

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	8MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	8KB (4K x 16)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Through Hole
Package / Case	40-DIP (0.600", 15.24mm)
Supplier Device Package	40-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17lc43-08-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.3 <u>Peripheral Interrupt Request Register</u> (PIR)

This register contains the individual flag bits for the peripheral interrupts.

Note: These bits will be set by the specified condition, even if the corresponding interrupt enable bit is cleared (interrupt disabled), or the GLINTD bit is set (all interrupts disabled). Before enabling an interrupt, the user may wish to clear the interrupt flag to ensure that the program does not immediately branch to the peripheral interrupt service routine.

FIGURE 5-4: PIR REGISTER (ADDRESS: 16h, BANK 1)

	0 R/W-0 R/W-0 R/W-0 R/W-0 R-1 R-0
RBIF	
bit7	bit0 W = Writable bit -n = Value at POR reset
bit 7:	RBIF : PORTB Interrupt on Change Flag bit 1 = One of the PORTB inputs changed (Software must end the mismatch condition) 0 = None of the PORTB inputs have changed
bit 6:	TMR3IF: Timer3 Interrupt Flag bit If Capture1 is enabled (CA1/PR3 = 1) 1 = Timer3 overflowed 0 = Timer3 did not overflow
	If Capture1 is disabled (CA1/ $\overline{PR3}$ = 0) 1 = Timer3 value has rolled over to 0000h from equalling the period register (PR3H:PR3L) value 0 = Timer3 value has not rolled over to 0000h from equalling the period register (PR3H:PR3L) value
bit 5:	TMR2IF : Timer2 Interrupt Flag bit 1 = Timer2 value has rolled over to 0000h from equalling the period register (PR2) value 0 = Timer2 value has not rolled over to 0000h from equalling the period register (PR2) value
bit 4:	TMR1IF : Timer1 Interrupt Flag bit If Timer1 is in 8-bit mode (T16 = 0) 1 = Timer1 value has rolled over to 0000h from equalling the period register (PR) value 0 = Timer1 value has not rolled over to 0000h from equalling the period register (PR2) value
	If Timer1 is in 16-bit mode (T16 = 1) 1 = TMR1:TMR2 value has rolled over to 0000h from equalling the period register (PR1:PR2) value 0 = TMR1:TMR2 value has not rolled over to 0000h from equalling the period register (PR1:PR2) value
bit 3:	CA2IF : Capture2 Interrupt Flag bit 1 = Capture event occurred on RB1/CAP2 pin 0 = Capture event did not occur on RB1/CAP2 pin
bit 2:	CA1IF : Capture1 Interrupt Flag bit 1 = Capture event occurred on RB0/CAP1 pin 0 = Capture event did not occur on RB0/CAP1 pin
bit 1:	TXIF : USART Transmit Interrupt Flag bit 1 = Transmit buffer is empty 0 = Transmit buffer is full
bit 0:	RCIF: USART Receive Interrupt Flag bit 1 = Receive buffer is full 0 = Receive buffer is empty

5.5 RA0/INT Interrupt

The external interrupt on the RA0/INT pin is edge triggered. Either the rising edge, if INTEDG bit (T0STA<7>) is set, or the falling edge, if INTEDG bit is clear. When a valid edge appears on the RA0/INT pin, the INTF bit (INTSTA<4>) is set. This interrupt can be disabled by clearing the INTE control bit (INTSTA<0>). The INT interrupt can wake the processor from SLEEP. See Section 14.4 for details on SLEEP operation.

5.6 TMR0 Interrupt

An overflow (FFFFh \rightarrow 0000h) in TMR0 will set the T0IF (INTSTA<5>) bit. The interrupt can be enabled/ disabled by setting/clearing the T0IE control bit (INTSTA<1>). For operation of the Timer0 module, see Section 11.0.

5.7 TOCKI Interrupt

The external interrupt on the RA1/T0CKI pin is edge triggered. Either the rising edge, if the T0SE bit (T0STA<6>) is set, or the falling edge, if the T0SE bit is clear. When a valid edge appears on the RA1/T0CKI pin, the T0CKIF bit (INTSTA<6>) is set. This interrupt can be disabled by clearing the T0CKIE control bit (INTSTA<2>). The T0CKI interrupt can wake up the processor from SLEEP. See Section 14.4 for details on SLEEP operation.

5.8 Peripheral Interrupt

The peripheral interrupt flag indicates that at least one of the peripheral interrupts occurred (PEIF is set). The PEIF bit is a read only bit, and is a bit wise OR of all the flag bits in the PIR register AND'ed with the corresponding enable bits in the PIE register. Some of the peripheral interrupts can wake the processor from SLEEP. See Section 14.4 for details on SLEEP operation.

FIGURE 5-5: INT PIN / TOCKI PIN INTERRUPT TIMING

5.9 Context Saving During Interrupts

During an interrupt, only the returned PC value is saved on the stack. Typically, users may wish to save key registers during an interrupt; e.g. WREG, ALUSTA and the BSR registers. This requires implementation in software. Example 5-1 shows the saving and restoring of information for an interrupt service routine. The PUSH and POP routines could either be in each interrupt service routine or could be subroutines that were called. Depending on the application, other registers may also need to be saved, such as PCLATH.

EXAMPLE 5-1: SAVING STATUS AND WREG IN RAM

; must ; 8 loc ; the M ; bits, ;	be in th ations c NOVFP ins	e data memory address an be saved and resto	ction neither affects the status	
; PUSH	MOVFP MOVFP MOVFP	,	; Save ALUSTA	
ISR	:		; This is the interrupt service routine	
POP	MOVFP MOVFP MOVFP RETFIE	TEMP_W, WREG TEMP_STATUS, ALUSTA TEMP_BSR, BSR		

6.0 MEMORY ORGANIZATION

There are two memory blocks in the PIC17C4X; program memory and data memory. Each block has its own bus, so that access to each block can occur during the same oscillator cycle.

The data memory can further be broken down into General Purpose RAM and the Special Function Registers (SFRs). The operation of the SFRs that control the "core" are described here. The SFRs used to control the peripheral modules are described in the section discussing each individual peripheral module.

6.1 Program Memory Organization

PIC17C4X devices have a 16-bit program counter capable of addressing a 64K x 16 program memory space. The reset vector is at 0000h and the interrupt vectors are at 0008h, 0010h, 0018h, and 0020h (Figure 6-1).

6.1.1 PROGRAM MEMORY OPERATION

The PIC17C4X can operate in one of four possible program memory configurations. The configuration is selected by two configuration bits. The possible modes are:

- Microprocessor
- Microcontroller
- Extended Microcontroller
- Protected Microcontroller

The microcontroller and protected microcontroller modes only allow internal execution. Any access beyond the program memory reads unknown data. The protected microcontroller mode also enables the code protection feature.

The extended microcontroller mode accesses both the internal program memory as well as external program memory. Execution automatically switches between internal and external memory. The 16-bits of address allow a program memory range of 64K-words.

The microprocessor mode only accesses the external program memory. The on-chip program memory is ignored. The 16-bits of address allow a program memory range of 64K-words. Microprocessor mode is the default mode of an unprogrammed device.

The different modes allow different access to the configuration bits, test memory, and boot ROM. Table 6-1 lists which modes can access which areas in memory. Test Memory and Boot Memory are not required for normal operation of the device. Care should be taken to ensure that no unintended branches occur to these areas.

FIGURE 6-1: PROGRAM MEMORY MAP AND STACK

	AND STACK	
	PC<15:0>]
CALL,	RETURN 1 16	1
RETFI		
	Stack Level 1	1
	:	1
	• Stack Level 16	-
	Stack Level 10]
T T	Reset Vector] 0000h
	INT Pin Interrupt Vector	0008h
	Timer0 Interrupt Vector	0010h
	T0CKI Pin Interrupt Vector	0018h
	Peripheral Interrupt Vector	0020h
		0021h
		7FFh (PIC17C42,
<u>></u>		PIC17CR42,
User Memory Space (1)		PIC17C42A)
ace		FFFh
Spe		(PIC17C43
n ∣		PIC17CR43)
		1FFFh (PIC17C44)
		(FIC17C44)
		l
<u>+</u>	FOSC0	FDFFh
> [FOSC0	FE00h FE01h
Jor	WDTPS0	FE02h
len	WDTPS1	FE03h
≥ e	PM0	FE04h
pac	Reserved	FE05h
S IB	PM1	FE06h
figu	Reserved	FE07h
Configuration Memory Space	Reserved	FE08h
		FE0Eh
📕	PM2 ⁽²⁾	FE0Fh
	Test EPROM	FE10h FF5Fh
		FF60h
	Boot ROM	
		FFFFh
Note 1: U	ser memory space may be inter	nal, external, or
	oth. The memory configuration of	
	rocessor mode.	,
	his location is reserved on the F	PIC17C42.
1		

TABLE 9-7: PORTD FUNCTIONS

Name	Bit	Buffer Type	Function
RD0/AD8	bit0	TTL	Input/Output or system bus address/data pin.
RD1/AD9	bit1	TTL	Input/Output or system bus address/data pin.
RD2/AD10	bit2	TTL	Input/Output or system bus address/data pin.
RD3/AD11	bit3	TTL	Input/Output or system bus address/data pin.
RD4/AD12	bit4	TTL	Input/Output or system bus address/data pin.
RD5/AD13	bit5	TTL	Input/Output or system bus address/data pin.
RD6/AD14	bit6	TTL	Input/Output or system bus address/data pin.
RD7/AD15	bit7	TTL	Input/Output or system bus address/data pin.

Legend: TTL = TTL input.

TABLE 9-8: REGISTERS/BITS ASSOCIATED WITH PORTD

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
13h, Bank 1	PORTD	RD7/ AD15	RD6/ AD14	RD5/ AD13	RD4/ AD12	RD3/ AD11	RD2/ AD10	RD1/ AD9	RD0/ AD8	XXXX XXXX	uuuu uuuu
12h, Bank 1	DDRD	Data direc	ction registe	er for PORTI	5					1111 1111	1111 1111

Legend: x = unknown, u = unchanged.

Note 1: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

11.0 TIMER0

The Timer0 module consists of a 16-bit timer/counter, TMR0. The high byte is TMR0H and the low byte is TMR0L. A software programmable 8-bit prescaler makes an effective 24-bit overflow timer. The clock source is also software programmable as either the internal instruction clock or the RA1/T0CKI pin. The control bits for this module are in register T0STA (Figure 11-1).

R/W - 0	R/W - 0	R/W - 0	R/W - 0	R/W - 0	R/W - 0	R/W - 0	U - 0	
INTEDG bit7	TOSE	TOCS	PS3	PS2	PS1	PS0	— bit0	R = Readable bit W = Writable bit U = Unimplemented, Read as '0' -n = Value at POR reset
bit 7:	INTEDG: R This bit sele 1 = Rising e 0 = Falling e	ects the ed edge of RA	ge upon w 0/INT pin g	hich the in generates i	terrupt is d nterrupt	etected		-n = value al POR lesel
bit 6:		ects the ed S = 0 edge of RA edge of RA	ge upon w 1/T0CKI pi	hich TMR(nts TMR0 a	and/or gene		CKIF interrupt CKIF interrupt
bit 5:	TOCS : Time This bit sele 1 = Internal 0 = TOCKI	ects the clo instruction	ck source	for TMR0.				
bit 4-1:	PS3:PS0 : T These bits				R0.			
	PS3:PS0	Pre	scale Valu	е				
	0000 0001 0010 0011 0100 0101 0110 0111 1xxx		1:1 1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256					
bit 0:	Unimplem	ented : Rea	id as '0'					

FIGURE 11-1: T0STA REGISTER (ADDRESS: 05h, UNBANKED)

© 1996 Microchip Technology Inc.

BAUD	Fosc = 3	3 MHz	SPBRG	Fosc = 2	OSC = 25 MHz		SPBRG FOSC = 20 MHz			Fosc = 1	SPBRG value	
RATE (K)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	(decimal)
0.3	NA	_	—	NA	_		NA	_	_	NA	_	-
1.2	NA	_	_	NA	_	_	1.221	+1.73	255	1.202	+0.16	207
2.4	2.398	-0.07	214	2.396	0.14	162	2.404	+0.16	129	2.404	+0.16	103
9.6	9.548	-0.54	53	9.53	-0.76	40	9.469	-1.36	32	9.615	+0.16	25
19.2	19.09	-0.54	26	19.53	+1.73	19	19.53	+1.73	15	19.23	+0.16	12
76.8	73.66	-4.09	6	78.13	+1.73	4	78.13	+1.73	3	83.33	+8.51	2
96	103.12	+7.42	4	97.65	+1.73	3	104.2	+8.51	2	NA	_	_
300	257.81	-14.06	1	390.63	+30.21	0	312.5	+4.17	0	NA	_	-
500	515.62	+3.13	0	NA	_	_	NA	_	_	NA	_	-
HIGH	515.62	_	0	_	_	0	312.5	_	0	250	_	0
LOW	2.014	—	255	1.53	—	255	1.221	—	255	0.977	_	255

TABLE 13-4: BAUD RATES FOR ASYNCHRONOUS MODE

BAUD RATE	Fosc = 10 MH	Iz	SPBRG value	Fosc = 7.159) MHz	SPBRG value	FOSC = 5.068	8 MHz	SPBRG value	
(K)	KBAUD	%ERROR	(decimal)	KBAUD	%ERROR	(decimal)	KBAUD	%ERROR	(decimal)	
0.3	NA	_	_	NA	_	_	0.31	+3.13	255	
1.2	1.202	+0.16	129	1.203	_0.23	92	1.2	0	65	
2.4	2.404	+0.16	64	2.380	-0.83	46	2.4	0	32	
9.6	9.766	+1.73	15	9.322	-2.90	11	9.9	-3.13	7	
19.2	19.53	+1.73	7	18.64	-2.90	5	19.8	+3.13	3	
76.8	78.13	+1.73	1	NA	_	—	79.2	+3.13	0	
96	NA	—	—	NA	—	—	NA	—	—	
300	NA	_	—	NA	_	—	NA	_	_	
500	NA	_	_	NA	_	_	NA	_	_	
HIGH	156.3	_	0	111.9	_	0	79.2	_	0	
LOW	0.610	—	255	0.437	—	255	0.309	_	2 55	
BAUD	Fosc = 3.579	MHz	SPBRG	Fosc = 1 MH	z	SPBRG				
RATE (K)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)	
0.3	0.301	+0.23	185	0.300	+0.16	51	0.256	-14.67	1	
1.2	1.190	-0.83	46	1.202	+0.16	12	NA	—	—	
2.4	2.432	+1.32	22	2.232	-6.99	6	NA	—	—	
9.6	9.322	-2.90	5	NA	_	_	NA	_	_	
19.2	18.64	-2.90	2	NA	—	—	NA	—	—	
76.8	NA	—	—	NA	—	—	NA	—	—	
96	NA	_	_	NA	_	_	NA	_	_	
300	NA	—	—	NA	—	—	NA	—	—	
500	NA	—	—	NA	—	—	NA	—	—	
HIGH	55.93	_	0	15.63	_	0	0.512	_	0	
l mon										

Steps to follow when setting up an Asynchronous Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate.
- 2. Enable the asynchronous serial port by clearing the SYNC bit and setting the SPEN bit.
- 3. If interrupts are desired, then set the RCIE bit.
- 4. If 9-bit reception is desired, then set the RX9 bit.
- 5. Enable the reception by setting the CREN bit.
- 6. The RCIF bit will be set when reception completes and an interrupt will be generated if the RCIE bit was set.

- Read RCSTA to get the ninth bit (if enabled) and FERR bit to determine if any error occurred during reception.
- 8. Read RCREG for the 8-bit received data.
- 9. If an overrun error occurred, clear the error by clearing the OERR bit.
- Note: To terminate a reception, either clear the SREN and CREN bits, or the SPEN bit. This will reset the receive logic, so that it will be in the proper state when receive is re-enabled.

FIGURE 13-8: ASYNCHRONOUS RECEPTION

TABLE 13-6 :	REGISTERS ASSOCIATED WITH ASYNCHRONOUS RECEPTION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
13h, Bank 0	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00u
14h, Bank 0	RCREG	RX7	RX6	RX5	RX4	RX3	RX2	RX1	RX0	xxxx xxxx	uuuu uuuu
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	_	—	TRMT	TX9D	00001x	00001u
17h, Bank 0	SPBRG	Baud rate	generator	register						xxxx xxxx	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used for asynchronous reception. Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

13.3.2 USART SYNCHRONOUS MASTER RECEPTION

Once synchronous mode is selected, reception is enabled by setting either the SREN (RCSTA<5>) bit or the CREN (RCSTA<4>) bit. Data is sampled on the RA4/RX/DT pin on the falling edge of the clock. If SREN is set, then only a single word is received. If CREN is set, the reception is continuous until CREN is reset. If both bits are set, then CREN takes precedence. After clocking the last bit, the received data in the Receive Shift Register (RSR) is transferred to RCREG (if it is empty). If the transfer is complete, the interrupt bit RCIF (PIR<0>) is set. The actual interrupt can be enabled/disabled by setting/clearing the RCIE (PIE<0>) bit. RCIF is a read only bit which is RESET by the hardware. In this case it is reset when RCREG has been read and is empty. RCREG is a double buffered register; i.e., it is a two deep FIFO. It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte to begin shifting into the RSR. On the clocking of the last bit of the third byte, if RCREG is still full, then the overrun error bit OERR (RCSTA<1>) is set. The word in the RSR will be lost. RCREG can be read twice to retrieve the two bytes in the FIFO. The OERR bit has to be cleared in software. This is done by clearing the CREN bit. If OERR bit is set, transfers from RSR to RCREG are inhibited, so it is essential to clear OERR bit if it is set. The 9th receive bit is buffered the same way as the receive data. Reading the RCREG register will allow the RX9D and FERR bits to be loaded with values for the next received data: therefore, it is essential for the user to read the RCSTA register before reading RCREG in order not to lose the old FERR and RX9D information.

Steps to follow when setting up a Synchronous Master Reception:

- 1. Initialize the SPBRG register for the appropriate baud rate. See Section 13.1 for details.
- 2. Enable the synchronous master serial port by setting bits SYNC, SPEN, and CSRC.
- 3. If interrupts are desired, then set the RCIE bit.
- 4. If 9-bit reception is desired, then set the RX9 bit.
- 5. If a single reception is required, set bit SREN. For continuous reception set bit CREN.
- 6. The RCIF bit will be set when reception is complete and an interrupt will be generated if the RCIE bit was set.
- 7. Read RCSTA to get the ninth bit (if enabled) and determine if any error occurred during reception.
- 8. Read the 8-bit received data by reading RCREG.
- 9. If any error occurred, clear the error by clearing CREN.

Note: To terminate a reception, either clear the SREN and CREN bits, or the SPEN bit. This will reset the receive logic, so that it will be in the proper state when receive is re-enabled.

FIGURE 13-11: SYNCHRONOUS RECEPTION (MASTER MODE, SREN)

Mnemonic,		Description	Cycles		16-bit	Opcod	e	Status	Notes
Operands				MSb			LSb	Affected	
TABLWT	t,i,f	Table Write	2	1010	11ti	ffff	ffff	None	5
TLRD	t,f	Table Latch Read	1	1010	00tx	ffff	ffff	None	
TLWT	t,f	Table Latch Write	1	1010	01tx	ffff	ffff	None	
TSTFSZ	f	Test f, skip if 0	1 (2)	0011	0011	ffff	ffff	None	6,8
XORWF	f,d	Exclusive OR WREG with f	1	0000	110d	ffff	ffff	Z	
BIT-ORIENT	ED FIL	E REGISTER OPERATIONS	1						
BCF	f,b	Bit Clear f	1	1000	1bbb	ffff	ffff	None	
BSF	f,b	Bit Set f	1	1000	0bbb	ffff	ffff	None	
BTFSC	f,b	Bit test, skip if clear	1 (2)	1001	1bbb	ffff	ffff	None	6,8
BTFSS	f,b	Bit test, skip if set	1 (2)	1001	0bbb	ffff	ffff	None	6,8
BTG	f,b	Bit Toggle f	1	0011	1bbb	ffff	ffff	None	
LITERAL AN	ID CO	NTROL OPERATIONS							
ADDLW	k	ADD literal to WREG	1	1011	0001	kkkk	kkkk	OV,C,DC,Z	
ANDLW	k	AND literal with WREG	1	1011	0101	kkkk	kkkk	Z	
CALL	k	Subroutine Call	2	111k	kkkk	kkkk	kkkk	None	7
CLRWDT	_	Clear Watchdog Timer	1	0000	0000	0000	0100	TO,PD	
GOTO	k	Unconditional Branch	2	110k	kkkk	kkkk	kkkk	None	7
IORLW	k	Inclusive OR literal with WREG	1	1011	0011	kkkk	kkkk	Z	
LCALL	k	Long Call	2	1011	0111	kkkk	kkkk	None	4,7
MOVLB	k	Move literal to low nibble in BSR	1	1011	1000	uuuu	kkkk	None	
MOVLR	k	Move literal to high nibble in BSR	1	1011	101x	kkkk	uuuu	None	9
MOVLW	k	Move literal to WREG	1	1011	0000	kkkk	kkkk	None	
MULLW	k	Multiply literal with WREG	1	1011	1100	kkkk	kkkk	None	9
RETFIE	_	Return from interrupt (and enable interrupts)	2	0000	0000	0000	0101	GLINTD	7
RETLW	k	Return literal to WREG	2	1011	0110	kkkk	kkkk	None	7
RETURN	_	Return from subroutine	2	0000	0000	0000	0010	None	7
SLEEP	_	Enter SLEEP Mode	1	0000	0000	0000	0011	TO, PD	
SUBLW	k	Subtract WREG from literal	1	1011	0010	kkkk	kkkk	OV,C,DC,Z	
XORLW	k	Exclusive OR literal with WREG	1	1011	0100	kkkk	kkkk	Z	

TABLE 15-2: PIC17CXX INSTRUCTION SET (Cont.'d)

Legend: Refer to Table 15-1 for opcode field descriptions.

Note 1: 2's Complement method.

- 2: Unsigned arithmetic.
- 3: If s = '1', only the file is affected: If s = '0', both the WREG register and the file are affected; If only the Working register (WREG) is required to be affected, then f = WREG must be specified.
- 4: During an LCALL, the contents of PCLATH are loaded into the MSB of the PC and kkkk kkkk is loaded into the LSB of the PC (PCL)
- Multiple cycle instruction for EPROM programming when table pointer selects internal EPROM. The instruction is terminated by an interrupt event. When writing to external program memory, it is a two-cycle instruction.
- 6: Two-cycle instruction when condition is true, else single cycle instruction.
- 7: Two-cycle instruction except for TABLRD to PCL (program counter low byte) in which case it takes 3 cycles.
- 8: A "skip" means that instruction fetched during execution of current instruction is not executed, instead an NOP is executed.
- 9: These instructions are not available on the PIC17C42.

ANDWF	AND WRE	EG with	f					
Syntax:	[<i>label</i>] A	NDWF	f,d					
Operands:	$0 \le f \le 255$ $d \in [0,1]$	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \ [0,1] \end{array}$						
Operation:	(WREG) .	AND. (f)	\rightarrow (dest))				
Status Affected:	Z	Z						
Encoding:	0000	0000 101d ffff ffff						
Description:	The conten register 'f'. in WREG. I back in reg	lf 'd' is 0 f 'd' is 1 t	the result	is stored				
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1	Q2	Q3	3	Q4				
Decode	Read register 'f'	Execu		Vrite to stination				
Example:	ANDWF	REG, 1						
Before Instru WREG REG After Instruct WREG	= 0x17 = 0xC2							

BCF		Bit Clear	f			
Syntax:		[label] E	BCF f,I	С		
Operand	s:	$0 \le f \le 25$ $0 \le b \le 7$	5			
Operatio	n:	$0 \rightarrow (f < b >$	-)			
Status A	ffected:	None				
Encoding	g:	1000	1bbb	fff	f	ffff
Descripti	ion:	Bit 'b' in re	gister 'f' is	clear	ed.	
Words:		1				
Cycles:		1				
Q Cycle	Activity:					
	Q1	Q2	Q3	8		Q4
D	ecode	Read register 'f'	Execu	ute		Write gister 'f'
<u>Example</u>	:	BCF	FLAG_R	EG,	7	
	r Instruct	EG = 0xC7				
		20 - 0,47				

CALL	Subroutir	ne Call		CLF	RF	Clear f			
Syntax:	[label] (CALL k		Syn	tax:	[<i>label</i>] CL	RF f,s		
Operands:	$0 \le k \le 40$	95		Ope	erands:	$0 \le f \le 25$	5		
Operation:	k<12:8> –	TOS, $k \rightarrow PC$ $\rightarrow PCLATH < 4$ $\Rightarrow \rightarrow PCLATH$:0>;		eration:	$00h \rightarrow f, s$ $00h \rightarrow de$			
Status Affecte			1<7.02	Stat	tus Affected:	None			
				ר Enc	oding:	0010	100s	ffff	ffff
Encoding: Description:	return addr the stack. T PC bits<12 bits of the F	kkkk kkl call within 8K ess (PC+1) is he 13-bit value :0>. Then the p PC are copied	page. First, pushed onto is loaded into upper-eight into PCLATH.		scription:	Clears the ister(s). s = 0: Data WREG are s = 1: Data cleared.	memory cleared.	location	
		wo-cycle instru		Woi	rds:	1			
	See LCALL space.	for calls outsid	le 8K memory	Сус	les:	1			
Words:	1			QC	cycle Activity:				
Cycles:	2				Q1	Q2	Q		Q4
Q Cycle Activ	ity:				Decode	Read register 'f'	Exec		Write register 'f'
Q1	Q2	Q3	Q4						and other
Decode	e Read literal 'k'<7:0>	Execute	NOP						specified register
Forced N	OP NOP	Execute	NOP	<u>Exa</u>	mple:	CLRF	FLAC	G_REG	
<u>Example</u> : Before In PC		CALL THE	RE		Before Instru FLAG_R After Instruc	EG = 0	κ5Α		
After Inst PC		ERE)			FLAG_R	EG = 0>	(00		

PC = Address(THERE) TOS = Address(HERE + 1)

RETFIE		Return fr	om Inte	rrupt	
Syntax:		[label]	RETFIE		
Operands:		None			
Operation:		$\begin{array}{l} TOS \rightarrow (I \\ 0 \rightarrow GLIN \\ PCLATH \end{array}$	ITD;	nged.	
Status Affe	ected:	GLINTD			
Encoding:		0000	0000	0000	0101
Description	n:	Return from and Top of PC. Interru the GLINT interrupt di	Stack (To pts are ei D bit. GLI	DS) is load nabled by NTD is the	ded in the clearing e global
Words:		1			
Cycles:		2			
Q Cycle A	ctivity:				
	21	Q2	Q3	3	Q4
Dec	ode	Read register T0STA	Execu	ute	NOP
Force	d NOP	NOP	Execu	ute	NOP
Р	nterrup C LINTD	RETFIE t = TOS = 0			

RETL	w	Return Li	teral to WRE	EG
Synta	ax:	[label]	RETLW k	
Opera	ands:	$0 \le k \le 25$	5	
Opera	ation:	•	$G; TOS \rightarrow 0$ s unchanged	
Statu	s Affected:	None		
Enco	ding:	1011	0110 kkl	kk kkkk
Desci	ription:	'k'. The proo the top of th	gram counter i le stack (the re Idress latch (F	turn address).
Word	s:	1		
Cycle	es:	2		
O Cv	cle Activity:			
Q Oy	CIE ACTIVITY.			
Q 0 y	Q1	Q2	Q3	Q4
	-	Q2 Read literal 'k'	Q3 Execute	Q4 Write to WREG
	Q1	Read		Write to
	Q1 Decode Forced NOP	Read literal 'k'	Execute	Write to WREG NOP
	Q1 Decode Forced NOP	Read literal 'k' NOP	Execute Execute BLE ; WREG co; ; offset ; WREG n; ; table c ; wREG = 0 ; Begin t;	Write to WREG NOP ntains table value ow has value
Exam	Q1 Decode Forced NOP	Read literal 'k' NOP CALL TAN CALL TAN CALL TAN : TABLE ADDWF PC RETLW ki : : RETLW ki : : RETLW ki	Execute Execute BLE ; WREG coi ; offset ; WREG n; ; table coi ; table coi ; wREG = 0 ; Begin t; ;	Write to WREG NOP ntains table value ow has value

RLNCF	Rotate L	eft f (no car	ry)
Syntax:	[label]	RLNCF f,d	
Operands:	0 ≤ f ≤ 25 d ∈ [0,1]	55	
Operation:	$f < n > \rightarrow d$ $f < 7 > \rightarrow d$,	
Status Affected:	None		
Encoding:	0010	001d ff	ff ffff
Description:	one bit to	nts of register the left. If 'd' is WREG. If 'd' is k in register 'f' register	0 the result is 1 the result is
Words:	1		
Cycles:	1		
Q Cycle Activity:			
Q1	Q2	Q3	Q4
Decode	Read register 'f'	Execute	Write to destination
Example:	RLNCF	REG, 1	
Before Instr	uction		
C REG	= 0 = 1110 1	1011	
After Instruc	tion		

RRCF	Rotate Right f through Carry
Syntax:	[<i>label</i>] RRCF f,d
Operands:	$0 \le f \le 255$ d $\in [0,1]$
Operation:	
Status Affected	С
Encoding:	0001 100d ffff ffff
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag. If 'd' is 0 the result is placed in WREG. If 'd' is 1 the result is placed back in register 'f'.
Words:	1
Cycles:	1
Q Cycle Activit	:
Q1	Q2 Q3 Q4
Decode	Read Execute Write to register 'f' destination
Example:	RRCF REG1,0
Before Ins	uction
REG1 C	= 1110 0110 = 0
After Instr REG1 WREC C	ction = 1110 0110 = 0111 0011 = 0

XORLW	Exclusive OR Literal with	XORWF	Exclusive OR WREG with f
	WREG	Syntax:	[label] XORWF f,d
Syntax:	[<i>label</i>] XORLW k	Operands:	$0 \le f \le 255$
Operands:	$0 \le k \le 255$		d ∈ [0,1]
Operation:	(WREG) .XOR. $k \rightarrow (WREG)$	Operation:	(WREG) .XOR. (f) \rightarrow (dest)
Status Affected:	Z	Status Affected:	Z
Encoding:	1011 0100 kkkk kkkk	Encoding:	0000 110d ffff ffff
Description:	The contents of WREG are XOR'ed with the 8-bit literal 'k'. The result is placed in WREG.	Description:	Exclusive OR the contents of WREG with register 'f'. If 'd' is 0 the result is stored in WREG. If 'd' is 1 the result is stored back in the register 'f'.
Words:	1	Words:	1
Cycles:	1	Cycles:	1
Q Cycle Activity:		Q Cycle Activity:	
Q1	Q2 Q3 Q4	Q Oycle Activity. Q1	Q2 Q3 Q4
Decode	ReadExecuteWrite toliteral 'k'WREG	Decode	Read Execute Write to destination
Example:	XORLW 0xAF	L	
Before Instruc	ction	Example:	XORWF REG, 1
After Instructi	= 0xB5 on = 0x1A	Before Instru REG WREG	ction = 0xAF = 0xB5
		After Instructi REG WREG	ion = 0x1A = 0xB5

Applicable Devices 42 R42 42A 43 R43 44

17.2 DC CHARACTERISTICS:

PIC17C42-16 (Commercial, Industrial) PIC17C42-25 (Commercial, Industrial)

Standard Operating Conditions (unless otherwise stated) Operating temperature

DC CHARACTERISTICS

-40°C \leq TA \leq +85°C for industrial and $0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial

Operating voltage VDD range as described in Section 17.1 Parameter No. Sym Characteristic Min Typ† Max Units Conditions Input Low Voltage VIL I/O ports D030 with TTL buffer Vss 0.8 V D031 with Schmitt Trigger buffer Vss 0.2VDD V _ D032 MCLR, OSC1 (in EC and RC Vss 0.2Vdd V Note1 _ mode) D033 OSC1 (in XT, and LF mode) 0.5VDD V _ Input High Voltage Vн I/O ports V D040 2.0 with TTL buffer _ Vdd D041 with Schmitt Trigger buffer 0.8VDD Vdd V _ D042 MCLR 0.8Vdd Vdd Note1 V D043 OSC1 (XT, and LF mode) 0.5VDD V D050 Hysteresis of 0.15VDD* VHYS V _ _ Schmitt Trigger inputs Input Leakage Current (Notes 2, 3) D060 lı∟ I/O ports (except RA2, RA3) $Vss \leq VPIN \leq VDD$, ±1 μΑ I/O Pin at hi-impedance PORTB weak pull-ups disabled MCLR D061 <u>+2</u> μA VPIN = Vss or VPIN = VDD D062 **RA2, RA3** ±2 μΑ $Vss \leq VRA2$, $VRA3 \leq 12V$ D063 OSC1, TEST ±1 μΑ $Vss \le VPIN \le VDD$

D070 IPURB PORTB weak pull-up current 60 These parameters are characterized but not tested.

MCLR

D064

Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only t and are not tested.

200

10

400

μA

μΑ

These parameters are for design guidance only and are not tested, nor characterized. t

Design guidance to attain the AC timing specifications. These loads are not tested. ++

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC17CXX devices be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in: PIC17CXX Programming Specifications (Literature number DS30139).

5: The MCLR/Vpp pin may be kept in this range at times other than programming, but this is not recommended.

6: For TTL buffers, the better of the two specifications may be used.

VMCLR = VPP = 12V

(when not programming)

VPIN = Vss. $\overline{RBPU} = 0$

Applicable Devices 42 R42 42A 43 R43 44

						itions	(unless otherwise stated)
			Operating	tempera			
DC CHARA	CTERI	STICS					$TA \leq +85^{\circ}C$ for industrial and
					· ·		$TA \leq +70^{\circ}C$ for commercial
			Operating	voltage \	VDD rang	e as de	escribed in Section 17.1
Parameter							
No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
		Output Low Voltage					
D080	VOL	I/O ports (except RA2 and RA3)	_	_	0.1VDD	V	IOL = 4 mA
D081		with TTL buffer	_	_	0.4	V	IOL = 6 mA, VDD = 4.5V
							Note 6
D082		RA2 and RA3	_	_	3.0	V	IOL = 60.0 mA, VDD = 5.5V
D083		OSC2/CLKOUT	_	_	0.4	V	IOL = 2 mA, VDD = 4.5 V
		(RC and EC osc modes)					
		Output High Voltage (Note 3)					
D090	Vон	I/O ports (except RA2 and RA3)	0.9Vdd	_	_	V	ЮН = -2 mA
D091		with TTL buffer	2.4	_	_	V	Юн = -6.0 mA, VDD = 4.5V
							Note 6
D092		RA2 and RA3	_	_	12	V	Pulled-up to externally applied
							voltage
D093		OSC2/CLKOUT	2.4	_	_	V	Юн = -5 mA, VDD = 4.5V
		(RC and EC osc modes)					
		Capacitive Loading Specs on					
		Output Pins					
D100	Cosc ₂	OSC2 pin	_	_	25 ††	pF	In EC or RC osc modes when
							OSC2 pin is outputting
							CLKOUT.
							External clock is used to drive
							OSC1.
D101	Cio	All I/O pins and OSC2	-	-	50 ††	pF	
		(in RC mode)					
D102	CAD	System Interface Bus	-	-	100 ††	pF	In Microprocessor or
		(PORTC, PORTD and PORTE)					Extended Microcontroller
							mode

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

the Design guidance to attain the AC timing specifications. These loads are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC17CXX devices be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in: PIC17CXX Programming Specifications (Literature number DS30139).

5: The MCLR/Vpp pin may be kept in this range at times other than programming, but this is not recommended.

6: For TTL buffers, the better of the two specifications may be used.

Applicable Devices 42 R42 42A 43 R43 44

19.0 PIC17CR42/42A/43/R43/44 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

5	
Ambient temperature under bias	55 to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0.6V to +14V
Voltage on RA2 and RA3 with respect to Vss	0.6V to +14V
Voltage on all other pins with respect to Vss	0.6V to VDD + 0.6V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin(s) - total	250 mA
Maximum current into VDD pin(s) - total	200 mA
Input clamp current, IiK (VI < 0 or VI > VDD)	±20 mA
Output clamp current, loк (Vo < 0 or Vo > VDD)	±20 mA
Maximum output current sunk by any I/O pin (except RA2 and RA3)	35 mA
Maximum output current sunk by RA2 or RA3 pins	
Maximum output current sourced by any I/O pin	20 mA
Maximum current sunk by PORTA and PORTB (combined)	150 mA
Maximum current sourced by PORTA and PORTB (combined)	100 mA
Maximum current sunk by PORTC, PORTD and PORTE (combined)	150 mA
Maximum current sourced by PORTC, PORTD and PORTE (combined)	100 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - \sum IOH} + \sum {(VDD-VG	OH) X IOH} + Σ (VOL X IOL)

Note 2: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

				Clock	Memory	ory		Peripł	Peripherals	\vdash	Features
				FLOULOUX (FLOULOUX)		\backslash		\backslash	6		
			10 10 10 T	And the sold			\backslash	10783			-7016) -7016)
		Uenberg		A HOU	S ano		je e		200	SUR	Aces .
	Tell	HON BROC NOCOLINATION	40,	ow isuit noted	ROULOS OW IBUIL	RULAILI COLLOS	Relief		enor suit	ai Se 1	asternor to state asternor
PIC16C554	20	512	80	TMR0			ю	13	2.5-6.0		18-pin DIP, SOIC; 20-pin SSOP
PIC16C556	20	¥	80	TMR0	1	I	e	13	2.5-6.0	Ι	18-pin DIP, SOIC; 20-pin SSOP
PIC16C558	20	2K	128	TMR0	I	I	e	13	2.5-6.0	Ι	18-pin DIP, SOIC; 20-pin SSOP
PIC16C620	20	512	80	TMR0	2	Yes	4	13	2.5-6.0	Yes	18-pin DIP, SOIC; 20-pin SSOP
PIC16C621	20	ź	80	TMR0	2	Yes	4	13	2.5-6.0	Yes	18-pin DIP, SOIC; 20-pin SSOP
PIC16C622	20	2K	128	TMR0	2	Yes	4	13	2.5-6.0	Yes	18-pin DIP, SOIC; 20-pin SSOP
All PIC16/17 Fan	/17 Far	nily devic	es have	Power-on	Reset,	selecta	able W	atchdo	g Timer, s	electal	All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O

current capability. All PIC16C6XXX Family devices use serial programming with clock pin RB6 and data pin RB7.

DS30412C-page 215

PIC16C7X Family of Devices

E.5

Clock Memory Peripherals Features Clock Memory Peripherals Features Clock Memory Peripherals Features Features Clock Memory Clock Memor	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	TMR0 — — — 4 4 13 3.0-6.0 Yes — 18-pin DIP, SOIC	IMR0 4 4 13 3.0-6.0 Yes 18-pin DIP, SOIC; 20-pin SSOP 20-pin SSOP	TMR0, 1 SPI/I ² C - 5 8 22 2.5-6.0 Yes 28-pin SDIP, SOIC, SSOP TMR1, TMR2 - 5 8 22 2.5-6.0 Yes 28-pin SDIP, SOIC, SSOP	TMR0, 2 SPI/I ² C, - 5 11 22 3.0-6.0 Yes - 28-pin SDIP, SOIC TMR1, TMR2 USART	TMR0, 2 SPI/I ² C, 5 11 22 2.5-6.0 Yes Yes 28-pin SDIP, SOIC TMR1, TMR2 USART	TMR0, 2 SPI/I ² C, Yes 8 12 33 3.0-6.0 Yes - 40-pin DIP; TMR1, TMR2 USART 12 33 3.0-6.0 Yes - 40-pin DIP;	TMR0, 2 SPI/I ² C, Yes 8 12 33 2.5-6.0 Yes 40-pin DIP; TMR1, TMR2 USART 12 33 2.5-6.0 Yes 44-pin PLCC, MQFP, TQFP	All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable code protect and high I/O current capability.
C C C C C C C C C C C C C C C C C C C	TMR0	TMR0	TMR0	TMR0, TMR1, TM	TMR0, TMR1, TM	TMR0, TMR1, TM	TMR0, TMR1, TM	TMR0, TMR1, TM	All PIC16/17 Family devices have Power-on Reset, selectable Watchdog Timer, selectable c capability.
-10 TOLISTO	36 044	36	89	128	192	192	192	192	y device
	512 512	ź	Ϋ́	2K	44 A	4 K	4K	4 K	⁷ Family
	20 10	20	20	20	20	20	20	20	C16/17 vility.
	PIC16C710	PIC16C71	PIC16C711	PIC16C72	PIC16C73	PIC16C73A ⁽¹⁾	PIC16C74	PIC16C74A ⁽¹⁾	All PIC16/ capability.