

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	8MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	8KB (4K x 16)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17lc43t-08-pq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PIC17CXX FAMILY OF DEVICES

Features		PIC17C42	PIC17CR42	PIC17C42A	PIC17C43	PIC17CR43	PIC17C44
Maximum Frequency of O	25 MHz	33 MHz	33 MHz	33 MHz	33 MHz	33 MHz	
Operating Voltage Range		4.5 - 5.5V	2.5 - 6.0V				
Program Memory x16	(EPROM)	2K	-	2K	4K	-	8K
	(ROM)	-	2K	-	-	4K	-
Data Memory (bytes)		232	232	232	454	454	454
Hardware Multiplier (8 x 8)	-	Yes	Yes	Yes	Yes	Yes
Timer0 (16-bit + 8-bit post	scaler)	Yes	Yes	Yes	Yes	Yes	Yes
Timer1 (8-bit)		Yes	Yes	Yes	Yes	Yes	Yes
Timer2 (8-bit)		Yes	Yes	Yes	Yes	Yes	Yes
Timer3 (16-bit)		Yes	Yes	Yes	Yes	Yes	Yes
Capture inputs (16-bit)		2	2	2	2	2	2
PWM outputs (up to 10-bit	t)	2	2	2	2 2 2		2
USART/SCI		Yes	Yes	Yes	Yes	Yes	Yes
Power-on Reset		Yes	Yes	Yes	Yes	Yes	Yes
Watchdog Timer		Yes	Yes	Yes	Yes	Yes	Yes
External Interrupts		Yes	Yes	Yes	Yes	Yes	Yes
Interrupt Sources		11	11	11	11	11	11
Program Memory Code P	rotect	Yes	Yes	Yes	Yes	Yes	Yes
I/O Pins		33	33	33	33	33	33
I/O High Current Capabil-	Source	25 mA					
ity	Sink	25 mA ⁽¹⁾					
Package Types		40-pin DIP					
		44-pin PLCC					
		44-pin MQFP					
			44-pin TQFP				

Note 1: Pins RA2 and RA3 can sink up to 60 mA.

NOTES:

9.2 PORTB and DDRB Registers

PORTB is an 8-bit wide bi-directional port. The corresponding data direction register is DDRB. A '1' in DDRB configures the corresponding port pin as an input. A '0' in the DDRB register configures the corresponding port pin as an output. Reading PORTB reads the status of the pins, whereas writing to it will write to the port latch.

Each of the PORTB pins has a weak internal pull-up. A single control bit can turn on all the pull-ups. This is done by clearing the $\overline{\text{RBPU}}$ (PORTA<7>) bit. The weak pull-up is automatically turned off when the port pin is configured as an output. The pull-ups are enabled on any reset.

PORTB also has an interrupt on change feature. Only pins configured as inputs can cause this interrupt to occur (i.e. any RB7:RB0 pin configured as an output is excluded from the interrupt on change comparison). The input pins (of RB7:RB0) are compared with the value in the PORTB data latch. The "mismatch" outputs of RB7:RB0 are OR'ed together to generate the PORTB Interrupt Flag RBIF (PIR<7>). This interrupt can wake the device from SLEEP. The user, in the interrupt service routine, can clear the interrupt by:

- a) Read-Write PORTB (such as; MOVPF PORTB, PORTB). This will end mismatch condition.
- b) Then, clear the RBIF bit.

A mismatch condition will continue to set the RBIF bit. Reading then writing PORTB will end the mismatch condition, and allow the RBIF bit to be cleared.

This interrupt on mismatch feature, together with software configurable pull-ups on this port, allows easy interface to a key pad and make it possible for wake-up on key-depression. For an example, refer to AN552 in the *Embedded Control Handbook*.

The interrupt on change feature is recommended for wake-up on operations where PORTB is only used for the interrupt on change feature and key depression operation.

FIGURE 9-4: BLOCK DIAGRAM OF RB<7:4> AND RB<1:0> PORT PINS

10.0 OVERVIEW OF TIMER RESOURCES

The PIC17C4X has four timer modules. Each module can generate an interrupt to indicate that an event has occurred. These timers are called:

- Timer0 16-bit timer with programmable 8-bit
- prescaler
- Timer1 8-bit timer
- Timer2 8-bit timer
- Timer3 16-bit timer

For enhanced time-base functionality, two input Captures and two Pulse Width Modulation (PWM) outputs are possible. The PWMs use the TMR1 and TMR2 resources and the input Captures use the TMR3 resource.

10.1 <u>Timer0 Overview</u>

The Timer0 module is a simple 16-bit overflow counter. The clock source can be either the internal system clock (Fosc/4) or an external clock.

The Timer0 module also has a programmable prescaler option. The PS3:PS0 bits (T0STA<4:1>) determine the prescaler value. TMR0 can increment at the following rates: 1:1, 1:2, 1:4, 1:8, 1:16, 1:32, 1:64, 1:128, 1:256.

When TImer0's clock source is an external clock, the Timer0 module can be selected to increment on either the rising or falling edge.

Synchronization of the external clock occurs after the prescaler. When the prescaler is used, the external clock frequency may be higher then the device's frequency. The maximum frequency is 50 MHz, given the high and low time requirements of the clock.

10.2 <u>Timer1 Overview</u>

The TImer0 module is an 8-bit timer/counter with an 8bit period register (PR1). When the TMR1 value rolls over from the period match value to 0h, the TMR1IF flag is set, and an interrupt will be generated when enabled. In counter mode, the clock comes from the RB4/TCLK12 pin, which can also be selected to be the clock for the Timer2 module.

TMR1 can be concatenated to TMR2 to form a 16-bit timer. The TMR1 register is the LSB and TMR2 is the MSB. When in the 16-bit timer mode, there is a corresponding 16-bit period register (PR2:PR1). When the TMR2:TMR1 value rolls over from the period match value to 0h, the TMR1IF flag is set, and an interrupt will be generated when enabled.

10.3 <u>Timer2 Overview</u>

The TMR2 module is an 8-bit timer/counter with an 8bit period register (PR2). When the TMR2 value rolls over from the period match value to 0h, the TMR2IF flag is set, and an interrupt will be generated when enabled. In counter mode, the clock comes from the RB4/TCLK12 pin, which can also be selected to be the clock for the TMR1 module.

TMR1 can be concatenated to TMR2 to form a 16-bit timer. The TMR2 register is the MSB and TMR1 is the LSB. When in the 16-bit timer mode, there is a corresponding 16-bit period register (PR2:PR1). When the TMR2:TMR1 value rolls over from the period match value to 0h, the TMR1IF flag is set, and an interrupt will be generated when enabled.

10.4 <u>Timer3 Overview</u>

The TImer3 module is a 16-bit timer/counter with a 16bit period register. When the TMR3H:TMR3L value rolls over to 0h, the TMR3IF bit is set and an interrupt will be generated when enabled. In counter mode, the clock comes from the RB5/TCLK3 pin.

When operating in the dual capture mode, the period registers become the second 16-bit capture register.

10.5 Role of the Timer/Counters

The timer modules are general purpose, but have dedicated resources associated with them. Tlmer1 and Timer2 are the time-bases for the two Pulse Width Modulation (PWM) outputs, while Timer3 is the timebase for the two input captures.

© 1996 Microchip Technology Inc.

12.1.2 TIMER1 & TIMER2 IN 16-BIT MODE

To select 16-bit mode, the T16 bit must be set. In this mode TMR1 and TMR2 are concatenated to form a 16-bit timer (TMR2:TMR1). The 16-bit timer increments until it matches the 16-bit period register (PR2:PR1). On the following timer clock, the timer value is reset to 0h, and the TMR1IF bit is set.

When selecting the clock source for the16-bit timer, the TMR1CS bit controls the entire 16-bit timer and TMR2CS is a "don't care." When TMR1CS is clear, the timer increments once every instruction cycle (Fosc/4). When TMR1CS is set, the timer increments on every falling edge of the RB4/TCLK12 pin. For the 16-bit timer to increment, both TMR1ON and TMR2ON bits must be set (Table 12-1).

12.1.2.1 EXTERNAL CLOCK INPUT FOR TMR1:TMR2

When TMR1CS is set, the 16-bit TMR2:TMR1 increments on the falling edge of clock input TCLK12. The input on the RB4/TCLK12 pin is sampled and synchronized by the internal phase clocks twice every instruction cycle. This causes a delay from the time a falling edge appears on RB4/TCLK12 to the time TMR2:TMR1 is actually incremented. For the external clock input timing requirements, see the Electrical Specification section.

TMR2ON	TMR10N	Result
1	1	16-bit timer (TMR2:TMR1) ON
0	1	Only TMR1 increments
x	0	16-bit timer OFF

FIGURE 12-4: TMR1 AND TMR2 IN 16-BIT TIMER/COUNTER MODE

TABLE 12-2: SUMMARY OF TIMER1 AND TIMER2 REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 3	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h, Bank 3	TCON2	CA2OVF	CA10VF	PWM2ON	PWM1ON	CA1/PR3	TMR3ON	TMR2ON	TMR10N	0000 0000	0000 0000
10h, Bank 2	TMR1	Timer1 reg	gister							xxxx xxxx	uuuu uuuu
11h, Bank 2	TMR2	Timer2 reg	gister							xxxx xxxx	uuuu uuuu
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
07h, Unbanked	INTSTA	PEIF	T0CKIF	T0IF	INTF	PEIE	T0CKIE	TOIE	INTE	0000 0000	0000 0000
06h, Unbanked	CPUSTA	_	-	STKAV	GLINTD	TO	PD	_	_	11 11	11 qq
14h, Bank 2	PR1	Timer1 pe	riod registe	r						xxxx xxxx	uuuu uuuu
15h, Bank 2	PR2	Timer2 pe	riod registe	r						xxxx xxxx	uuuu uuuu
10h, Bank 3	PW1DCL	DC1	DC0	—	_	—	—	—	—	xx	uu
11h, Bank 3	PW2DCL	DC1	DC0	TM2PW2		—	_	_	_	xx0	uu0
12h, Bank 3	PW1DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	xxxx xxxx	uuuu uuuu
13h, Bank 3	PW2DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	xxxx xxxx	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', q - value depends on condition,

shaded cells are not used by Timer1 or Timer2.

Note 1: Other (non power-up) resets include: external reset through MCLR and WDT Timer Reset.

13.0 UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (USART) MODULE

The USART module is a serial I/O module. The USART can be configured as a full duplex asynchronous system that can communicate with peripheral devices such as CRT terminals and personal computers, or it can be configured as a half duplex synchronous system that can communicate with peripheral devices such as A/D or D/A integrated circuits, Serial EEPROMs etc. The USART can be configured in the following modes:

- Asynchronous (full duplex)
- Synchronous Master (half duplex)
- Synchronous Slave (half duplex)

The SPEN (RCSTA<7>) bit has to be set in order to configure RA4 and RA5 as the Serial Communication Interface.

The USART module will control the direction of the RA4/RX/DT and RA5/TX/CK pins, depending on the states of the USART configuration bits in the RCSTA and TXSTA registers. The bits that control I/O direction are:

- SPEN
- TXEN
- SREN
- CREN
- CSRC

The Transmit Status And Control Register is shown in Figure 13-1, while the Receive Status And Control Register is shown in Figure 13-2.

D 4 4 4						D (D 4 4 4	
R/W - 0 CSRC	R/W - 0 TX9	R/W - 0 TXEN	R/W - 0 SYNC	<u>U-0</u>	<u>U-0</u>	<u>R - 1</u> TRMT	R/W - x TX9D	R = Readable bit
bit7	17.9	TALM	51110				bit0	W = Writable bit-n = Value at POR reset(x = unknown)
bit 7: CSRC: Clock Source Select bit <u>Synchronous mode:</u> 1 = Master Mode (Clock generated internally from BRG) 0 = Slave mode (Clock from external source) <u>Asynchronous mode:</u> Don't care								
bit 6:	TX9 : 9-bit 1 = Select 0 = Select	s 9-bit tra	nsmission					
bit 5:	TXEN : Tra 1 = Transr 0 = Transr SREN/CR	nit enable nit disable	d ed	in SYNC	mode			
bit 4:	SYNC: US (Synchror 1 = Synch 0 = Async	nous/Asyn Ironous m	chronous) ode					
bit 3-2:	Unimpler	nented: R	ead as '0'					
bit 1:	TRMT : Tra 1 = TSR e 0 = TSR fr	empty	ft Registe	r (TSR) Er	npty bit			
bit 0:	TX9D : 9th	bit of trar	emit data	(can be u	and to only	مطلا امملمان	nority in on	ft

FIGURE 13-1: TXSTA REGISTER (ADDRESS: 15h, BANK 0)

© 1996 Microchip Technology Inc.

FIGURE 13-5: ASYNCHRONOUS MASTER TRANSMISSION

FIGURE 13-6: ASYNCHRONOUS MASTER TRANSMISSION (BACK TO BACK)

TABLE 13-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
13h, Bank 0	RCSTA	SPEN	RX9	SREN	CREN	—	FERR	OERR	RX9D	x00- 0000	0000 -00u
16h, Bank 0	TXREG	Serial port	transmit re	egister						xxxx xxxx	uuuu uuuu
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	—	—	TRMT	TX9D	00001x	00001u
17h, Bank 0 SPBRG Baud rate generator register								xxxx xxxx	uuuu uuuu		

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used for asynchronous transmission.

Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

13.2.2 USART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 13-4. The data comes in the RA4/RX/DT pin and drives the data recovery block. The data recovery block is actually a high speed shifter operating at 16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at Fosc.

Once asynchronous mode is selected, reception is enabled by setting bit CREN (RCSTA<4>).

The heart of the receiver is the receive (serial) shift register (RSR). After sampling the stop bit, the received data in the RSR is transferred to the RCREG (if it is empty). If the transfer is complete, the interrupt bit RCIF (PIR<0>) is set. The actual interrupt can be enabled/disabled by setting/clearing the RCIE (PIE<0>) bit. RCIF is a read only bit which is cleared by the hardware. It is cleared when RCREG has been read and is empty. RCREG is a double buffered register; (i.e. it is a two deep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte begin shifting to the RSR. On detection of the stop bit of the third byte, if the RCREG is still full, then the overrun error bit, OERR (RCSTA<1>) will be set. The word in the RSR will be lost. RCREG can be read twice to retrieve the two bytes in the FIFO. The OERR bit has to be cleared in software which is done by resetting the receive logic (CREN is set). If the OERR bit is set, transfers from the RSR to RCREG are inhibited, so it is essential to clear the OERR bit if it is set. The framing error bit FERR (RCSTA<2>) is set if a stop bit is not detected.

FIGURE 13-7: RX PIN SAMPLING SCHEME

Note: The FERR and the 9th receive bit are buffered the same way as the receive data. Reading the RCREG register will allow the RX9D and FERR bits to be loaded with values for the next received Received data; therefore, it is essential for the user to read the RCSTA register before reading RCREG in order not to lose the old FERR and RX9D information.

13.2.3 SAMPLING

The data on the RA4/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RA4/RX/DT pin. The sampling is done on the seventh, eighth and ninth falling edges of a x16 clock (Figure 11-3).

The x16 clock is a free running clock, and the three sample points occur at a frequency of every 16 falling edges.

RX		Start bit	Bit0
(RA4/RX/DT pin) baud CLK	-	Baud CLK for all but start bit	
Jaud CLK	1		
x16 CLK		2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1	2 3
		Samples	

FIGURE 14-3: CRYSTAL OPERATION, OVERTONE CRYSTALS (XT OSC CONFIGURATION)

TABLE 14-2: CAPACITOR SELECTION FOR CERAMIC RESONATORS

Oscillator Type	Resonator Frequency	Capacitor Range C1 = C2
LF	455 kHz 2.0 MHz	15 - 68 pF 10 - 33 pF
ХТ	4.0 MHz 8.0 MHz 16.0 MHz	22 - 68 pF 33 - 100 pF 33 - 100 pF

Higher capacitance increases the stability of the oscillator but also increases the start-up time. These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.

Resonators Used:

455 kHz	Panasonic EFO-A455K04B	± 0.3%		
2.0 MHz	Murata Erie CSA2.00MG	± 0.5%		
4.0 MHz	Murata Erie CSA4.00MG	± 0.5%		
8.0 MHz	Murata Erie CSA8.00MT	± 0.5%		
16.0 MHz Murata Erie CSA16.00MX ± 0.5%				
Resonators used did not have built-in capacitors.				

TABLE 14-3:CAPACITOR SELECTION
FOR CRYSTAL OSCILLATOR

Osc Type	Freq	C1	C2
LF	32 kHz ⁽¹⁾	100-150 pF	100-150 pF
	1 MHz	10-33 pF	10-33 pF
	2 MHz	10-33 pF	10-33 pF
XT	2 MHz	47-100 pF	47-100 pF
	4 MHz	15-68 pF	15-68 pF
	8 MHz ⁽²⁾	15-47 pF	15-47 pF
	16 MHz	TBD	TBD
	25 MHz	15-47 pF	15-47 pF
	32 MHz ⁽³⁾	₀ (3)	₍₃₎

Higher capacitance increases the stability of the oscillator but also increases the start-up time and the oscillator current. These values are for design guidance only. Rs may be required in XT mode to avoid overdriving the crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values for external components.

- Note 1: For VDD > 4.5V, C1 = C2 \approx 30 pF is recommended.
 - Rs of 330Ω is required for a capacitor combination of 15/15 pF.
 - 3: Only the capacitance of the board was present.

Crystals Used:

32.768 kHz	Epson C-001R32.768K-A	± 20 PPM
1.0 MHz	ECS-10-13-1	\pm 50 PPM
2.0 MHz	ECS-20-20-1	\pm 50 PPM
4.0 MHz	ECS-40-20-1	± 50 PPM
8.0 MHz	ECS ECS-80-S-4	± 50 PPM
	ECS-80-18-1	
16.0 MHz	ECS-160-20-1	TBD
25 MHz	CTS CTS25M	\pm 50 PPM
32 MHz	CRYSTEK HF-2	\pm 50 PPM

14.2.3 EXTERNAL CLOCK OSCILLATOR

In the EC oscillator mode, the OSC1 input can be driven by CMOS drivers. In this mode, the OSC1/CLKIN pin is hi-impedance and the OSC2/CLK-OUT pin is the CLKOUT output (4 Tosc).

FIGURE 14-4: EXTERNAL CLOCK INPUT OPERATION (EC OSC CONFIGURATION)

14.2.4 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with series resonance, or one with parallel resonance.

Figure 14-5 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometer biases the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 14-5: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

Figure 14-6 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 14-6: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

14.2.5 RC OSCILLATOR

For timing insensitive applications, the RC device option offers additional cost savings. RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 14-6 shows how the R/C combination is connected to the PIC17CXX. For Rext values below 2.2 kQ, the oscillator operation may become unstable, or stop completely. For very high Rext values (e.g. 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend to keep Rext between 3 $k\Omega$ and 100 $k\Omega$.

Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With little or no external capacitance, oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

See Section 18.0 for RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

See Section 18.0 for variation of oscillator frequency due to VDD for given Rext/Cext values as well as frequency variation due to operating temperature for given R, C, and VDD values.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin, and can be used for test purposes or to synchronize other logic (see Figure 3-2 for waveform).

FIGURE 14-7: RC OSCILLATOR MODE

ADDLW	ADD Literal to WREG						
Syntax:	[label] A	DLW	k				
Operands:	$0 \le k \le 25$	5					
Operation:	(WREG) -	+ k \rightarrow (V	VREG)				
Status Affected:	s Affected: OV, C, DC, Z						
Encoding:	1011	0001	kkkk	kkkk			
Description:	The contents of WREG are added to the 8-bit literal 'k' and the result is placed in WREG.						
Words:	1						
Cycles:	1						
Q Cycle Activity:							
Q1	Q2	Q3	3	Q4			
Decode	Read literal 'k'	Execu		Write to WREG			
Example:	ADDLW	0x15					
Before Instruction WREG = 0x10							

ADDWF	ADD WRE	EG to f						
Syntax:	[<i>label</i>] A[[label]ADDWF f,d						
Operands:	$0 \le f \le 255$ $d \in [0,1]$	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \ [0,1] \end{array}$						
Operation:	(WREG) +	- (f) \rightarrow (de	est)					
Status Affected:	OV, C, DC	, Z						
Encoding:	0000	111d	ffff	ffff				
Description:	Add WREG result is sto result is sto	red in WRE	EG. If 'd'	is 1 the				
Words:	1							
Cycles:	1	1						
Q Cycle Activity:								
Q1	Q2	Q3		Q4				
Decode	Read register 'f'	Execute		/rite to stination				
Example:	ADDWF	REG, 0						
Before Instru WREG REG	iction = 0x17 = 0xC2							
After Instruct WREG REG	tion = 0xD9 = 0xC2							

After Instruction WREG = 0x25

RETFIE		Return from Interrupt						
Syntax:		[label]	RETFIE					
Operands	:	None						
Operation	:	$\begin{array}{l} TOS \rightarrow (I \\ 0 \rightarrow GLIN \\ PCLATH \end{array}$	ITD;	nged.				
Status Affe	ected:	GLINTD						
Encoding:		0000	0000	0000	0101			
Descriptio	n:	Return from and Top of PC. Interru the GLINT interrupt di	Stack (To pts are ei D bit. GLI	OS) is load nabled by NTD is the	ded in the clearing e global			
Words:		1						
Cycles:		2	2					
Q Cycle A	ctivity:							
(Q1	Q2	Q	3	Q4			
Dee	Decode		Exect	ute	NOP			
Force	d NOP	NOP	Exect	ute	NOP			
Example: RETFIE After Interrupt PC GLINTD								

RETL	w	Return Li	teral to WRI	EG		
Synta	ix:	[label]	RETLW k			
Opera	ands:	$0 \le k \le 25$	5			
Opera	ation:	•	$G; TOS \rightarrow unchanged$	• • •		
Status	s Affected:	None				
Enco	ding:	1011	0110 kk	kk kkkk		
Descr	ription:	WREG is loaded with the eight bit liter 'k'. The program counter is loaded fro the top of the stack (the return address The high address latch (PCLATH) remains unchanged.				
Words	s:	1				
Cycle	S:	2				
O Cvi	cle Activity:					
Q Oy	CIE ACTIVITY.					
Q 0 / (Q1	Q2	Q3	Q4		
	-	Q2 Read literal 'k'	Q3 Execute	Q4 Write to WREG		
	Q1	Read		Write to		
	Q1 Decode Forced NOP	Read literal 'k'	Execute	Write to WREG NOP		
F	Q1 Decode Forced NOP	Read literal 'k' NOP	Execute Execute BLE ; WREG co ; offset ; WREG n ; table C ; WREG = C ; Begin t ;	Write to WREG NOP		
Exam	Q1 Decode Forced NOP	Read literal 'k' NOP CALL TAN CALL TAN CALL TAN : TABLE ADDWF PC RETLW ki : : RETLW ki	Execute Execute BLE ; WREG co ; offset ; WREG n ; table C ; WREG = C ; Begin t ;	Write to WREG NOP		

SLEEP Enter SLEEP mode						
Syntax:	[label]	SLEEP				
Operands:	None					
$\begin{array}{llllllllllllllllllllllllllllllllllll$						
Status Affected	I: TO, PD					
Encoding:	0000	0000	0000	0011		
Description:	cleared. T set. Watch are cleare The proce	The power down status bit (\overline{PD}) is cleared. The time-out status bit (\overline{TO}) is set. Watchdog Timer and its prescaler are cleared. The processor is put into SLEEP mode with the oscillator stopped.				
Words:	1					
Cycles:	1					
Q Cycle Activit	y:					
Q1	Q2	Q3		Q4		
Decode	Read register PCLATH	Execute	e	NOP		
Example:	SLEEP					
Before Instruction $\overline{TO} = ?$ $\overline{PD} = ?$						
After Instru TO = PD = † If WDT caus	uction 1 † 0 ses wake-up, t	his bit is c	leared			

† If WDT causes wake-up, this bit is cleared

SUE	BLW	S	Subtract WREG from Literal					
Synt	tax:	[labe	/] :	SUBLW	k		
Ope	rands:	0	$\leq k$	≤ 2	55			
Ope	ration:	k	– (V	VRE	$\Xi G) \rightarrow (N)$	VRE	G)	
Stat	us Affected:	C	DV, C	, D	C, Z			
Enc	oding:	Γ	101	1	0010	kkł	k	kkkk
Des	cription:	li		k'. T	subtracte he result			e eight bit ⊢in
Wor	ds:	1						
Cycl	les:	1						
Q Cycle Activity:								
	Q1		Q2		Q3			Q4
	Decode	-	Read eral 'k	۲'	Execu	ite		Vrite to WREG
Exa	<u>mple 1</u> :	S	UBLW	1 (Ox02			
	Before Instru WREG C After Instruct WREG	= =	ר 1 ? 1					
<u>Exa</u>	C Z mple <u>2</u> :	=	1 0	; re	esult is po	ositive		
	Before Instru WREG C	ictior = =	ר 2 ?					
<u>Exa</u>	After Instruction WREG = 0 C = 1 ; result is zero Z = 1 Example 3:							
	Before Instru WREG C	ictior = =	ר 3 ?					
	After Instruct WREG C Z	tion = = =	FF 0 1		's comple esult is ne		·	

SUBWF	Sub	trac	t WREG	from	h f				
Syntax:	[lab	el]	SUBWF	f,d			-		
Operands:	-	f ≤ 25 [0,1]	55				:		
Operation:	(f) –	$(f) - (W) \rightarrow (dest)$							
Status Affected:	OV,	OV, C, DC, Z							
Encoding:	00	00	010d	fff	f	ffff	:		
Description:	com resu	Subtract WREG from register 'f' (2's complement method). If 'd' is 0 the result is stored in WREG. If 'd' is 1 the result is stored back in register 'f'.							
Words:	1								
Cycles:	1						,		
Q Cycle Activity:									
Q1	Qź		Q3	3		Q4			
Decode	Rea registe		Execu	ute		Vrite to stination			
			DECI	1	ue	Sunation			
Example 1:	SUB	NE	REG1,	T					
Before Instru REG1 WREG C	iction = 3 = 2 = ?						<u> </u>		
After Instruc REG1 WREG C Z	tion = 1 = 2 = 1 = 0	;	result is p	oositiv	e				
Example 2:									
Before Instru REG1 WREG C	uction = 2 = 2 = ?						<u> </u>		
After Instruc REG1 WREG C Z	tion = 0 = 2 = 1 = 1	;	result is z	zero					
Example 3:									
Before Instru REG1 WREG C	uction = 1 = 2 = ?						ļ		
After Instruc REG1 WREG C Z	tion = FI = 2 = 0 = 0		result is r	negativ	ve				

SUBWFB	•••••	Subtract WREG from f with				
Syntax:	Borro Labe	ow /] SUBWF	B fd			
Operands:	-	≤ 255	J 1,u			
Operands.	d ∈ [(D,1]				
Operation:	(f) — ($(W) - \overline{C} \rightarrow ($	dest)			
Status Affected	I: OV, C	C, DC, Z				
Encoding:	000	0 001d	ffff	ffff		
Description:	(borro ment storec	act WREG ar w) from regis method). If 'd I in WREG. If I back in regi	ter 'f' (2's ' is 0 the 'd' is 1 th	s comple- result is		
Words:	1					
Cycles:	1					
Q Cycle Activity	y:					
Q1	Q2	Q	3	Q4		
Decode	Read register			Write to destination		
Example 1:	SUBWI	FB REG1,	1			
Before Inst	truction					
REG1 WREG C	-	0x19 (0001 1001) 0x0D (0000 1101) 1				
After Instru	uction					
REG1 WREG C	= 1	D (0000	()			
Z	= 0					
Example2:	SUBWF1	B REG1,0				
Before Insi REG1 WREG C	= 0x1	(1011) 1010)			
After Instru	uction					
REG1 WREG	= 0x1	•	1011)			
C Z	i = 0x0 = 1 = 1		t is zero			
Example3:	SUBWFI	B REG1,1				
Before Inst REG1 WREG C	= 0x0		0011) 1101)			
After Instru REG1 WREG C Z	= 0xF)E (0000	0100) 1101) t is nega	[2's comp] tive		

Applicable Devices 42 R42 42A 43 R43 44

	Standard Operating Conditions (unless otherwise stated)							
			Operating	tempera				
DC CHARA	CTERI	STICS					$TA \leq +85^{\circ}C$ for industrial and	
					· ·		$TA \leq +70^{\circ}C$ for commercial	
			Operating	voltage	VDD rang	e as de	escribed in Section 17.1	
Parameter								
No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
		Output Low Voltage						
D080	VOL	I/O ports (except RA2 and RA3)	_	-	0.1VDD	V	IOL = 4 mA	
D081		with TTL buffer	_	_	0.4	V	IOL = 6 mA, VDD = 4.5V	
							Note 6	
D082		RA2 and RA3	_	_	3.0	V	IOL = 60.0 mA, VDD = 5.5V	
D083		OSC2/CLKOUT	_	_	0.4	v	IOL = 2 mA, VDD = 4.5 V	
2000		(RC and EC osc modes)			0			
		Output High Voltage (Note 3)						
D090	Vон	I/O ports (except RA2 and RA3)	0.9Vdd	_	_	v	IOH = -2 mA	
D091	VOIT	with TTL buffer	2.4				IOH = -6.0 mA, VDD = 4.5 V	
0001			2.7			v	Note 6	
D092		RA2 and RA3	_	_	12	v	Pulled-up to externally applied	
0092			_		12	v	voltage	
D093		OSC2/CLKOUT	2.4	_	_	v	IOH = -5 mA, VDD = 4.5 V	
0095		(RC and EC osc modes)	2.4			v	10H = -3 HA, VDD = 4.3V	
		Capacitive Loading Specs on						
		Output Pins						
D100	Conce				25 ++	~ Г	In EC or RC osc modes when	
0100	COSC2	OSC2 pin	_	-	25 ††	pF		
							OSC2 pin is outputting CLKOUT.	
							External clock is used to drive	
							OSC1.	
D101	Сю				50 ±±			
		All I/O pins and OSC2	_	-	50 ††	pF		
D400	0	(in RC mode)			400 41			
D102	CAD	System Interface Bus	-	-	100 ††	pF	In Microprocessor or	
		(PORTC, PORTD and PORTE)					Extended Microcontroller	
							mode	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

the Design guidance to attain the AC timing specifications. These loads are not tested.

Note 1: In RC oscillator configuration, the OSC1 pin is a Schmitt Trigger input. It is not recommended that the PIC17CXX devices be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in: PIC17CXX Programming Specifications (Literature number DS30139).

5: The MCLR/Vpp pin may be kept in this range at times other than programming, but this is not recommended.

6: For TTL buffers, the better of the two specifications may be used.

Applicable Devices 42 R42 42A 43 R43 44

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 19-1: PARAMETER MEASUREMENT INFORMATION

All timings are measure between high and low measurement points as indicated in the figures below.

Applicable Devices 42 R42 42A 43 R43 44

TABLE 19-11: MEMORY INTERFACE WRITE REQUIREMENTS (NOT SUPPORTED IN PIC17LC4X DEVICES)

Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions
150	TadV2alL	AD<15:0> (address) valid to ALE↓ (address setup time)	0.25Tcy - 10		_	ns	
151	TalL2adI	ALE↓ to address out invalid (address hold time)	0	_	—	ns	
152	TadV2wrL	Data out valid to $\overline{WR} \downarrow$ (data setup time)	0.25Tcy - 40	_	_	ns	
153	TwrH2adl	WR↑ to data out invalid (data hold time)	_	0.25Tcy §	_	ns	
154	TwrL	WR pulse width	—	0.25Tcy §	—	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 20-2: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

FIGURE 20-3: TYPICAL RC OSCILLATOR FREQUENCY vs. VDD

NOTES: