

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product StatusObsoleteCore ProcessorPICCore Size8-BitSpeed8MHz	
Core Size 8-Bit	
Speed 8MHz	
Connectivity UART/USART	
Peripherals POR, PWM, WDT	
Number of I/O 33	
Program Memory Size 8KB (4K x 16)	
Program Memory Type OTP	
EEPROM Size -	
RAM Size 454 x 8	
Voltage - Supply (Vcc/Vdd) 2.5V ~ 6V	
Data Converters -	
Oscillator Type External	
Operating Temperature -40°C ~ 85°C (TA)	
Mounting Type Surface Mount	
Package / Case 44-LCC (J-Lead)	
Supplier Device Package44-PLCC (16.59x16.59)	
Purchase URL https://www.e-xfl.com/product-detail/microchip-technology	y/pic17lc43t-08i-l

Email: info@E-XFL.COM

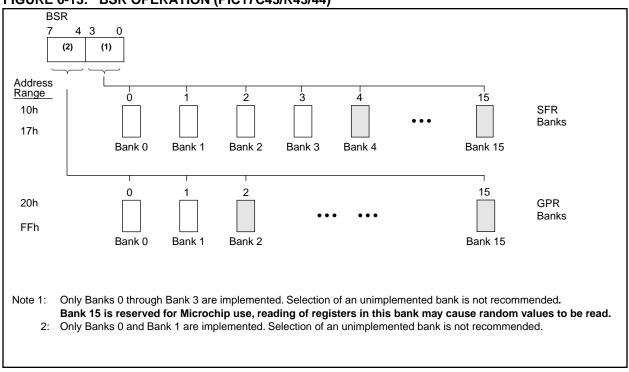
Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PIC17CXX FAMILY OF DEVICES

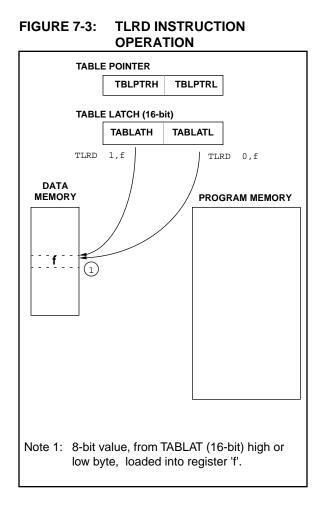
Features		PIC17C42	PIC17CR42	PIC17C42A	PIC17C43	PIC17CR43	PIC17C44
Maximum Frequency of O	peration	25 MHz	33 MHz	33 MHz	33 MHz	33 MHz	33 MHz
Operating Voltage Range		4.5 - 5.5V	2.5 - 6.0V	2.5 - 6.0V 2.5 - 6.0V 2.5		2.5 - 6.0V	2.5 - 6.0V
Program Memory x16	(EPROM)	2K	-	2K	4K	-	8K
	(ROM)	-	2K	-	-	4K	-
Data Memory (bytes)		232	232	232	454	454	454
Hardware Multiplier (8 x 8)	-	Yes	Yes	Yes	Yes	Yes
Timer0 (16-bit + 8-bit post	scaler)	Yes	Yes	Yes	Yes	Yes	Yes
Timer1 (8-bit)		Yes	Yes	Yes	Yes	Yes	Yes
Timer2 (8-bit)		Yes	Yes	Yes	Yes	Yes	Yes
Timer3 (16-bit)		Yes	Yes	Yes	Yes Yes		Yes
Capture inputs (16-bit)		2	2	2	2	2	2
PWM outputs (up to 10-bit	t)	2	2	2	2	2	2
USART/SCI		Yes	Yes	Yes	Yes	Yes	Yes
Power-on Reset		Yes	Yes	Yes	s Yes Yes		Yes
Watchdog Timer		Yes	Yes	Yes	Yes Yes		Yes
External Interrupts		Yes	Yes	Yes	Yes	Yes	Yes
Interrupt Sources		11	11	11	11	11	11
Program Memory Code P	rotect	Yes	Yes	Yes	Yes	Yes	Yes
I/O Pins		33	33	33	33	33	33
I/O High Current Capabil-	Source	25 mA	25 mA	25 mA	25 mA	25 mA	25 mA
ity Sink 25 mA ⁽¹⁾ 25 mA ⁽¹⁾ 25 mA ⁽¹⁾		25 mA ⁽¹⁾	25 mA ⁽¹⁾	25 mA ⁽¹⁾	25 mA ⁽¹⁾		
Package Types		40-pin DIP	40-pin DIP	40-pin DIP			40-pin DIP
		44-pin PLCC	44-pin PLCC	44-pin PLCC 44-pin PL		44-pin PLCC	44-pin PLCC
		44-pin MQFP	44-pin MQFP			44-pin MQFP	44-pin MQFP
			44-pin TQFP	44-pin TQFP	44-pin TQFP	44-pin TQFP	44-pin TQFP

Note 1: Pins RA2 and RA3 can sink up to 60 mA.

NOTES:


6.8 Bank Select Register (BSR)

The BSR is used to switch between banks in the data memory area (Figure 6-13). In the PIC17C42, PIC17CR42, and PIC17C42A only the lower nibble is implemented. While in the PIC17C43, PIC17CR43, and PIC17C44 devices, the entire byte is implemented. The lower nibble is used to select the peripheral register bank. The upper nibble is used to select the general purpose memory bank.


All the Special Function Registers (SFRs) are mapped into the data memory space. In order to accommodate the large number of registers, a banking scheme has been used. A segment of the SFRs, from address 10h to address 17h, is banked. The lower nibble of the bank select register (BSR) selects the currently active "peripheral bank." Effort has been made to group the peripheral registers of related functionality in one bank. However, it will still be necessary to switch from bank to bank in order to address all peripherals related to a single task. To assist this, a MOVLB bank instruction is in the instruction set. For the PIC17C43, PIC17CR43, and PIC17C44 devices, the need for a large general purpose memory space dictated a general purpose RAM banking scheme. The upper nibble of the BSR selects the currently active general purpose RAM bank. To assist this, a MOVLR bank instruction has been provided in the instruction set.

If the currently selected bank is not implemented (such as Bank 13), any read will read all '0's. Any write is completed to the bit bucket and the ALU status bits will be set/cleared as appropriate.

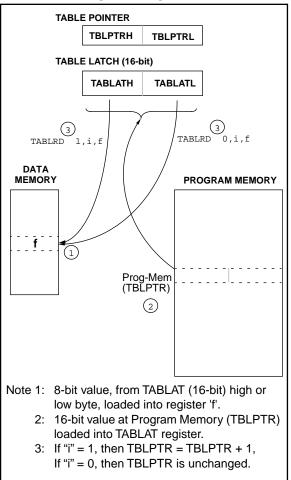
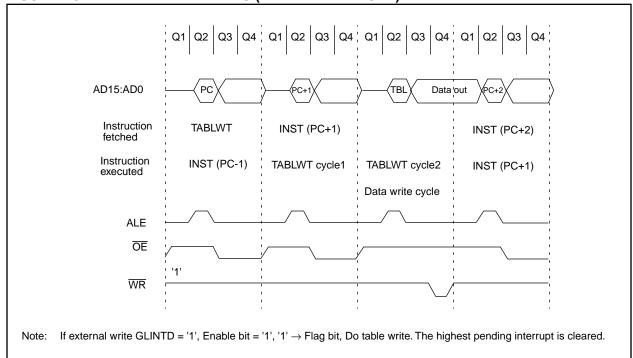

Note: Registers in Bank 15 in the Special Function Register area, are reserved for Microchip use. Reading of registers in this bank may cause random values to be read.

FIGURE 6-13: BSR OPERATION (PIC17C43/R43/44)

FIGURE 7-4: TABLRD INSTRUCTION OPERATION

7.2 <u>Table Writes to External Memory</u>

Table writes to external memory are always two-cycle instructions. The second cycle writes the data to the external memory location. The sequence of events for an external memory write are the same for an internal write.


Note:	If an interrupt is pending or occurs during the TABLWT, the two cycle table write
	completes. The RA0/INT, TMR0, or T0CKI
	interrupt flag is automatically cleared or
	the pending peripheral interrupt is
	acknowledged.

7.2.2 TABLE WRITE CODE

The "i" operand of the TABLWT instruction can specify that the value in the 16-bit TBLPTR register is automatically incremented for the next write. In Example 7-1, the TBLPTR register is not automatically incremented.

EXAMPLE 7-1: TABLE WRITE

CLRWDT		;	Clear WDT
MOVLW	HIGH (TBL_ADDR)	;	Load the Table
MOVWF	TBLPTRH	;	address
MOVLW	LOW (TBL_ADDR)	;	
MOVWF	TBLPTRL	;	
MOVLW	HIGH (DATA)	;	Load HI byte
TLWT	1, WREG	;	in TABLATCH
MOVLW	LOW (DATA)	;	Load LO byte
TABLWT	0,0,WREG	;	in TABLATCH
		;	and write to
		;	program memory
		;	(Ext. SRAM)

FIGURE 7-5: TABLWT WRITE TIMING (EXTERNAL MEMORY)

NOTES:

13.1 USART Baud Rate Generator (BRG)

The BRG supports both the Asynchronous and Synchronous modes of the USART. It is a dedicated 8-bit baud rate generator. The SPBRG register controls the period of a free running 8-bit timer. Table 13-1 shows the formula for computation of the baud rate for different USART modes. These only apply when the USART is in synchronous master mode (internal clock) and asynchronous mode.

Given the desired baud rate and Fosc, the nearest integer value between 0 and 255 can be calculated using the formula below. The error in baud rate can then be determined.

TABLE 13-1: BAUD RATE FORMULA

SYNC	Mode	Baud Rate
0	Asynchronous	Fosc/(64(X+1))
1	Synchronous	Fosc/(4(X+1))

X = value in SPBRG (0 to 255)

Example 13-1 shows the calculation of the baud rate error for the following conditions:

Fosc = 16 MHz Desired Baud Rate = 9600 SYNC = 0

EXAMPLE 13-1: CALCULATING BAUD RATE ERROR

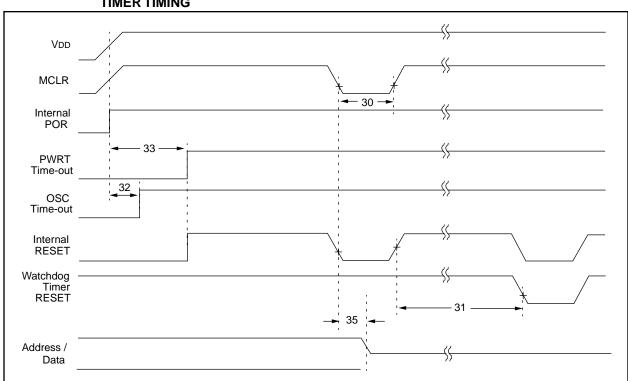
Desired Baud rate=Fosc / (64 (X + 1))

 $9600 = \frac{16000000}{(64 (X + 1))}$

X = 25.042 = 25

Calculated Baud Rate=16000000 / (64 (25 + 1))

= 9615


- Error = <u>(Calculated Baud Rate Desired Baud Rate)</u> Desired Baud Rate
 - = (9615 9600) / 9600
 - = 0.16%

Writing a new value to the SPBRG, causes the BRG timer to be reset (or cleared), this ensures that the BRG does not wait for a timer overflow before outputting the new baud rate.

TABLE 13-2: REGISTERS ASSOCIATED WITH BAUD RATE GENERATOR

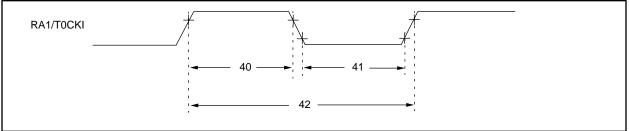
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
13h, Bank 0	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00u
15h, Bank 0	TXSTA	CSRC	CSRC TX9 TXEN SYNC TRMT TX9D								00001u
17h, Bank 0	17h, Bank 0 SPBRG Baud rate generator register									xxxx xxxx	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used by the Baud Rate Generator. $Note 1: Other (non power-up) resets include: external reset through <math>\overline{MCLR}$ and Watchdog Timer Reset.

FIGURE 17-4: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP TIMER TIMING

TABLE 17-4:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER AND POWER-UP
TIMER REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
30	TmcL	MCLR Pulse Width (low)	100 *	_		ns	
31	Twdt	Watchdog Timer Time-out Period (Prescale = 1)	5 *	12	25 *	ms	
32	Tost	Oscillation Start-up Timer Period		1024 Tosc §		ms	Tosc = OSC1 period
33	Tpwrt	Power-up Timer Period	40 *	96	200 *	ms	
35	TmcL2adI	MCLR to System Interface bus (AD15:AD0) invalid	_	—	100 *	ns	


* These parameters are characterized but not tested.

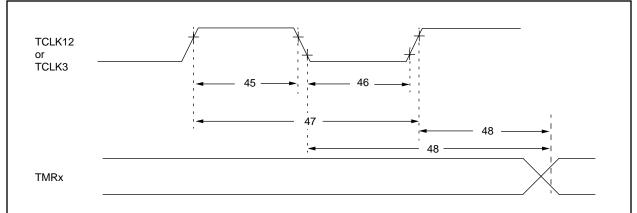
† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

§ This specification ensured by design.

FIGURE 17-5: TIMER0 CLOCK TIMINGS

TABLE 17-5: TIMER0 CLOCK REQUIREMENTS


Parameter								
No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5TCY + 20 §	—	_	ns	
			With Prescaler	10*	—	—	ns	
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5Tcy + 20 §	—	—	ns	
			With Prescaler	10*	—	—	ns	
42	Tt0P	T0CKI Period	·	<u>Tcy + 40</u> §	—	—	ns	N = prescale value
				N				(1, 2, 4,, 256)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

FIGURE 17-6: TIMER1, TIMER2, AND TIMER3 CLOCK TIMINGS

TABLE 17-6: TIMER1, TIMER2, AND TIMER3 CLOCK REQUIREMENTS

Parameter				Тур			
No.	Sym	Characteristic	Min	†	Max	Units	Conditions
45	Tt123H	TCLK12 and TCLK3 high time	0.5 TCY + 20 §		_	ns	
46	Tt123L	TCLK12 and TCLK3 low time	0.5 TCY + 20 §			ns	
47	Tt123P	TCLK12 and TCLK3 input period	<u>Tcy + 40</u> § N			ns	N = prescale value (1, 2, 4, 8)
48	TckE2tmrl	Delay from selected External Clock Edge to Timer increment	2Tosc §		6 Tosc §	_	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

19.1 DC CHARACTERISTICS:

PIC17CR42/42A/43/R43/44-16 (Commercial, Industrial) PIC17CR42/42A/43/R43/44-25 (Commercial, Industrial) PIC17CR42/42A/43/R43/44-33 (Commercial, Industrial)

DC CHARACI	FEDIOTI	<u></u>	Standard Operating Conditions (unless otherwise stated) Operating temperature							
DC CHARACI	ERISTI	63				-40°C				
		i				0°C	\leq TA \leq +70°C for commercial			
Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions			
D001	Vdd	Supply Voltage	4.5	-	6.0	V				
D002	Vdr	RAM Data Retention Voltage (Note 1)	1.5 *	-	-	V	Device in SLEEP mode			
D003	VPOR	VDD start voltage to ensure internal Power-on Reset signal	_	Vss	-	V	See section on Power-on Reset for details			
D004	Svdd	VDD rise rate to ensure internal Power-on Reset signal	0.060 *	_	_	mV/ms	See section on Power-on Reset for details			
D010	IDD	Supply Current	_	3	6	mA	Fosc = 4 MHz (Note 4)			
D011		(Note 2)	_	6	12 *	mA	Fosc = 8 MHz			
D012			-	11	24 *	mA	Fosc = 16 MHz			
D013			-	19	38	mA	Fosc = 25 MHz			
D015			-	25	50	mA	Fosc = 33 MHz			
D014			-	95	150	μA	Fosc = 32 kHz,			
							WDT enabled (EC osc configuration)			
D020	IPD	Power-down	_	10	40	μA	VDD = 5.5V, WDT enabled			
D021		Current (Note 3)	-	< 1	5	μA	VDD = 5.5V, WDT disabled			

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in SLEEP mode without losing RAM data.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as I/O pin loading and switching rate, oscillator type, internal code execution pattern, and temperature also have an impact on the current consumption.

The test conditions for all IDD measurements in active operation mode are:

OSC1 = external square wave, from rail to rail; all I/O pins tristated, pulled to VDD or VSS, T0CKI = VDD, \overline{MCLR} = VDD; WDT enabled/disabled as specified.

Current consumed from the oscillator and I/O's driving external capacitive or resistive loads needs to be considered.

For the RC oscillator, the current through the external pull-up resistor (R) can be estimated as: $VDD / (2 \bullet R)$. For capacitive loads, the current can be estimated (for an individual I/O pin) as (CL • VDD) • f

CL = Total capacitive load on the I/O pin; f = average frequency the I/O pin switches.

The capacitive currents are most significant when the device is configured for external execution (includes extended microcontroller mode).

- 3: The power down current in SLEEP mode does not depend on the oscillator type. Power-down current is measured with the part in SLEEP mode, with all I/O pins in hi-impedance state and tied to VDD and Vss.
- 4: For RC osc configuration, current through Rext is not included. The current through the resistor can be estimated by the formula IR = VDD/2Rext (mA) with Rext in kOhm.

19.3 DC CHARACTERISTICS:

PIC17CR42/42A/43/R43/44-16 (Commercial, Industrial) PIC17CR42/42A/43/R43/44-25 (Commercial, Industrial) PIC17CR42/42A/43/R43/44-33 (Commercial, Industrial) PIC17LCR42/42A/43/R43/44-08 (Commercial, Industrial)

Standard Operating Conditions (unless otherwise stated) Operating temperature

DC CHARACTERISTICS

-40°C \leq TA \leq +85°C for industrial and 0°C \leq TA \leq +70°C for commercial

	$0^{\circ}C \leq TA \leq +70^{\circ}C$ for commercial Operating voltage VDD range as described in Section 19.1							
Demonst		1	Operating v	oitage VI	טט range a	is desc	cribed in Section 19.1	
Parameter No.	Sym	Characteristic	Min	Тур†	Мах	Units	Conditions	
		Input Low Voltage						
	VIL	I/O ports						
D030		with TTL buffer	Vss	-	0.8	V	$4.5V \le VDD \le 5.5V$	
			Vss	-	0.2Vdd	V	$2.5V \le VDD \le 4.5V$	
D031		with Schmitt Trigger buffer	Vss	-	0.2Vdd	V		
D032		MCLR, OSC1 (in EC and RC mode)	Vss	-	0.2Vdd	V	Note1	
D033		OSC1 (in XT, and LF mode)	-	0.5Vdd	_	V		
		Input High Voltage						
	VIH	I/O ports						
D040		with TTL buffer	2.0	-	Vdd	V	$4.5V \le VDD \le 5.5V$	
			1+0.2VDD	-	Vdd	V	$2.5V \le VDD \le 4.5V$	
D041		with Schmitt Trigger buffer	0.8Vdd	-	Vdd	V		
D042		MCLR	0.8Vdd	_	Vdd	V	Note1	
D043		OSC1 (XT, and LF mode)	-	0.5Vdd	_	V		
D050	VHYS	Hysteresis of	0.15Vdd *	_	-	V		
		Schmitt Trigger inputs						
		Input Leakage Current						
Daga		(Notes 2, 3)						
D060	lı∟	I/O ports (except RA2, RA3)	_	_	±1	μΑ	Vss ≤ VPIN ≤ VDD, I/O Pin at hi-impedance PORTB weak pull-ups disabled	
D061		MCLR	-	-	<u>+2</u>	μA	VPIN = Vss or VPIN = VDD	
D062		RA2, RA3			±2	μA	$Vss \le Vra2$, $Vra3 \le 12V$	
D063		OSC1, TEST (EC, RC modes)	-	-	±1	μA	$Vss \le VPIN \le VDD$	
D063B		OSC1, TEST (XT, LF modes)	-	-	VPIN	μA	$R_F \ge 1 M\Omega$, see Figure 14.2	
D064		MCLR	-	-	10	μA	VMCLR = VPP = 12V (when not programming)	
D070	IPURB	PORTB weak pull-up current	60	200	400	μA	VPIN = VSS, $\overline{\text{RBPU}} = 0$ 4.5V \leq VDD \leq 6.0V	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

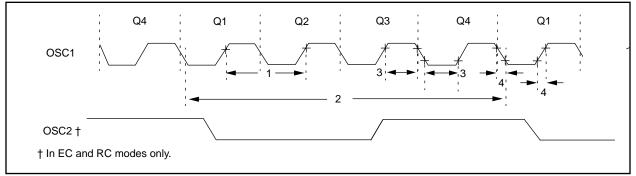
t These parameters are for design guidance only and are not tested, nor characterized.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC17CXX devices be driven with external clock in RC mode.

The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.
 Negative current is defined as coming out of the pin.

3: Negative current is defined as coming out of the pin.

4: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in: PIC17CXX Programming Specifications (Literature number DS30139).


5: The MCLR/VPP pin may be kept in this range at times other than programming, but is not recommended.

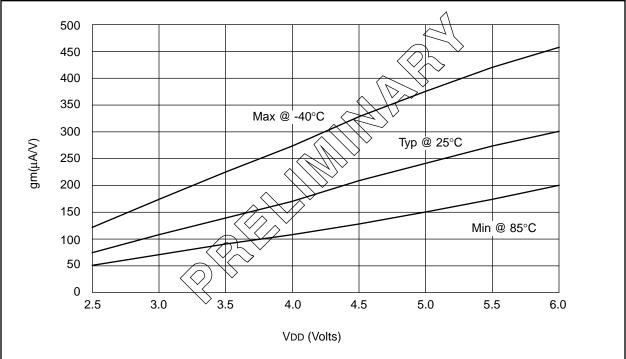
6: For TTL buffers, the better of the two specifications may be used.

Applicable Devices 42 R42 42A 43 R43 44

19.5 <u>Timing Diagrams and Specifications</u>

FIGURE 19-2: EXTERNAL CLOCK TIMING

TABLE 19-2: EXTERNAL CLOCK TIMING REQUIREMENTS


Param No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
	Fosc	External CLKIN Frequency	DC	_	8	MHz	EC osc mode - 08 devices (8 MHz devices)
		(Note 1)	DC	_	16	MHz	- 16 devices (16 MHz devices)
		(DC	_	25	MHz	- 25 devices (25 MHz devices)
			DC	—	33	MHz	- 33 devices (33 MHz devices)
		Oscillator Frequency	DC	_	4	MHz	RC osc mode
		(Note 1)	1	_	8	MHz	XT osc mode - 08 devices (8 MHz devices)
			1	_	16	MHz	- 16 devices (16 MHz devices)
			1	_	25	MHz	- 25 devices (25 MHz devices)
			1	_	33	MHz	- 33 devices (33 MHz devices)
			DC	—	2	MHz	LF osc mode
1	Tosc	External CLKIN Period	125	_	—	ns	EC osc mode - 08 devices (8 MHz devices)
		(Note 1)	62.5	_	—	ns	- 16 devices (16 MHz devices)
			40	_	—	ns	- 25 devices (25 MHz devices)
			30.3	—	—	ns	- 33 devices (33 MHz devices)
		Oscillator Period	250	_	—	ns	RC osc mode
		(Note 1)	125	_	1,000	ns	XT osc mode - 08 devices (8 MHz devices)
			62.5	_	1,000	ns	- 16 devices (16 MHz devices)
			40	—	1,000	ns	 - 25 devices (25 MHz devices)
			30.3	—	1,000	ns	- 33 devices (33 MHz devices)
			500	—	—	ns	LF osc mode
2	Тсү	Instruction Cycle Time (Note 1)	121.2	4/Fosc	DC	ns	
3	TosL,	Clock in (OSC1)	10 ±	_	_	ns	EC oscillator
	TosH	high or low time	· '				
4	TosR,	Clock in (OSC1)	_	_	5‡	ns	EC oscillator
	TosF	rise or fall time					

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

Note 1: Instruction cycle period (TcY) equals four times the input oscillator time base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKIN pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

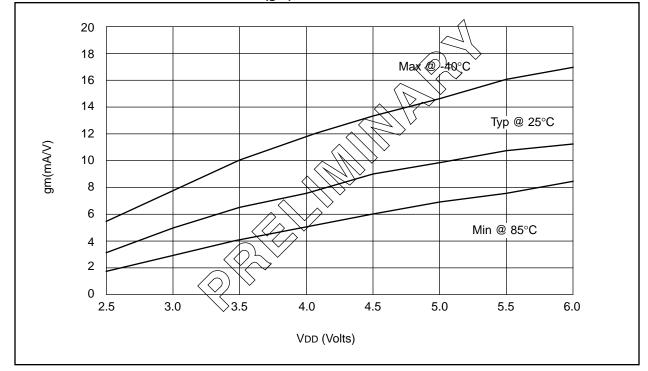
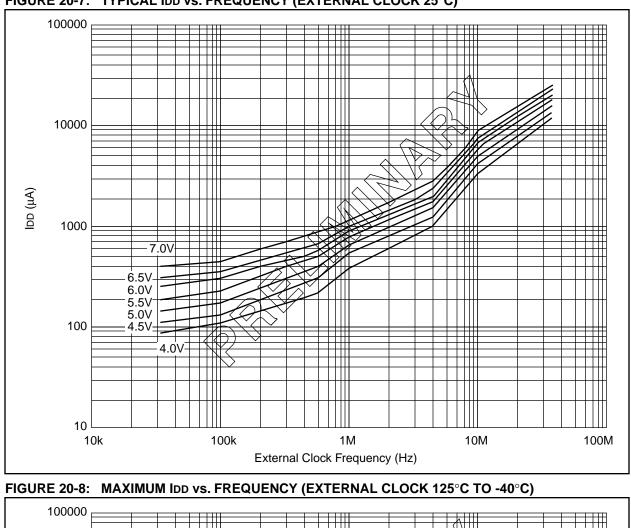
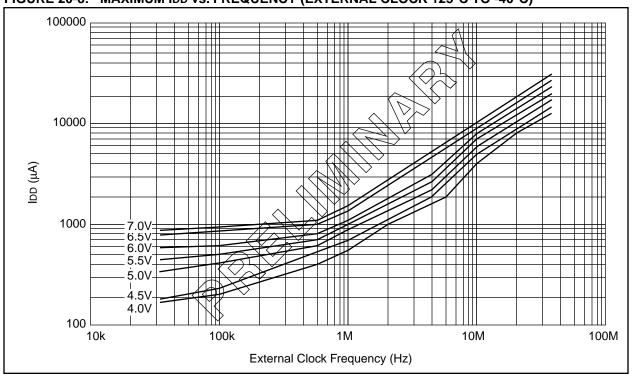
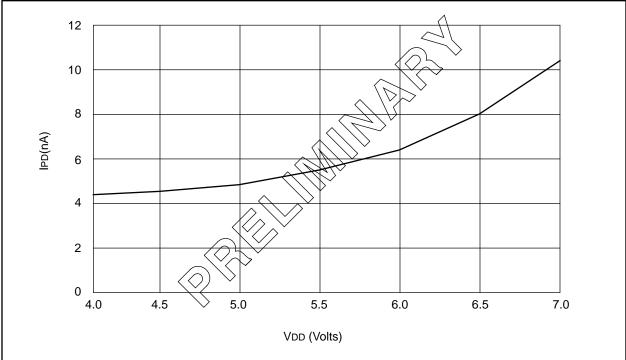




FIGURE 20-6: TRANSCONDUCTANCE (gm) OF XT OSCILLATOR vs. VDD



Applicable Devices 42 R42 42A 43 R43 44

FIGURE 20-9: TYPICAL IPD vs. VDD WATCHDOG DISABLED 25°C

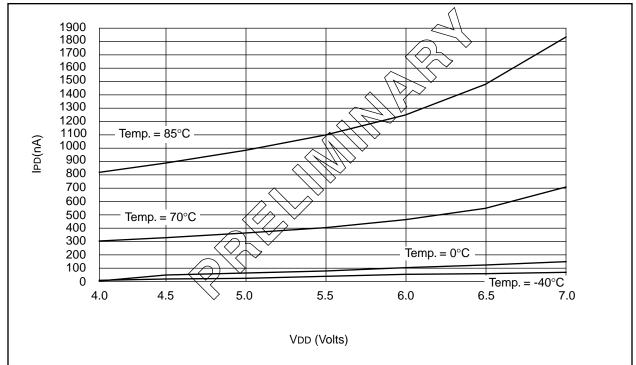


FIGURE 20-10: MAXIMUM IPD vs. VDD WATCHDOG DISABLED

Applicable Devices 42 R42 42A 43 R43 44

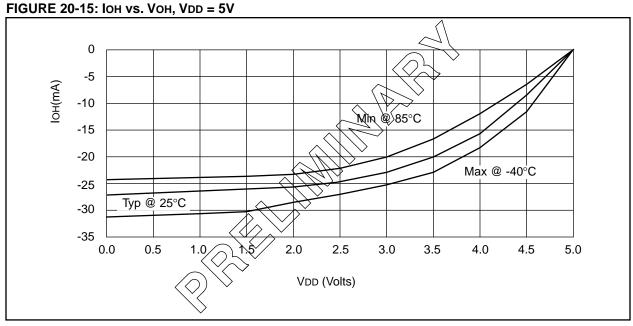
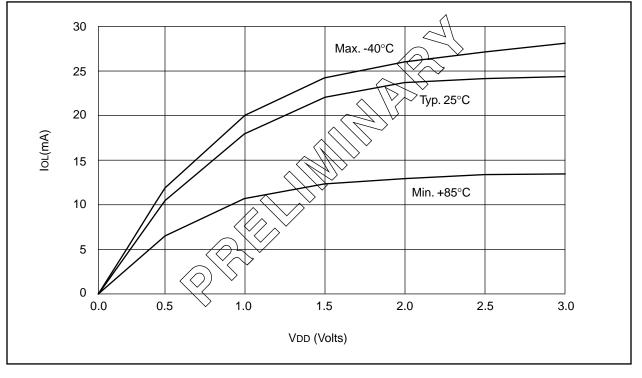
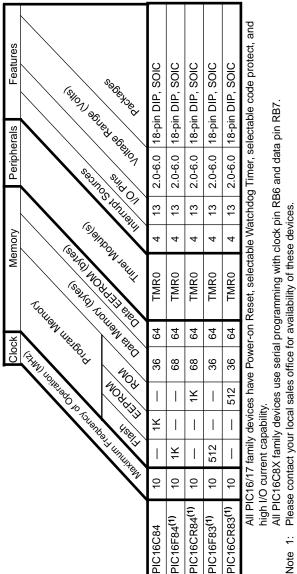




FIGURE 20-16: IOL vs. VOL, VDD = 3V

E.6 **PIC16C8X Family of Devices**

÷ Note

WDT	99, 103
Clearing the WDT	103
Normal Timer	103
Period	103
Programming Considerations	103
WDTPS0	
WDTPS1	
WREG	

Χ

XORLW	41
XORWF 14	41

Ζ

Z	
Zero (Z)9	

LIST OF EXAMPLES

Example 3-1:	Signed Math	9
Example 3-2:	Instruction Pipeline Flow	
Example 5-1:	Saving STATUS and WREG in RAM	
Example 6-1:	Indirect Addressing	
Example 7-1:	Table Write	
Example 7-2:	Table Read	
Example 8-1:	8 x 8 Multiply Routine	
Example 8-2:	8 x 8 Signed Multiply Routine	
Example 8-3:	16 x 16 Multiply Routine	
Example 8-4:	16 x 16 Signed Multiply Routine	51
Example 9-1:	Initializing PORTB	
Example 9-2:	Initializing PORTC	
Example 9-3:	Initializing PORTD	
Example 9-4:	Initializing PORTE	
Example 9-5:	Read Modify Write Instructions on an	
	I/O Port	64
Example 11-1:	16-Bit Read	69
Example 11-2:	16-Bit Write	69
Example 12-1:	Sequence to Read Capture Registers.	78
Example 12-2:	Writing to TMR3	80
Example 12-3:	Reading from TMR3	80
	Calculating Baud Rate Error	
Example F-1:	PIC17C42 to Sleep	223

LIST OF FIGURES

Figure 3-1:	PIC17C42 Block Diagram	10
Figure 3-2:	PIC17CR42/42A/43/R43/44 Block	
	Diagram	11
Figure 3-3:	Clock/Instruction Cycle	14
Figure 4-1:	Simplified Block Diagram of On-chip	
	Reset Circuit	15
Figure 4-2:	Time-Out Sequence on Power-Up	
	(MCLR Tied to VDD)	17
Figure 4-3:	Time-Out Sequence on Power-Up	
	(MCLR NOT Tied to VDD)	17
Figure 4-4:	Slow Rise Time (MCLR Tied to VDD)	17
Figure 4-5:	Oscillator Start-Up Time	18
Figure 4-6:	Using On-Chip POR	18
Figure 4-7:	Brown-out Protection Circuit 1	18
Figure 4-8:	PIC17C42 External Power-On Reset	
	Circuit (For Slow VDD Power-Up)	18
Figure 4-9:	Brown-out Protection Circuit 2	
Figure 5-1:	Interrupt Logic	21
Figure 5-2:	INTSTA Register (Address: 07h,	
	Unbanked)	
Figure 5-3:	PIE Register (Address: 17h, Bank 1)	
Figure 5-4:	PIR Register (Address: 16h, Bank 1)	
Figure 5-5:	INT Pin / T0CKI Pin Interrupt Timing	
Figure 6-1:	Program Memory Map and Stack	
Figure 6-2:	Memory Map in Different Modes	30
Figure 6-3:	External Program Memory Access	
	Waveforms	31
Figure 6-4:	Typical External Program Memory	
	Connection Diagram	
Figure 6-5:	PIC17C42 Register File Map	33
Figure 6-6:	PIC17CR42/42A/43/R43/44 Register	
	File Map	33
Figure 6-7:	ALUSTA Register (Address: 04h,	
	Unbanked)	36
Figure 6-8:	CPUSTA Register (Address: 06h,	
	Unbanked)	37
Figure 6-9:	T0STA Register (Address: 05h,	
	Unbanked)	
Figure 6-10:	Indirect Addressing	
Figure 6-11:	Program Counter Operation	41

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (602) 786-7578.

Please list the following information, and use this outline to provide us with your comments about this Data Sheet.

To:		Technical Publications Manager Total Pages Sent
RE _		Reader Response
Fro	om:	Name
		Company
		Address City / State / ZIP / Country
		Telephone: () FAX: ()
Ар	plica	ation (optional):
Wo	buld	you like a reply?YN
De	vice	E: PIC17C4X Literature Number: DS30412C
		ions:
1.	W	hat are the best features of this document?
2	— Ho	ow does this document meet your hardware and software development needs?
۷.		Sw does this document meet your hardware and software development needs:
3.	Do	o you find the organization of this data sheet easy to follow? If not, why?
4.	W	hat additions to the data sheet do you think would enhance the structure and subject?
~		
5.	vvi	hat deletions from the data sheet could be made without affecting the overall usefulness?
6.	ls	there any incorrect or misleading information (what and where)?
7.	Ho	ow would you improve this document?
8.	Ho	ow would you improve our software, systems, and silicon products?

NOTES: