcontrollers	
	dix F: Errata for PIC17C42 Silicon	
PIC17	C4X Product Identification System	237

For register and module descriptions in this data sheet, device legends show which devices apply to those sections. For example, the legend below shows that some features of only the PIC17C43, PIC17C43, PIC17C44 are described in this section.

Applicable Devices 42 R42 42A 43 R43 44

To Our Valued Customers

We constantly strive to improve the quality of all our products and documentation. We have spent an exceptional amount of time to ensure that these documents are correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error from the previous version of the PIC17C4X Data Sheet (Literature Number DS30412B), please use the reader response form in the back of this data sheet to inform us. We appreciate your assistance in making this a better document.

To assist you in the use of this document, Appendix C contains a list of new information in this data sheet, while Appendix D contains information that has changed

2.0 PIC17C4X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC17C4X Product Selection System section at the end of this data sheet. When placing orders, please use the "PIC17C4X Product Identification System" at the back of this data sheet to specify the correct part number.

For the PIC17C4X family of devices, there are four device "types" as indicated in the device number:

- C, as in PIC17C42. These devices have EPROM type memory and operate over the standard voltage range.
- 2. LC, as in PIC17LC42. These devices have EPROM type memory, operate over an extended voltage range, and reduced frequency range.
- 3. **CR**, as in PIC17**CR**42. These devices have ROM type memory and operate over the standard voltage range.
- 4. LCR, as in PIC17LCR42. These devices have ROM type memory, operate over an extended voltage range, and reduced frequency range.

2.1 UV Erasable Devices

The UV erasable version, offered in CERDIP package, is optimal for prototype development and pilot programs.

The UV erasable version can be erased and reprogrammed to any of the configuration modes. Microchip's PRO MATETM programmer supports programming of the PIC17C4X. Third party programmers also are available; refer to the *Third Party Guide* for a list of sources.

2.2 <u>One-Time-Programmable (OTP)</u> <u>Devices</u>

The availability of OTP devices is especially useful for customers expecting frequent code changes and updates.

The OTP devices, packaged in plastic packages, permit the user to program them once. In addition to the program memory, the configuration bits must also be programmed.

2.3 <u>Quick-Turnaround-Production (QTP)</u> <u>Devices</u>

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.4 <u>Serialized Quick-Turnaround</u> <u>Production (SQTPSM) Devices</u>

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number which can serve as an entry-code, password or ID number.

ROM devices do not allow serialization information in the program memory space.

For information on submitting ROM code, please contact your regional sales office.

2.5 Read Only Memory (ROM) Devices

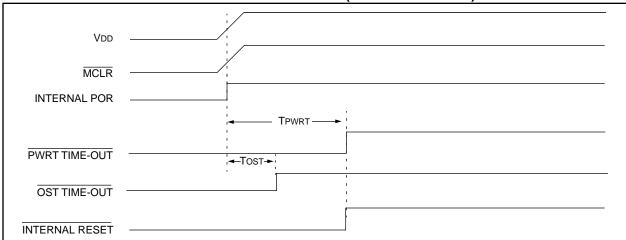
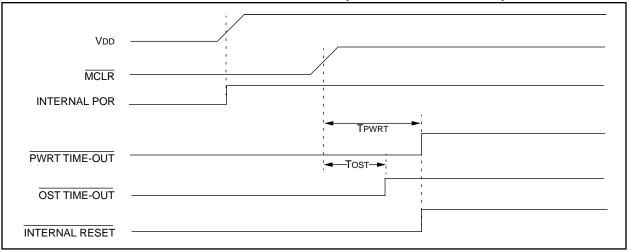
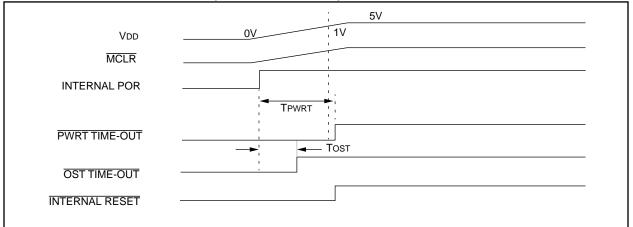
Microchip offers masked ROM versions of several of the highest volume parts, thus giving customers a low cost option for high volume, mature products.

For information on submitting ROM code, please contact your regional sales office.

TABLE 3-1.						
Name	DIP No.	PLCC No.	QFP No.	I/O/P Type	Buffer Type	Description
						PORTD is a bi-directional I/O Port.
RD0/AD8	40	43	15	I/O	TTL	This is also the upper byte of the 16-bit system bus in
RD1/AD9	39	42	14	I/O	TTL	microprocessor mode or extended microprocessor mode
RD2/AD10	38	41	13	I/O	TTL	or extended microcontroller mode. In multiplexed system
RD3/AD11	37	40	12	I/O	TTL	bus configuration these pins are address output as well as data input or output.
RD4/AD12	36	39	11	I/O	TTL	
RD5/AD13	35	38	10	I/O	TTL	
RD6/AD14	34	37	9	I/O	TTL	
RD7/AD15	33	36	8	I/O	TTL	
						PORTE is a bi-directional I/O Port.
RE0/ALE	30	32	4	I/O	TTL	In microprocessor mode or extended microcontroller mode, it is the Address Latch Enable (ALE) output. Address should be latched on the falling edge of ALE output.
RE1/OE	29	31	3	I/O	TTL	In microprocessor or extended microcontroller mode, it is the Output Enable (\overline{OE}) control output (active low).
RE2/WR	28	30	2	I/O	TTL	In microprocessor or extended microcontroller mode, it is the Write Enable (WR) control output (active low).
TEST	27	29	1	I	ST	Test mode selection control input. Always tie to Vss for nor- mal operation.
Vss	10, 31	11, 12, 33, 34	5, 6, 27, 28	Р		Ground reference for logic and I/O pins.
Vdd	1	1, 44	16, 17	Р		Positive supply for logic and I/O pins.

TABLE 3-1:	PINOUT DESCRIPTIONS
------------	---------------------

Legend: I = Input only; O = Output only; I/O = Input/Output; P = Power; — = Not Used; TTL = TTL input; ST = Schmitt Trigger input.

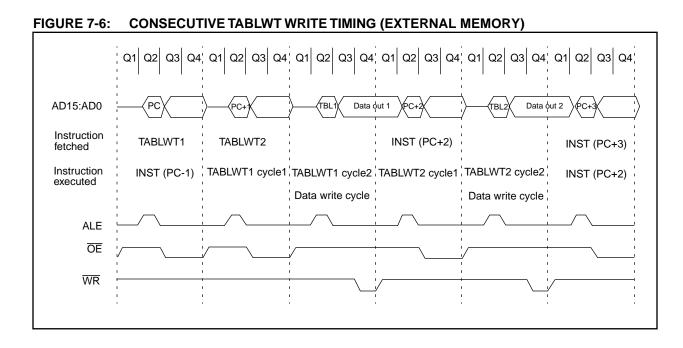

FIGURE 4-2: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

FIGURE 4-3: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD)

FIGURE 4-4: SLOW RISE TIME (MCLR TIED TO VDD)

Example 9-1 shows the instruction sequence to initialize PORTB. The Bank Select Register (BSR) must be selected to Bank 0 for the port to be initialized.

EXAMPLE 9-1: INITIALIZING PORTB

MOVLB	0	;	Select Bank 0
CLRF	PORTB	;	Initialize PORTB by clearing
		;	output data latches
MOVLW	0xCF	;	Value used to initialize
		;	data direction
MOVWF	DDRB	;	Set RB<3:0> as inputs
		;	RB<5:4> as outputs
		;	RB<7:6> as inputs

Name	Bit	Buffer Type	Function
RB0/CAP1	bit0	ST	Input/Output or the RB0/CAP1 input pin. Software programmable weak pull- up and interrupt on change features.
RB1/CAP2	bit1	ST	Input/Output or the RB1/CAP2 input pin. Software programmable weak pull- up and interrupt on change features.
RB2/PWM1	bit2	ST	Input/Output or the RB2/PWM1 output pin. Software programmable weak pull-up and interrupt on change features.
RB3/PWM2	bit3	ST	Input/Output or the RB3/PWM2 output pin. Software programmable weak pull-up and interrupt on change features.
RB4/TCLK12	bit4	ST	Input/Output or the external clock input to Timer1 and Timer2. Software pro- grammable weak pull-up and interrupt on change features.
RB5/TCLK3	bit5	ST	Input/Output or the external clock input to Timer3. Software programmable weak pull-up and interrupt on change features.
RB6	bit6	ST	Input/Output pin. Software programmable weak pull-up and interrupt on change features.
RB7	bit7	ST	Input/Output pin. Software programmable weak pull-up and interrupt on change features.

TABLE 9-3: PORTB FUNCTIONS

Legend: ST = Schmitt Trigger input.

TABLE 9-4: REGISTERS/BITS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
12h, Bank 0	PORTB	PORTB d	ata latch							xxxx xxxx	uuuu uuuu
11h, Bank 0	DDRB	Data dired	ction registe	er for PORTE	5					1111 1111	1111 1111
10h, Bank 0	PORTA	RBPU	_	RA5	RA4	RA3	RA2	RA1/T0CKI	RA0/INT	0-xx xxxx	0-uu uuuu
06h, Unbanked	CPUSTA	—	_	STKAV	GLINTD	TO	PD	_	_	11 11	11 qq
07h, Unbanked	INTSTA	PEIF	T0CKIF	T0IF	INTF	PEIE	T0CKIE	T0IE	INTE	0000 0000	0000 0000
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
16h, Bank 3	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h, Bank 3	TCON2	CA2OVF	CA10VF	PWM2ON	PWM10N	CA1/PR3	TMR3ON	TMR2ON	TMR10N	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = Value depends on condition.

Shaded cells are not used by PORTB.

Note 1: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

TABLE 9-5: PORTC FUNCTIONS

Name	Bit	Buffer Type	Function
RC0/AD0	bit0	TTL	Input/Output or system bus address/data pin.
RC1/AD1	bit1	TTL	Input/Output or system bus address/data pin.
RC2/AD2	bit2	TTL	Input/Output or system bus address/data pin.
RC3/AD3	bit3	TTL	Input/Output or system bus address/data pin.
RC4/AD4	bit4	TTL	Input/Output or system bus address/data pin.
RC5/AD5	bit5	TTL	Input/Output or system bus address/data pin.
RC6/AD6	bit6	TTL	Input/Output or system bus address/data pin.
RC7/AD7	bit7	TTL	Input/Output or system bus address/data pin.

Legend: TTL = TTL input.

TABLE 9-6: REGISTERS/BITS ASSOCIATED WITH PORTC

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
11h, Bank 1	PORTC	RC7/ AD7	RC6/ AD6	RC5/ AD5	RC4/ AD4	RC3/ AD3	RC2/ AD2	RC1/ AD1	RC0/ AD0	xxxx xxxx	uuuu uuuu
10h, Bank 1	10h, Bank 1 DDRC Data direction register for PORTC								1111 1111	1111 1111	

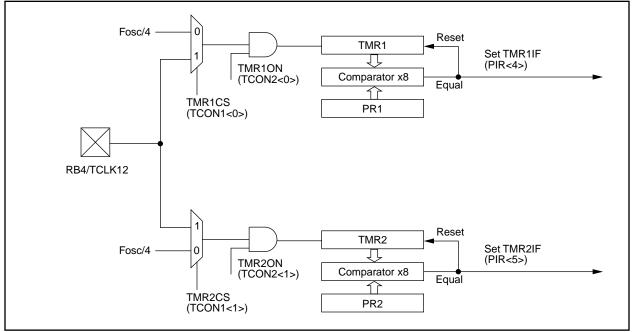
Legend: x = unknown, u = unchanged.

Note 1: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

12.1 <u>Timer1 and Timer2</u>

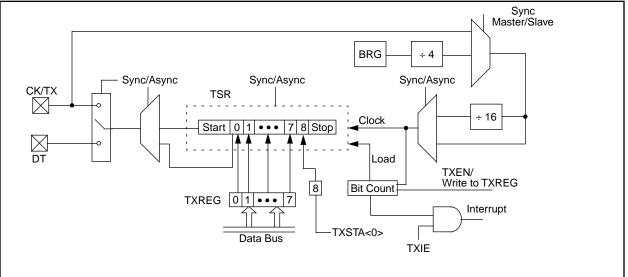
12.1.1 TIMER1, TIMER2 IN 8-BIT MODE

Both Timer1 and Timer2 will operate in 8-bit mode when the T16 bit is clear. These two timers can be independently configured to increment from the internal instruction cycle clock or from an external clock source on the RB4/TCLK12 pin. The timer clock source is configured by the TMRxCS bit (x = 1 for Timer1 or = 2 for Timer2). When TMRxCS is clear, the clock source is internal and increments once every instruction cycle (Fosc/4). When TMRxCS is set, the clock source is the RB4/TCLK12 pin, and the timer will increment on every falling edge of the RB4/TCLK12 pin.


The timer increments from 00h until it equals the Period register (PRx). It then resets to 00h at the next increment cycle. The timer interrupt flag is set when the timer is reset. TMR1 and TMR2 have individual interrupt flag bits. The TMR1 interrupt flag bit is latched into TMR1IF, and the TMR2 interrupt flag bit is latched into TMR2IF.

Each timer also has a corresponding interrupt enable bit (TMRxIE). The timer interrupt can be enabled by setting this bit and disabled by clearing this bit. For peripheral interrupts to be enabled, the Peripheral Interrupt Enable bit must be enabled (PEIE is set) and global interrupts must be enabled (GLINTD is cleared).

The timers can be turned on and off under software control. When the Timerx On control bit (TMRxON) is set, the timer increments from the clock source. When TMRxON is cleared, the timer is turned off and cannot cause the timer interrupt flag to be set.


12.1.1.1 EXTERNAL CLOCK INPUT FOR TIMER1 OR TIMER2

When TMRxCS is set, the clock source is the RB4/TCLK12 pin, and the timer will increment on every falling edge on the RB4/TCLK12 pin. The TCLK12 input is synchronized with internal phase clocks. This causes a delay from the time a falling edge appears on TCLK12 to the time TMR1 or TMR2 is actually incremented. For the external clock input timing requirements, see the Electrical Specification section.

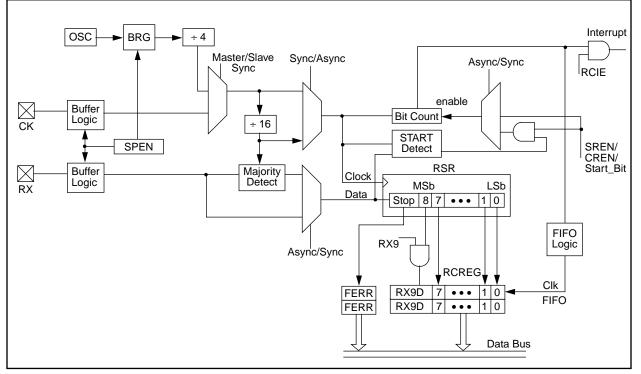
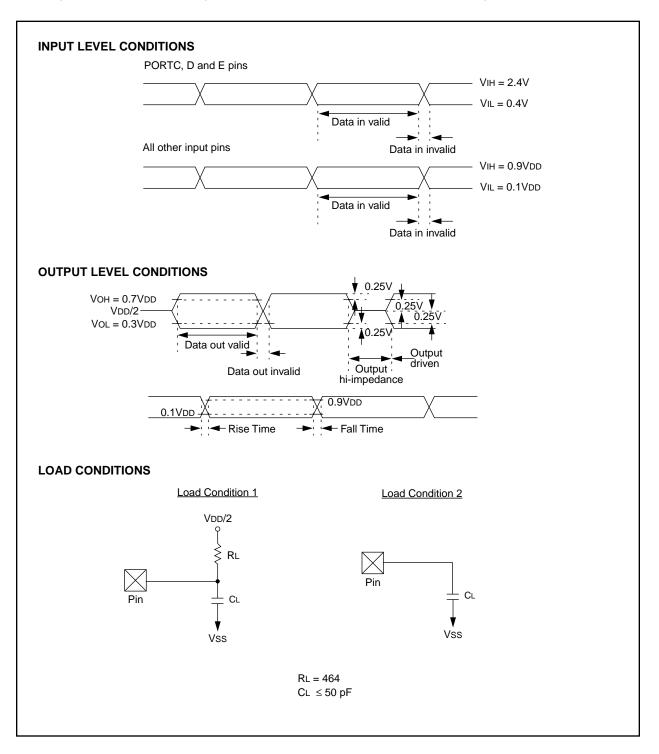


FIGURE 12-3: TIMER1 AND TIMER2 IN TWO 8-BIT TIMER/COUNTER MODE

FIGURE 13-3: USART TRANSMIT

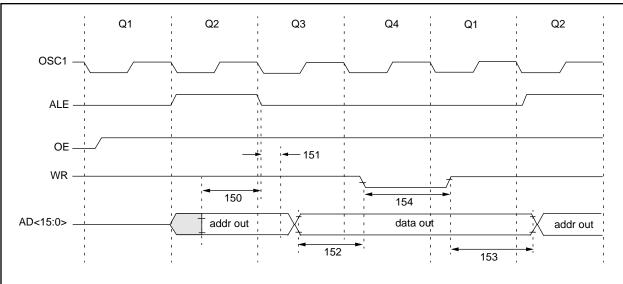
CPFSEQ	Compare f with WREG, skip if f = WREG			CPF	SGT	Compare skip if f >	f with WRE WREG	G,		
Syntax:	[label]	CPFSEQ f		Syn	tax:	[label]	[label] CPFSGT f			
Operands:	$0 \le f \le 255$	5		Ope	rands:	$0 \le f \le 255$	$0 \le f \le 255$			
Operation:	(f) – (WRE) skip if (f) = (unsigned o			Ope	ration:	skip if (f) >	(f) – (WREG), skip if (f) > (WREG) (unsigned comparison)			
Status Affected:	None			Stat	us Affected:	None				
Encoding:	0011	0001 fff	f ffff	Enc	oding:	0011	0010 ff:	ff ffff		
Description:	Compares the contents of data memory location 'f' to the contents of WREG by performing an unsigned subtraction. If 'f' = WREG then the fetched instruc- tion is discarded and an NOP is exe- cuted instead making this a two-cycle instruction.			Des	cription:	Compares the contents of data men location 'f' to the contents of the WF by performing an unsigned subtract If the contents of 'f' > the contents of WREG then the fetched instruction discarded and an NOP is executed instead making this a two-cycle inst				
Words:	1			14/0 -	de .	tion. 1				
Cycles:	1 (2)			Wor		-				
Q Cycle Activity:				Cyc		1 (2)				
Q1	Q2	Q3	Q4	QC	ycle Activity: Q1	Q2	Q3	Q4		
Decode	Read register 'f'	Execute	NOP		Decode	Read	Execute	NOP		
If skip:				lf sk	in:	register 'f'				
Q1	Q2	Q3	Q4		Q1	Q2	Q3	Q4		
Forced NOP	NOP	Execute	NOP		Forced NOP	NOP	Execute	NOP		
<u>Example</u> :	NEQUAL	CPFSEQ REG : :		<u>Exa</u>	mple:	HERE NGREATER GREATER	CPFSGT RE : :	G		
Before Instru PC Addre					Before Instru	-	·			
WREG REG	ess = HE = ? = ?	RE			PC WREG		dress (HERE)			
After Instruct If REG PC If REG PC	= W = Ac ≠ W	REG; Idress (EQUAL REG; Idress (NEQUA			After Instruc If REG PC If REG PC	> Wi = Ad ≤ Wi	REG; Idress (GREAT REG; Idress (NGREZ			

PIC17C4X


SWAPF	Swap f							
Syntax:	[label]	SWAPF	f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \ [0,1] \end{array}$	0 ≤ f ≤ 255 d ∈ [0,1]						
Operation:	$f < 3:0 > \rightarrow f < 7:4 > \rightarrow$,					
Status Affected:	None							
Encoding:	0001	110d	ffff	ffff				
Description: The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0 the result is placed in WREG. If 'd' is 1 the result is placed in register 'f'.								
Words:	1	1						
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q	3	Q4				
Decode	Read register 'f'	Exect		Vrite to stination				
Example:	SWAPF I	REG,	0					
Before Instruction REG = 0x53								
REG = 0x53 After Instruction REG = 0x35								

TABLRD	Table Rea	d						
Syntax:	[label]	rablrd t,i,f						
Operands:	$0 \le f \le 255$ $i \in [0,1]$ $t \in [0,1]$	5						
Operation:	If t = 1, TBLATH \rightarrow f; If t = 0, TBLATL \rightarrow f; Prog Mem (TBLPTR) \rightarrow TBLAT; If i = 1, TBLPTR + 1 \rightarrow TBLPTR							
Status Affected:	None							
Encoding:	1010	10ti ff	ff ffff					
Description:	 A byte of the table latch (TBLAT) is moved to register file 'f'. If t = 0: the high byte is moved; If t = 1: the low byte is moved 							
	 Then the contents of the program memory location pointed to by the 16-bit Table Pointer (TBLPTR) is loaded into the 16-bit Table Latch (TBLAT). If i = 1: TBLPTR is incremented; If i = 0: TBLPTR is not 							
Words:	1	incremented						
Cycles:	2 (3 cycle	if f = PCL)						
Q Cycle Activity:								
Q1	Q2 Q3 Q4							
Decode	Read register TBLATH or TBLATL	Execute	Write register 'f'					

Applicable Devices 42 R42 42A 43 R43 44


FIGURE 17-1: PARAMETER MEASUREMENT INFORMATION

All timings are measure between high and low measurement points as indicated in the figures below.

PIC17C4X

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 17-11: MEMORY INTERFACE WRITE TIMING

TABLE 17-11: MEMORY INTERFACE WRITE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
150	TadV2alL	AD<15:0> (address) valid to ALE↓ (address setup time)	0.25Tcy - 30			ns	
151	TalL2adl	ALE↓ to address out invalid (address hold time)	0	_	_	ns	
152	TadV2wrL	Data out valid to $\overline{WR}\downarrow$ (data setup time)	0.25Tcy - 40	—	—	ns	
153	TwrH2adI	WR↑ to data out invalid (data hold time)	_	0.25Tcy §	—	ns	
154	TwrL	WR pulse width	—	0.25Tcy §	_	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification is guaranteed by design.

Applicable Devices 42 R42 42A 43 R43 44

19.2 **DC CHARACTERISTICS:**

PIC17LC42A/43/LC44 (Commercial, Industrial) PIC17LCR42/43 (Commercial, Industrial)

DC CHARA	Standard Operating		•		s (unless otherwise stated) $\leq TA \leq +85^{\circ}C$ for industrial and $\leq TA \leq +70^{\circ}C$ for commercial		
Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
D001	Vdd	Supply Voltage	2.5	_	6.0	V	
D002	Vdr	RAM Data Retention Voltage (Note 1)	1.5 *	-	Ι	V	Device in SLEEP mode
D003	VPOR	VDD start voltage to ensure internal Power-on Reset signal	_	Vss	_	V	See section on Power-on Reset for details
D004	SVDD	VDD rise rate to ensure internal Power-on Reset signal	0.060 *	_	Ι	mV/ms	See section on Power-on Reset for details
D010	IDD	Supply Current	-	3	6	mA	Fosc = 4 MHz (Note 4)
D011		(Note 2)	-	6	12 *	mA	Fosc = 8 MHz
D014			-	95	150	μA	Fosc = 32 kHz,
							WDT disabled (EC osc configuration)
D020	IPD	Power-down	-	10	40	μA	VDD = 5.5V, WDT enabled
D021		Current (Note 3)	-	< 1	5	μA	VDD = 5.5V, WDT disabled

These parameters are characterized but not tested.

+ Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

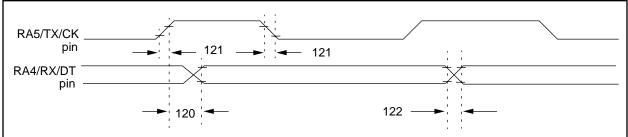
The test conditions for all IDD measurements in active operation mode are:

OSC1=external square wave, from rail to rail; all I/O pins tristated, pulled to VDD or VSS, TOCKI = VDD, MCLR = VDD; WDT enabled/disabled as specified.

Current consumed from the oscillator and I/O's driving external capacitive or resistive loads needs to be considered.

For the RC oscillator, the current through the external pull-up resistor (R) can be estimated as: VbD / (2 • R). For capacitive loads, the current can be estimated (for an individual I/O pin) as (CL • VDD) • f

CL = Total capacitive load on the I/O pin; f = average frequency the I/O pin switches.


The capacitive currents are most significant when the device is configured for external execution (includes extended microcontroller mode).

- 3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD or VSS.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula IR = VDD/2Rext (mA) with Rext in kOhm.

Standard Operating Conditions (unloss otherwise stated)

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 19-9: USART MODULE: SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

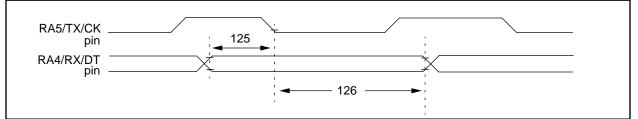


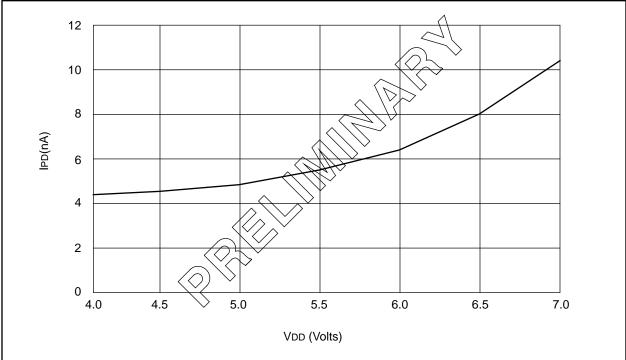
TABLE 19-9: SYNCHRONOUS TRANSMISSION REQUIREMENTS

Param	C. m	Characteristic		Min	Trent	Max	Unito	Conditions
No.	Sym	Characteristic		wiin	Тур†	Max	Units	Conditions
120	TckH2dtV	SYNC XMIT (MASTER &						
		SLAVE)	PIC17CR42/42A/43/R43/44	_	—	50	ns	
		Clock high to data out valid	PIC17LCR42/42A/43/R43/44	1 —	—	75	ns	
121	TckRF	Clock out rise time and fall time	PIC17CR42/42A/43/R43/44	—	—	25	ns	
		(Master Mode)	PIC17LCR42/42A/43/R43/44	—	—	40	ns	
122	TdtRF	Data out rise time and fall time	PIC17CR42/42A/43/R43/44	—	—	25	ns	
			PIC17LCR42/42A/43/R43/44	—	—	40	ns	
†	† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not							

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 19-10: USART MODULE: SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 19-10: SYNCHRONOUS RECEIVE REQUIREMENTS


Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
125	TdtV2ckL	SYNC RCV (MASTER & SLAVE) Data hold before CK↓ (DT hold time)	15		_	ns	
126	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15	_	_	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

PIC17C4X

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 20-9: TYPICAL IPD vs. VDD WATCHDOG DISABLED 25°C

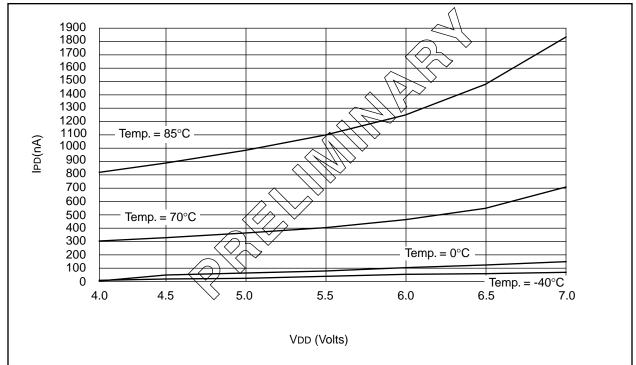
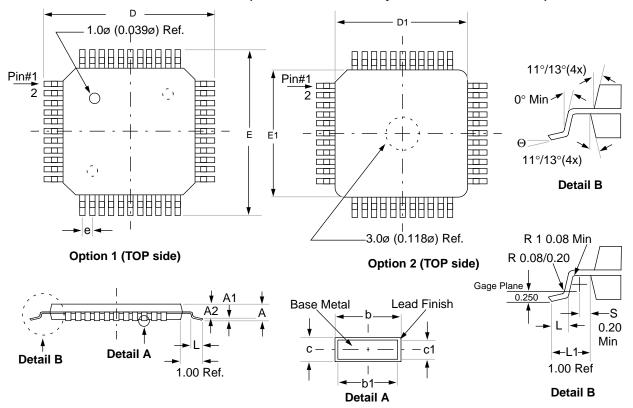



FIGURE 20-10: MAXIMUM IPD vs. VDD WATCHDOG DISABLED

NOTES:

21.5	44-Lead Plastic Surface Mount (TOFP 10x10 mm Body	(1.0/0.10 mm Lead Form)
21.0			

	Package Group: Plastic TQFP					
	Millimeters					
Symbol	Min	Max	Notes	Min	Max	Notes
Α	1.00	1.20		0.039	0.047	
A1	0.05	0.15		0.002	0.006	
A2	0.95	1.05		0.037	0.041	
D	11.75	12.25		0.463	0.482	
D1	9.90	10.10		0.390	0.398	
E	11.75	12.25		0.463	0.482	
E1	9.90	10.10		0.390	0.398	
L	0.45	0.75		0.018	0.030	
е	0.80	BSC		0.031	BSC	
b	0.30	0.45		0.012	0.018	
b1	0.30	0.40		0.012	0.016	
С	0.09	0.20		0.004	0.008	
c1	0.09	0.16		0.004	0.006	
Ν	44	44		44	44	
Θ	0°	7 °		0°	7 °	

Note 1: Dimensions D1 and E1 do not include mold protrusion. Allowable mold protrusion is 0.25m/m (0.010") per side. D1 and E1 dimensions including mold mismatch.

2: Dimension "b" does not include Dambar protrusion, allowable Dambar protrusion shall be 0.08m/m (0.003")max.

3: This outline conforms to JEDEC MS-026.

NOTES:

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:		Technical Publications Manager Total Pages Sent
RE _		Reader Response
Fro	om:	Name
		Company
		Address City / State / ZIP / Country
		Telephone: () FAX: ()
Ар	plica	ation (optional):
Wo	buld	you like a reply?YN
De	vice	E: PIC17C4X Literature Number: DS30412C
		ions:
1.	W	hat are the best features of this document?
2	— Ho	ow does this document meet your hardware and software development needs?
۷.		Sw does this document meet your hardware and software development needs:
3.	Do	o you find the organization of this data sheet easy to follow? If not, why?
4.	W	hat additions to the data sheet do you think would enhance the structure and subject?
~		
5.	vvi	hat deletions from the data sheet could be made without affecting the overall usefulness?
6.	ls	there any incorrect or misleading information (what and where)?
7.	Ho	ow would you improve this document?
8.	Ho	ow would you improve our software, systems, and silicon products?