

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	8MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	8KB (4K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17lc43-08-pq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.0 RESET

The PIC17CXX differentiates between various kinds of reset:

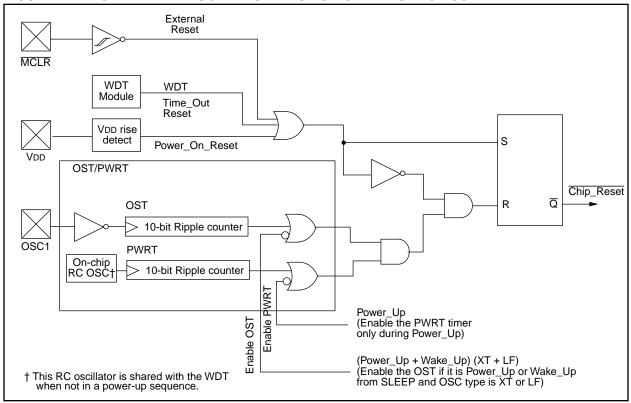
- Power-on Reset (POR)
- MCLR reset during normal operation
- WDT Reset (normal operation)

Some registers are not affected in any reset condition; their status is unknown on POR and unchanged in any other reset. Most other registers are forced to a "reset state" on Power-on Reset (POR), on $\overline{\text{MCLR}}$ or WDT Reset and on $\overline{\text{MCLR}}$ reset during SLEEP. They are not affected by a WDT Reset during SLEEP, since this reset is viewed as the resumption of normal operation. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits are set or cleared differently in different reset situations as indicated in Table 4-3. These bits are used in software to determine the nature of reset. See Table 4-4 for a full description of reset states of all registers.

Note: While the device is in a reset state, the internal phase clock is held in the Q1 state. Any processor mode that allows external execution will force the RE0/ALE pin as a low output and the RE1/OE and RE2/WR pins as high outputs.

A simplified block diagram of the on-chip reset circuit is shown in Figure 4-1.

4.1 <u>Power-on Reset (POR), Power-up</u> <u>Timer (PWRT), and Oscillator Start-up</u> <u>Timer (OST)</u>


4.1.1 POWER-ON RESET (POR)

The Power-on Reset circuit holds the device in reset until VDD is above the trip point (in the range of 1.4V -2.3V). The PIC17C42 does not produce an internal reset when VDD declines. All other devices will produce an internal reset for both rising and falling VDD. To take advantage of the POR, just tie the MCLR/VPP pin directly (or through a resistor) to VDD. This will eliminate external RC components usually needed to create Power-on Reset. A minimum rise time for VDD is required. See Electrical Specifications for details.

4.1.2 POWER-UP TIMER (PWRT)

The Power-up Timer provides a fixed 96 ms time-out (nominal) on power-up. This occurs from rising edge of the POR signal and after the first rising edge of $\overline{\text{MCLR}}$ (detected high). The Power-up Timer operates on an internal RC oscillator. The chip is kept in RESET as long as the PWRT is active. In most cases the PWRT delay allows the VDD to rise to an acceptable level.

The power-up time delay will vary from chip to chip and to VDD and temperature. See DC parameters for details.

FIGURE 4-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

© 1996 Microchip Technology Inc.

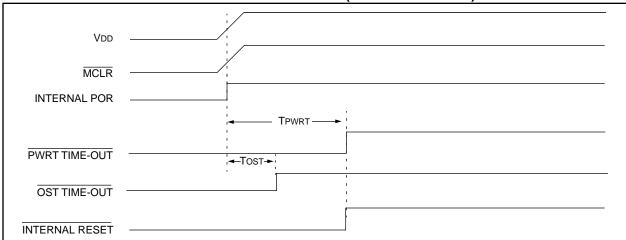
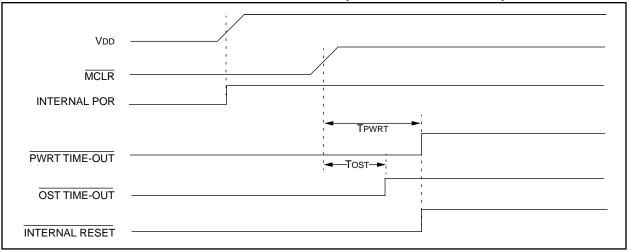
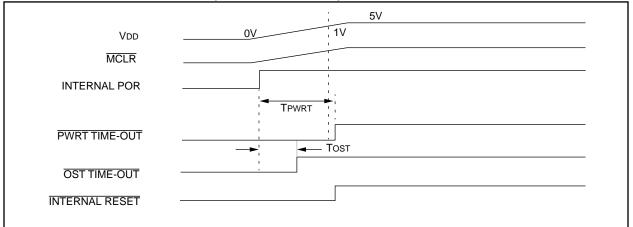




FIGURE 4-2: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD)

FIGURE 4-3: TIME-OUT SEQUENCE ON POWER-UP (MCLR NOT TIED TO VDD)

FIGURE 4-4: SLOW RISE TIME (MCLR TIED TO VDD)

5.0 INTERRUPTS

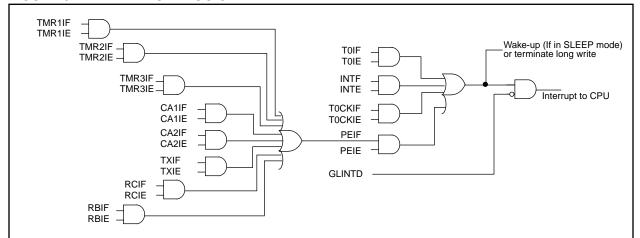
The PIC17C4X devices have 11 sources of interrupt:

- External interrupt from the RA0/INT pin
- Change on RB7:RB0 pins
- TMR0 Overflow
- TMR1 Overflow
- TMR2 Overflow
- TMR3 Overflow
- USART Transmit buffer empty
- USART Receive buffer full
- Capture1
- Capture2
- T0CKI edge occurred

There are four registers used in the control and status of interrupts. These are:

- CPUSTA
- INTSTA
- PIE
- PIR

The CPUSTA register contains the GLINTD bit. This is the Global Interrupt Disable bit. When this bit is set, all interrupts are disabled. This bit is part of the controller core functionality and is described in the Memory Organization section. When an interrupt is responded to, the GLINTD bit is automatically set to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with the interrupt vector address. There are four interrupt vectors. Each vector address is for a specific interrupt source (except the peripheral interrupts which have the same vector address). These sources are:


- External interrupt from the RA0/INT pin
- TMR0 Overflow
- T0CKI edge occurred
- Any peripheral interrupt

When program execution vectors to one of these interrupt vector addresses (except for the peripheral interrupt address), the interrupt flag bit is automatically cleared. Vectoring to the peripheral interrupt vector address does not automatically clear the source of the interrupt. In the peripheral interrupt service routine, the source(s) of the interrupt can be determined by testing the interrupt flag bits. The interrupt flag bit(s) must be cleared in software before re-enabling interrupts to avoid infinite interrupt requests.

All of the individual interrupt flag bits will be set regardless of the status of their corresponding mask bit or the GLINTD bit.

For external interrupt events, there will be an interrupt latency. For two cycle instructions, the latency could be one instruction cycle longer.

The "return from interrupt" instruction, RETFIE, can be used to mark the end of the interrupt service routine. When this instruction is executed, the stack is "POPed", and the GLINTD bit is cleared (to re-enable interrupts).

FIGURE 5-1: INTERRUPT LOGIC

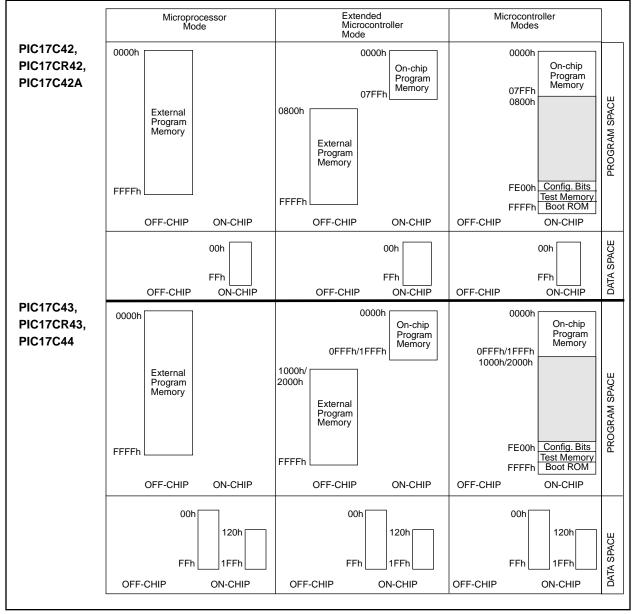
© 1996 Microchip Technology Inc.

5.2 <u>Peripheral Interrupt Enable Register</u> (PIE)

This register contains the individual flag bits for the Peripheral interrupts.

FIGURE 5-3: PIE REGISTER (ADDRESS: 17h, BANK 1)

RBIE	0 R/W - 0 R/W TMR3IE TMR2IE TMR1IE CA2IE CA1IE TXIE R0	CIE R = Readable bit
bit7		bit0 W = Writable bit -n = Value at POR reset
bit 7:	RBIE : PORTB Interrupt on Change Enable bit 1 = Enable PORTB interrupt on change 0 = Disable PORTB interrupt on change	
bit 6:	TMR3IE : Timer3 Interrupt Enable bit 1 = Enable Timer3 interrupt 0 = Disable Timer3 interrupt	
bit 5:	TMR2IE : Timer2 Interrupt Enable bit 1 = Enable Timer2 interrupt 0 = Disable Timer2 interrupt	
bit 4:	TMR1IE : Timer1 Interrupt Enable bit 1 = Enable Timer1 interrupt 0 = Disable Timer1 interrupt	
bit 3:	CA2IE : Capture2 Interrupt Enable bit 1 = Enable Capture interrupt on RB1/CAP2 pin 0 = Disable Capture interrupt on RB1/CAP2 pin	
bit 2:	CA1IE : Capture1 Interrupt Enable bit 1 = Enable Capture interrupt on RB2/CAP1 pin 0 = Disable Capture interrupt on RB2/CAP1 pin	
bit 1:	TXIE : USART Transmit Interrupt Enable bit 1 = Enable Transmit buffer empty interrupt 0 = Disable Transmit buffer empty interrupt	
bit 0:	RCIE : USART Receive Interrupt Enable bit 1 = Enable Receive buffer full interrupt 0 = Disable Receive buffer full interrupt	


TABLE 6-1: MODE MEMORY ACCESS

Operating Mode	Internal Program Memory	Configuration Bits, Test Memory, Boot ROM	
Microprocessor	No Access	No Access	
Microcontroller	Access	Access	
Extended Microcontroller	Access	No Access	
Protected Microcontroller	Access	Access	

The PIC17C4X can operate in modes where the program memory is off-chip. They are the microprocessor and extended microcontroller modes. The microprocessor mode is the default for an unprogrammed device.

Regardless of the processor mode, data memory is always on-chip.

FIGURE 6-2: MEMORY MAP IN DIFFERENT MODES

TABLE 6-3:	SPECIAL FUNCTION REGISTERS
------------	----------------------------

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (3)
Unbank	ed	•				•			•		
00h	INDF0	Uses con	tents of FSI	R0 to addres	s data mem	ory (not a p	hysical regis	ster)			
01h	FSR0	Indirect d	ata memory	address po	inter 0					XXXX XXXX	uuuu uuuu
02h	PCL	Low orde	r 8-bits of P	С						0000 0000	0000 0000
03h ⁽¹⁾	PCLATH	Holding re	egister for u	pper 8-bits o	of PC					0000 0000	uuuu uuuu
04h	ALUSTA	FS3	FS2	FS1	FS0	OV	Z	DC	С	1111 xxxx	1111 uuuu
05h	TOSTA	INTEDG	TOSE	TOCS	PS3	PS2	PS1	PS0	—	0000 000-	0000 000-
06h (2)	CPUSTA	_	—	STKAV	GLINTD	TO	PD	_	_	11 11	11 qq
07h	INTSTA	PEIF	TOCKIF	T0IF	INTF	PEIE	TOCKIE	TOIE	INTE	0000 0000	0000 0000
08h	INDF1	Uses con	tents of FSI	R1 to addres	s data mem	ory (not a p	hysical regis	ster)			
09h	FSR1	Indirect d	ata memory	address po	inter 1		, ,			xxxx xxxx	uuuu uuuu
0Ah	WREG	Working r	egister							xxxx xxxx	uuuu uuuu
0Bh	TMR0L	TMR0 reg	gister; low b	yte						xxxx xxxx	uuuu uuuu
0Ch	TMR0H	TMR0 reg	gister; high I	oyte						xxxx xxxx	uuuu uuuu
0Dh	TBLPTRL	Low byte	of program	memory tab	le pointer					(4)	(4)
0Eh	TBLPTRH	High byte	of program	memory tal	ole pointer					(4)	(4)
0Fh	BSR	Bank sele	ect register							0000 0000	0000 0000
Bank 0		1								I	
10h	PORTA	RBPU	_	RA5	RA4	RA3	RA2	RA1/T0CKI	RA0/INT	0-xx xxxx	0-uu uuuu
11h	DDRB	Data dire	ction registe	er for PORTE	3					1111 1111	1111 1111
12h	PORTB	PORTB d	ata latch							xxxx xxxx	uuuu uuuu
13h	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	0000 -00x	0000 -00u
14h	RCREG	Serial por	t receive re	gister						xxxx xxxx	uuuu uuuu
15h	TXSTA	CSRC	TX9	TXEN	SYNC	—	—	TRMT	TX9D	00001x	00001u
16h	TXREG	Serial por	t transmit re	egister						xxxx xxxx	uuuu uuuu
17h	SPBRG	Baud rate	generator	register						xxxx xxxx	uuuu uuuu
Bank 1											
10h	DDRC	Data dire	ction registe	er for PORT	2					1111 1111	1111 1111
11h	PORTC	RC7/ AD7	RC6/ AD6	RC5/ AD5	RC4/ AD4	RC3/ AD3	RC2/ AD2	RC1/ AD1	RC0/ AD0	xxxx xxxx	uuuu uuuu
12h	DDRD	Data dire	ction registe	er for PORTI)					1111 1111	1111 1111
4.01-	PORTD	RD7/ AD15	RD6/ AD14	RD5/ AD13	RD4/ AD12	RD3/ AD11	RD2/ AD10	RD1/ AD9	RD0/ AD8	xxxx xxxx	uuuu uuuu
13h										111	111
13h 14h	DDRE	Data dire						-			
	DDRE PORTE	Data dire	_	_	_	_	RE2/WR	RE1/OE	RE0/ALE	xxx	uuu
14h		RBIF	— TMR3IF	— TMR2IF	— TMR1IF	— CA2IF	RE2/WR CA1IF	RE1/OE TXIF	RE0/ALE RCIF	xxx 0000 0010	uuu 0000 0010

x = unknown, u = unchanged, - = unimplemented read as '0', q - value depends on condition. Shaded cells are unimplemented, read as '0'. The upper byte of the program counter is not directly accessible. PCLATH is a holding register for PC<15:8> whose contents are updated Legend: Note 1:

from or transferred to the upper byte of the program counter. The TO and PD status bits in CPUSTA are not affected by a MCLR reset. 2:

3: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

4:

The following values are for both TBLPTRL and TBLPTRH: All PIC17C4X devices (Power-on Reset 0000 0000) and (All other resets 0000 0000) except the PIC17C42 (Power-on Reset xxxx xxxx) and (All other resets uuuu uuuu)

5: The PRODL and PRODH registers are not implemented on the PIC17C42.

6.2.2.1 ALU STATUS REGISTER (ALUSTA)

The ALUSTA register contains the status bits of the Arithmetic and Logic Unit and the mode control bits for the indirect addressing register.

As with all the other registers, the ALUSTA register can be the destination for any instruction. If the ALUSTA register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Therefore, the result of an instruction with the ALUSTA register as destination may be different than intended.

For example, CLRF ALUSTA will clear the upper four bits and set the Z bit. This leaves the ALUSTA register as 0000u1uu (where u = unchanged).

It is recommended, therefore, that only BCF, BSF, SWAPF and MOVWF instructions be used to alter the ALUSTA register because these instructions do not affect any status bit. To see how other instructions affect the status bits, see the "Instruction Set Summary."

Note	1: The C and DC bits operate as a borrow out bit in subtraction. See the SUBLW and SUBWF instructions for examples.
Note	2: The overflow bit will be set if the 2's com- plement result exceeds +127 or is less than -128.

Arithmetic and Logic Unit (ALU) is capable of carrying out arithmetic or logical operations on two operands or a single operand. All single operand instructions operate either on the WREG register or a file register. For two operand instructions, one of the operands is the WREG register and the other one is either a file register or an 8-bit immediate constant.

FS3	FS2	FS1	FS0	OV	Z	DC	С	R = Readable bit
bit7	1	1				I	bit0	W = Writable bit -n = Value at POR reset (x = unknown)
bit 7-6:	01 = Pos	FSR1 Mo t auto-dect t auto-incre t value de	rement FS ement FSI	R1 value R1 value				
bit 5-4:	01 = Pos	FSR0 Mo t auto-deci t auto-incre 0 value de	rement FS ement FSI	R0 value R0 value				
bit 3:	which cau 1 = Overfl	s used for uses the si	gn bit (bit7 ed for sign	') to chang				overflow of the 7-bit magnitude,
bit 2:		esult of an			peration is operation is			
bit 1:	For ADDW 1 = A carr $0 = No ca$	•	LW instruc the 4th lo m the 4th	w order bi low order	t of the res bit of the re I.		d	
bit 0:	1 = A carr Note that (RRCF, RL	F and ADD y-out from a subtrac CF) instru- rry-out fro	the most tion is exe ctions, this m the mos	significant cuted by a bit is load t significa	ded with eit nt bit of the	two's com her the hig	plement of	the second operand. For rotate der bit of the source register.

FIGURE 6-7: ALUSTA REGISTER (ADDRESS: 04h, UNBANKED)

7.0 TABLE READS AND TABLE WRITES

The PIC17C4X has four instructions that allow the processor to move data from the data memory space to the program memory space, and vice versa. Since the program memory space is 16-bits wide and the data memory space is 8-bits wide, two operations are required to move 16-bit values to/from the data memory.

The TLWT t,f and TABLWT t,i,f instructions are used to write data from the data memory space to the program memory space. The TLRD t,f and TABLRD t,i,f instructions are used to write data from the program memory space to the data memory space.

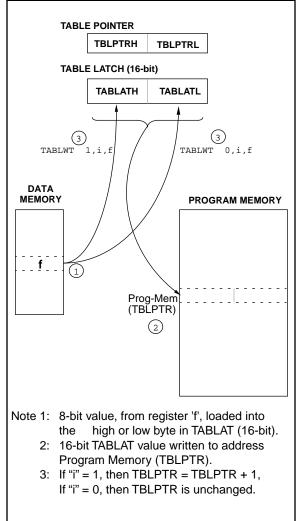
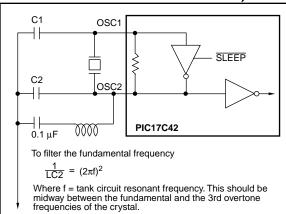

The program memory can be internal or external. For the program memory access to be external, the device needs to be operating in extended microcontroller or microprocessor mode.

Figure 7-1 through Figure 7-4 show the operation of these four instructions.

FIGURE 7-2: TABLWT INSTRUCTION OPERATION

© 1996 Microchip Technology Inc.

11.0 TIMER0


The Timer0 module consists of a 16-bit timer/counter, TMR0. The high byte is TMR0H and the low byte is TMR0L. A software programmable 8-bit prescaler makes an effective 24-bit overflow timer. The clock source is also software programmable as either the internal instruction clock or the RA1/T0CKI pin. The control bits for this module are in register T0STA (Figure 11-1).

R/W - 0	R/W - 0	R/W - 0	R/W - 0	R/W - 0	R/W - 0	R/W - 0	U - 0	
INTEDG bit7	TOSE	TOCS	PS3	PS2	PS1	PS0	— bit0	R = Readable bit W = Writable bit U = Unimplemented, Read as '0' -n = Value at POR reset
bit 7:	INTEDG : R This bit sele 1 = Rising e 0 = Falling e	ects the ed edge of RA	ge upon w 0/INT pin g	hich the in generates i	terrupt is d nterrupt	etected		-n = value al POR lesel
bit 6:		ects the ed S = 0 edge of RA edge of RA	ge upon w 1/T0CKI pi	hich TMR(nts TMR0 a	and/or gene		CKIF interrupt CKIF interrupt
bit 5:	TOCS : Time This bit sele 1 = Internal 0 = TOCKI	ects the clo instruction	ck source	for TMR0.				
bit 4-1:	PS3:PS0 : T These bits				R0.			
	PS3:PS0	Pre	scale Valu	е				
	0000 0001 0010 0011 0100 0101 0110 0111 1xxx		1:1 1:2 1:4 1:8 1:16 1:32 1:64 1:128 1:256					
bit 0:	Unimplem	ented : Rea	id as '0'					

FIGURE 11-1: T0STA REGISTER (ADDRESS: 05h, UNBANKED)

© 1996 Microchip Technology Inc.

FIGURE 14-3: CRYSTAL OPERATION, OVERTONE CRYSTALS (XT OSC CONFIGURATION)

TABLE 14-2: CAPACITOR SELECTION FOR CERAMIC RESONATORS

Oscillator Type	Resonator Frequency	Capacitor Range C1 = C2
LF	455 kHz 2.0 MHz	15 - 68 pF 10 - 33 pF
ХТ	4.0 MHz 8.0 MHz 16.0 MHz	22 - 68 pF 33 - 100 pF 33 - 100 pF

Higher capacitance increases the stability of the oscillator but also increases the start-up time. These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.

Resonators Used:

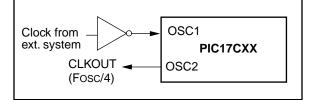
455 kHz	Panasonic EFO-A455K04B	± 0.3%	
2.0 MHz	Murata Erie CSA2.00MG	± 0.5%	
4.0 MHz	Murata Erie CSA4.00MG	± 0.5%	
8.0 MHz	Murata Erie CSA8.00MT	± 0.5%	
16.0 MHz	Murata Erie CSA16.00MX	± 0.5%	
Resonators used did not have built-in capacitors.			

TABLE 14-3:CAPACITOR SELECTION
FOR CRYSTAL OSCILLATOR

Osc Type	Freq	C1	C2
LF	32 kHz ⁽¹⁾	100-150 pF	100-150 pF
	1 MHz	10-33 pF	10-33 pF
	2 MHz	10-33 pF	10-33 pF
XT	2 MHz	47-100 pF	47-100 pF
	4 MHz	15-68 pF	15-68 pF
	8 MHz ⁽²⁾	15-47 pF	15-47 pF
	16 MHz	TBD	TBD
	25 MHz	15-47 pF	15-47 pF
	32 MHz ⁽³⁾	₀ (3)	₍₃₎

Higher capacitance increases the stability of the oscillator but also increases the start-up time and the oscillator current. These values are for design guidance only. Rs may be required in XT mode to avoid overdriving the crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values for external components.

- Note 1: For VDD > 4.5V, C1 = C2 \approx 30 pF is recommended.
 - Rs of 330Ω is required for a capacitor combination of 15/15 pF.
 - 3: Only the capacitance of the board was present.


Crystals Used:

32.768 kHz	Epson C-001R32.768K-A	± 20 PPM
1.0 MHz	ECS-10-13-1	\pm 50 PPM
2.0 MHz	ECS-20-20-1	\pm 50 PPM
4.0 MHz	ECS-40-20-1	± 50 PPM
8.0 MHz	ECS ECS-80-S-4	± 50 PPM
	ECS-80-18-1	
16.0 MHz	ECS-160-20-1	TBD
25 MHz	CTS CTS25M	\pm 50 PPM
32 MHz	CRYSTEK HF-2	\pm 50 PPM

14.2.3 EXTERNAL CLOCK OSCILLATOR

In the EC oscillator mode, the OSC1 input can be driven by CMOS drivers. In this mode, the OSC1/CLKIN pin is hi-impedance and the OSC2/CLK-OUT pin is the CLKOUT output (4 Tosc).

FIGURE 14-4: EXTERNAL CLOCK INPUT OPERATION (EC OSC CONFIGURATION)

14.3 Watchdog Timer (WDT)

The Watchdog Timer's function is to recover from software malfunction. The WDT uses an internal free running on-chip RC oscillator for its clock source. This does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run, even if the clock on the OSC1/CLKIN and OSC2/CLK-OUT pins of the device has been stopped, for example, by execution of a SLEEP instruction. During normal operation and SLEEP mode, a WDT time-out generates a device RESET. The WDT can be permanently disabled by programming the configuration bits WDTPS1:WDTPS0 as '00' (Section 14.1).

Under normal operation, the WDT must be cleared on a regular interval. This time is less the minimum WDT overflow time. Not clearing the WDT in this time frame will cause the WDT to overflow and reset the device.

14.3.1 WDT PERIOD

The WDT has a nominal time-out period of 12 ms, (with postscaler = 1). The time-out periods vary with temperature, VDD and process variations from part to part (see DC specs). If longer time-out periods are desired, a postscaler with a division ratio of up to 1:256 can be assigned to the WDT. Thus, typical time-out periods up to 3.0 seconds can be realized.

The CLRWDT and SLEEP instructions clear the WDT and the postscaler (if assigned to the WDT) and prevent it from timing out thus generating a device RESET condition.

The $\overline{\text{TO}}$ bit in the CPUSTA register will be cleared upon a WDT time-out.

14.3.2 CLEARING THE WDT AND POSTSCALER

The WDT and postscaler are cleared when:

- The device is in the reset state
- A SLEEP instruction is executed
- A CLRWDT instruction is executed
- Wake-up from SLEEP by an interrupt

The WDT counter/postscaler will start counting on the first edge after the device exits the reset state.

14.3.3 WDT PROGRAMMING CONSIDERATIONS

It should also be taken in account that under worst case conditions (VDD = Min., Temperature = Max., max. WDT postscaler) it may take several seconds before a WDT time-out occurs.

The WDT and postscaler is the Power-up Timer during the Power-on Reset sequence.

14.3.4 WDT AS NORMAL TIMER

When the WDT is selected as a normal timer, the clock source is the device clock. Neither the WDT nor the postscaler are directly readable or writable. The overflow time is 65536 Tosc cycles. On overflow, the $\overline{\text{TO}}$ bit is cleared (device is not reset). The CLRWDT instruction can be used to set the $\overline{\text{TO}}$ bit. This allows the WDT to be a simple overflow timer. When in sleep, the WDT does not increment.

ADDLW ADD Literal to WREG					
Syntax:	[label] A	DLW	k		
Operands:	$0 \le k \le 25$	5			
Operation:	(WREG) -	+ k \rightarrow (V	VREG)		
Status Affected:	OV, C, DC	C, Z			
Encoding:	1011	0001	kkkk	kkkk	
Description:	The conten 8-bit literal WREG.				
Words:	1				
Cycles:	1				
Q Cycle Activity:					
Q1	Q2	Q3	3	Q4	
Decode	Read literal 'k'	Execu		Write to WREG	
Example:	ADDLW	0x15			
Before Instruc WREG =					

ADDWF	ADD WRE	EG to f				
Syntax:	[<i>label</i>] A[DDWF f	f,d			
Operands:	$0 \le f \le 255$ $d \in [0,1]$	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \ [0,1] \end{array}$				
Operation:	(WREG) +	- (f) \rightarrow (de	est)			
Status Affected:	OV, C, DC	, Z				
Encoding:	0000	111d	ffff	ffff		
Description:	Add WREG result is sto result is sto	red in WRE	EG. If 'd'	is 1 the		
Words:	1					
Cycles:	1	1				
Q Cycle Activity:						
Q1	Q2	Q3		Q4		
Decode	Read register 'f'	Execute		/rite to stination		
Example:	ADDWF	REG, 0				
Before Instru WREG REG	iction = 0x17 = 0xC2					
After Instruct WREG REG	tion = 0xD9 = 0xC2					

After Instruction WREG = 0x25

ANDWF	AND WRE	EG with	f			
Syntax:	[<i>label</i>] A	NDWF	f,d			
Operands:	$0 \le f \le 255$ $d \in [0,1]$	5				
Operation:	(WREG) .	AND. (f)	\rightarrow (dest))		
Status Affected:	Z					
Encoding:	0000	101d	ffff	ffff		
Description:	The conten register 'f'. in WREG. I back in reg	lf 'd' is 0 f 'd' is 1 t	the result	is stored		
Words:	1					
Cycles:	1	1				
Q Cycle Activity:						
Q1	Q2	Q3	8	Q4		
Decode	Read register 'f'	Execu		Vrite to stination		
Example:	ANDWF	REG, 1				
Before Instru WREG REG After Instruct WREG REG	= 0x17 = 0xC2					

BCF		Bit Clear	Bit Clear f					
Syntax:		[<i>label</i>] E	BCF f,I	С				
Operands:		$0 \le f \le 25$ $0 \le b \le 7$	5					
Operation:		$0 \rightarrow (f < b >$	-)					
Status Affe	cted:	None						
Encoding:		1000	1bbb	fff	f	ffff		
Description	:	Bit 'b' in re	gister 'f' is	clear	ed.			
Words:		1	1					
Cycles:		1	1					
Q Cycle Ac	Q Cycle Activity:							
Q	1	Q2	Q3		Q4			
Deco	ode	Read register 'f'	Execute			Write gister 'f'		
Example:	Example:		FLAG_R	EG,	7			
After Ir	AG_RI	$\Xi G = 0xC7$						
FL.		_0 = 0,47						

INC	F	In	Increment f			
Synt	tax:	[/	[<i>label</i>] INCF f,d			
Operands:			0 ≤ f ≤ 255 d ∈ [0,1]			
Ope	ration:	(f)	+ 1 \rightarrow	(dest)		
Stat	us Affected:	0	V, C, D0	C, Z		
Enco	oding:		0001	010d	ffff	ffff
Description:			ented. If	'd' is 0 the	ster 'f' are e result is e result is p	placed in
Wor	ds:	1				
Cycl	es:	1				
Q Cycle Activity:						
	Q1		Q2	Q	3	Q4
	Decode		Read gister 'f'	Exec		Vrite to stination
<u>Exa</u>	<u>mple</u> :	IN	ICF	CNT,	1	
	Before Instru	uctior	า			
	CNT	=	0xFF			
	Z C	=	0 ?			
	After Instruct CNT Z C	tion = = =	0x00 1 1			

INCFSZ	Incremen	t f, skip	if O	
Syntax:	[label]	INCFSZ	f,d	
Operands:	0 ≤ f ≤ 255 d ∈ [0,1]	5		
Operation:	(f) + 1 \rightarrow (skip if resu			
Status Affected:	None			
Encoding:	0001	111d	ffff	ffff
Description:	The contents of register 'f' are in- mented. If 'd' is 0 the result is pla WREG. If 'd' is 1 the result is pla- back in register 'f'. If the result is 0, the next instruct which is already fetched, is disca and an NOP is executed instead of it a two-cycle instruction.			placed in blaced uction, scarded,
Words:	1			
Cycles:	1(2)			
Q Cycle Activity:				
Q1	Q2	Q3		Q4
Decode	Read register 'f'	Execu		Vrite to stination
lf skip:				
Q1	Q2	Q3		Q4
Forced NOP	NOP	Execu	te	NOP
Example:	NZERO	INCFSZ : :	CNT,	1
Before Instru PC		6 (HERE)		
After Instruc CNT If CNT PC If CNT PC	= CNT + 7 = 0; = Address ≠ 0;	1 S(ZERO) S(NZERO)	

NEGW	V	Negate W	
Syntax	K :	[<i>label</i>] NEGW f,s	;
Opera	nds:	0 ≤ F ≤ 255 s ∈ [0,1]	
Opera	tion:	$\frac{\overline{WREG}}{\overline{WREG}} + 1 \to (f);$ $\overline{WREG} + 1 \to s$	
Status	Affected:	OV, C, DC, Z	
Encod	ling:	0010 110s f	fff ffff
Description:		WREG is negated using ment. If 's' is 0 the resul WREG and data memo 's' is 1 the result is plac memory location 'f'.	t is placed in ry location 'f'. If
Words	:	1	
Cycles	3:	1	
Q Cyc	le Activity:		
	Q1	Q2 Q3	Q4
	Decode	Read Execute register 'f'	Write register 'f' and other specified register
Example:		NEGW REG, 0	
B	efore Instru WREG REG	ction = 0011 1010 [0x3A], = 1010 1011 [0xAB]	
At	fter Instruct WREG REG	ion = 1100 0111 [0xC6] = 1100 0111 [0xC6]	

NOF	2	No Operation					
Syntax:		[label]	NOP				
Ope	rands:	None	None				
Ope	ration:	No opera	tion				
Stat	us Affected:	None					
Enc	oding:	0000	0000	000	0	0000	
Des	cription:	No operation.					
Wor	ds:	1	1				
Cycl	es:	1	1				
Q Cycle Activity:							
	Q1	Q2	Q3			Q4	
	Decode	NOP	Exect	ute		NOP	

Example:

None.

Applicable Devices 42 R42 42A 43 R43 44

			Standard Operating Conditions (unless otherwise stated)					
			Operating temperature					
DC CHARA	CTERI	STICS	$-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial and					
					· ·		$TA \leq +70^{\circ}C$ for commercial	
			Operating	voltage	VDD rang	e as de	escribed in Section 17.1	
Parameter								
No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
		Output Low Voltage						
D080	VOL	I/O ports (except RA2 and RA3)	_	-	0.1VDD	V	IOL = 4 mA	
D081		with TTL buffer	_	_	0.4	V	IOL = 6 mA, VDD = 4.5V	
							Note 6	
D082		RA2 and RA3	_	_	3.0	V	IOL = 60.0 mA, VDD = 5.5V	
D083		OSC2/CLKOUT	_	_	0.4	v	IOL = 2 mA, VDD = 4.5 V	
2000		(RC and EC osc modes)			0			
		Output High Voltage (Note 3)						
D090	Vон	I/O ports (except RA2 and RA3)	0.9Vdd	_	_	v	IOH = -2 mA	
D091	VOIT	with TTL buffer	2.4				IOH = -6.0 mA, VDD = 4.5 V	
0001			2.7			v	Note 6	
D092		RA2 and RA3	_	_	12	v	Pulled-up to externally applied	
0032			_		12	v	voltage	
D093		OSC2/CLKOUT	2.4	_	_	v	IOH = -5 mA, VDD = 4.5 V	
0095		(RC and EC osc modes)	2.4			v	10H = -3 HA, VDD = 4.3V	
		Capacitive Loading Specs on						
		Output Pins						
D100	Conce				25 ++	~ Г	In EC or RC osc modes when	
0100	COSC2	OSC2 pin	_	-	25 ††	pF		
							OSC2 pin is outputting CLKOUT.	
							External clock is used to drive	
							OSC1.	
D101	Сю				50 ±±			
		All I/O pins and OSC2	_	-	50 ††	pF		
D400	0	(in RC mode)			400 41			
D102	CAD	System Interface Bus	-	-	100 ††	pF	In Microprocessor or	
		(PORTC, PORTD and PORTE)					Extended Microcontroller	
							mode	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

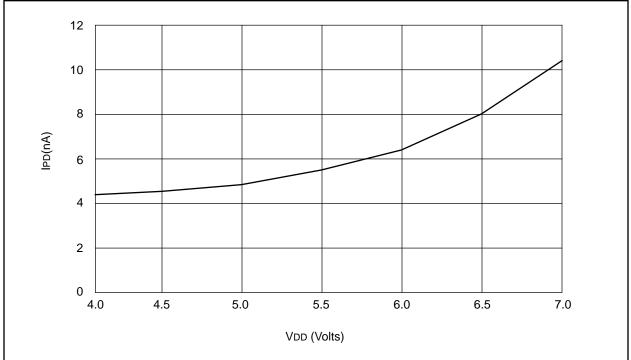
t These parameters are for design guidance only and are not tested, nor characterized.

the Design guidance to attain the AC timing specifications. These loads are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC17CXX devices be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.


4: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in: PIC17CXX Programming Specifications (Literature number DS30139).

5: The MCLR/Vpp pin may be kept in this range at times other than programming, but this is not recommended.

6: For TTL buffers, the better of the two specifications may be used.

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 18-9: TYPICAL IPD vs. VDD WATCHDOG DISABLED 25°C

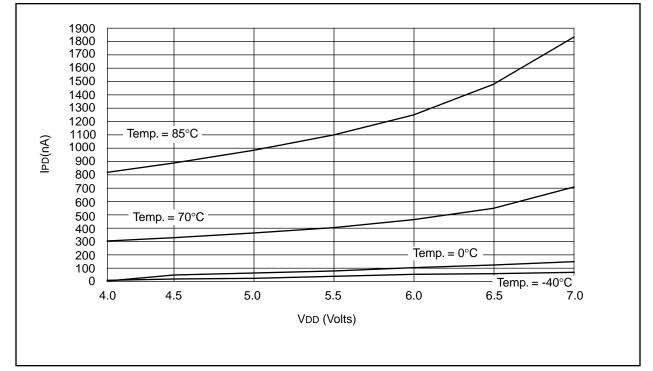


FIGURE 18-10: MAXIMUM IPD vs. VDD WATCHDOG DISABLED

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 18-13: WDT TIMER TIME-OUT PERIOD vs. VDD

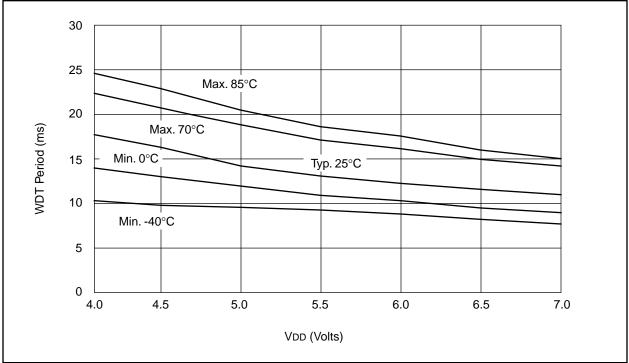
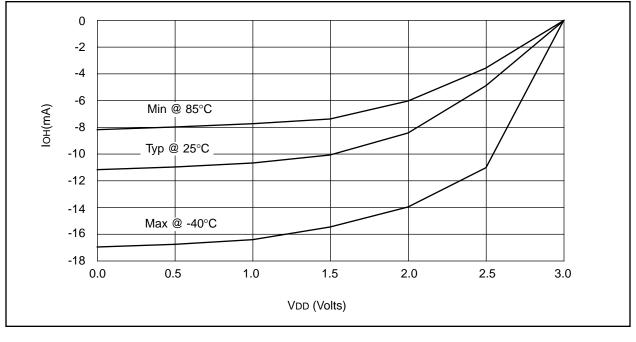
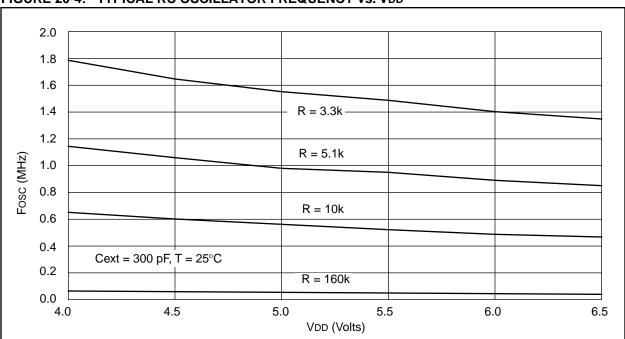




FIGURE 18-14: IOH vs. VOH, VDD = 3V

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 20-4: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

TABLE 20-2: RC OSCILLATOR FREQUENCIES

Cext	Rext	Average Fosc @ 5V, 25°C	
22 pF	10k	3.33 MHz	± 12%
	100k	353 kHz	± 13%
100 pF	3.3k	3.54 MHz	± 10%
	5.1k	2.43 MHz	± 14%
	10k	1.30 MHz	± 17%
	100k	129 kHz	± 10%
300 pF	3.3k	1.54 MHz	± 14%
	5.1k	980 kHz	± 12%
	10k	564 kHz	± 16%
	160k	35 kHz	± 18%

APPENDIX A: MODIFICATIONS

The following is the list of modifications over the PIC16CXX microcontroller family:

- Instruction word length is increased to 16-bit. This allows larger page sizes both in program memory (8 Kwords verses 2 Kwords) and register file (256 bytes versus 128 bytes).
- 2. Four modes of operation: microcontroller, protected microcontroller, extended microcontroller, and microprocessor.
- 22 new instructions. The MOVF, TRIS and OPTION instructions have been removed.
- 4. 4 new instructions for transferring data between data memory and program memory. This can be used to "self program" the EPROM program memory.
- Single cycle data memory to data memory transfers possible (MOVPF and MOVFP instructions). These instructions do not affect the Working register (WREG).
- 6. W register (WREG) is now directly addressable.
- 7. A PC high latch register (PCLATH) is extended to 8-bits. The PCLATCH register is now both readable and writable.
- 8. Data memory paging is redefined slightly.
- 9. DDR registers replaces function of TRIS registers.
- 10. Multiple Interrupt vectors added. This can decrease the latency for servicing the interrupt.
- 11. Stack size is increased to 16 deep.
- 12. BSR register for data memory paging.
- 13. Wake up from SLEEP operates slightly differently.
- 14. The Oscillator Start-Up Timer (OST) and Power-Up Timer (PWRT) operate in parallel and not in series.
- 15. PORTB interrupt on change feature works on all eight port pins.
- 16. TMR0 is 16-bit plus 8-bit prescaler.
- 17. Second indirect addressing register added (FSR1 and FSR2). Configuration bits can select the FSR registers to auto-increment, auto-decrement, remain unchanged after an indirect address.
- 18. Hardware multiplier added (8 x 8 \rightarrow 16-bit) (PIC17C43 and PIC17C44 only).
- 19. Peripheral modules operate slightly differently.
- 20. Oscillator modes slightly redefined.
- 21. Control/Status bits and registers have been placed in different registers and the control bit for globally enabling interrupts has inverse polarity.
- 22. Addition of a test mode pin.
- 23. In-circuit serial programming is not implemented.

APPENDIX B: COMPATIBILITY

To convert code written for PIC16CXX to PIC17CXX, the user should take the following steps:

- 1. Remove any TRIS and OPTION instructions, and implement the equivalent code.
- 2. Separate the interrupt service routine into its four vectors.
- 3. Replace:

4.

<pre>MOVF REG1, W with: MOVFP REG1, WREG Replace: MOVF REG1, W MOVWF REG2 with: MOVPF REG1, REG2 ; Addr(REG1)<20h or MOVFP REG1, REG2 ; Addr(REG2)<20h</pre>			
MOVFP REG1, WREG Replace: MOVF REG1, W MOVWF REG2 with: MOVPF REG1, REG2 ; Addr(REG1)<20h or	MOVF	REG1,	W
Replace: MOVF REG1, W MOVWF REG2 with: MOVPF REG1, REG2 ; Addr(REG1)<20h or	with:		
MOVF REG1, W MOVWF REG2 with: MOVPF REG1, REG2 ; Addr(REG1)<20h Or	MOVFP	REG1,	WREG
MOVWF REG2 with: MOVPF REG1, REG2 ; Addr(REG1)<20h Or	Replace:		
with: MOVPF REG1, REG2 ; Addr(REG1)<20h or	MOVF	REG1,	W
MOVPF REG1, REG2 ; Addr(REG1)<20h or	MOVWF	REG2	
or	with:		
	MOVPF	REG1,	REG2 ; Addr(REG1)<20h
MOVFP REG1, REG2 ; Addr(REG2)<20h	or		
	MOVFP	REG1,	REG2 ; Addr(REG2)<20h

Note: If REG1 and REG2 are both at addresses greater then 20h, two instructions are required. MOVFP REG1, WREG ; MOVPF WREG, REG2 ;

- 5. Ensure that all bit names and register names are updated to new data memory map location.
- 6. Verify data memory banking.
- 7. Verify mode of operation for indirect addressing.
- 8. Verify peripheral routines for compatibility.
- 9. Weak pull-ups are enabled on reset.

To convert code from the PIC17C42 to all the other PIC17C4X devices, the user should take the following steps.

- 1. If the hardware multiply is to be used, ensure that any variables at address 18h and 19h are moved to another address.
- 2. Ensure that the upper nibble of the BSR was not written with a non-zero value. This may cause unexpected operation since the RAM bank is no longer 0.
- 3. The disabling of global interrupts has been enhanced so there is no additional testing of the GLINTD bit after a BSF CPUSTA, GLINTD instruction.

^{© 1996} Microchip Technology Inc.