

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	8MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (8K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-LCC (J-Lead)
Supplier Device Package	44-PLCC (16.59x16.59)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17lc44-08-l

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

1.0	Overview	5
2.0	PIC17C4X Device Varieties	7
3.0	Architectural Overview	9
4.0	Reset	15
5.0	Interrupts	21
6.0	Memory Organization	29
7.0	Table Reads and Table Writes	43
8.0	Hardware Multiplier	49
9.0	I/O Ports	53
10.0	Overview of Timer Resources	65
11.0	Timer0	67
12.0	Timer1, Timer2, Timer3, PWMs and Captures	71
13.0	Universal Synchronous Asynchronous Receiver Transmitter (USART) Module	83
14.0	Special Features of the CPU	99
15.0	Instruction Set Summary	107
16.0	Development Support	143
17.0	PIC17C42 Electrical Characteristics	147
18.0	PIC17C42 DC and AC Characteristics	163
19.0	PIC17CR42/42A/43/R43/44 Electrical Characteristics	175
20.0	PIC17CR42/42A/43/R43/44 DC and AC Characteristics	193
21.0	Packaging Information	205
Appen	dix A: Modifications	211
Appen	dix B: Compatibility	211
Appen	dix C: What's New	212
Appen	dix D: What's Changed	212
Appen	dix E: PIC16/17 Microcontrollers	213
Appen	dix F: Errata for PIC17C42 Silicon	223
Index.		226
PIC17	C4X Product Identification System	237

For register and module descriptions in this data sheet, device legends show which devices apply to those sections. For example, the legend below shows that some features of only the PIC17C43, PIC17C43, PIC17C44 are described in this section.

Applicable Devices 42 R42 42A 43 R43 44

To Our Valued Customers

We constantly strive to improve the quality of all our products and documentation. We have spent an exceptional amount of time to ensure that these documents are correct. However, we realize that we may have missed a few things. If you find any information that is missing or appears in error from the previous version of the PIC17C4X Data Sheet (Literature Number DS30412B), please use the reader response form in the back of this data sheet to inform us. We appreciate your assistance in making this a better document.

To assist you in the use of this document, Appendix C contains a list of new information in this data sheet, while Appendix D contains information that has changed

3.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC17C4X can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC17C4X uses a modified Harvard architecture. This architecture has the program and data accessed from separate memories. So the device has a program memory bus and a data memory bus. This improves bandwidth over traditional von Neumann architecture, where program and data are fetched from the same memory (accesses over the same bus). Separating program and data memory further allows instructions to be sized differently than the 8-bit wide data word. PIC17C4X opcodes are 16-bits wide, enabling single word instructions. The full 16-bit wide program memory bus fetches a 16-bit instruction in a single cycle. A twostage pipeline overlaps fetch and execution of instructions. Consequently, all instructions execute in a single cycle (121 ns @ 33 MHz), except for program branches and two special instructions that transfer data between program and data memory.

The PIC17C4X can address up to 64K x 16 of program memory space.

The **PIC17C42** and **PIC17C42A** integrate 2K x 16 of EPROM program memory on-chip, while the **PIC17CR42** has 2K x 16 of ROM program memory on-chip.

The **PIC17C43** integrates 4K x 16 of EPROM program memory, while the **PIC17CR43** has 4K x 16 of ROM program memory.

The **PIC17C44** integrates 8K x 16 EPROM program memory.

Program execution can be internal only (microcontroller or protected microcontroller mode), external only (microprocessor mode) or both (extended microcontroller mode). Extended microcontroller mode does not allow code protection.

The PIC17CXX can directly or indirectly address its register files or data memory. All special function registers, including the Program Counter (PC) and Working Register (WREG), are mapped in the data memory. The PIC17CXX has an orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC17CXX simple yet efficient. In addition, the learning curve is reduced significantly.

One of the PIC17CXX family architectural enhancements from the PIC16CXX family allows two file registers to be used in some two operand instructions. This allows data to be moved directly between two registers without going through the WREG register. This increases performance and decreases program memory usage. The PIC17CXX devices contain an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift, and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature.

The WREG register is an 8-bit working register used for ALU operations.

All PIC17C4X devices (except the PIC17C42) have an 8 x 8 hardware multiplier. This multiplier generates a 16-bit result in a single cycle.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC), and Zero (Z) bits in the STATUS register. The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBLW and SUBWF instructions for examples.

Although the ALU does not perform signed arithmetic, the Overflow bit (OV) can be used to implement signed math. Signed arithmetic is comprised of a magnitude and a sign bit. The overflow bit indicates if the magnitude overflows and causes the sign bit to change state. Signed math can have greater than 7-bit values (magnitude), if more than one byte is used. The use of the overflow bit only operates on bit6 (MSb of magnitude) and bit7 (sign bit) of the value in the ALU. That is, the overflow bit is not useful if trying to implement signed math where the magnitude, for example, is 11-bits. If the signed math values are greater than 7-bits (15-, 24or 31-bit), the algorithm must ensure that the low order bytes ignore the overflow status bit.

Care should be taken when adding and subtracting signed numbers to ensure that the correct operation is executed. Example 3-1 shows an item that must be taken into account when doing signed arithmetic on an ALU which operates as an unsigned machine.

EXAMPLE 3-1: SIGNED MATH

Hex Value	Signed Value Math	Unsigned Value Math
FFh	-127	255
<u>+ 01h</u>	<u>+ 1</u>	<u>+ 1</u>
= ?	= -126 (FEh)	= 0 (00h);
		Carry bit = 1

Signed math requires the result in REG to be FEh (-126). This would be accomplished by subtracting one as opposed to adding one.

Simplified block diagrams are shown in Figure 3-1 and Figure 3-2. The descriptions of the device pins are listed in Table 3-1.

© 1996 Microchip Technology Inc.

5.1 Interrupt Status Register (INTSTA)

The Interrupt Status/Control register (INTSTA) records the individual interrupt requests in flag bits, and contains the individual interrupt enable bits (not for the peripherals).

The PEIF bit is a read only, bit wise OR of all the peripheral flag bits in the PIR register (Figure 5-4).

Note: T0IF, INTF, T0CKIF, or PEIF will be set by the specified condition, even if the corresponding interrupt enable bit is clear (interrupt disabled) or the GLINTD bit is set (all interrupts disabled).

Care should be taken when clearing any of the INTSTA register enable bits when interrupts are enabled (GLINTD is clear). If any of the INTSTA flag bits (T0IF, INTF, T0CKIF, or PEIF) are set in the same instruction cycle as the corresponding interrupt enable bit is cleared, the device will vector to the reset address (0x00).

When disabling any of the INTSTA enable bits, the GLINTD bit should be set (disabled).

FIGURE 5-2: INTSTA REGISTER (ADDRESS: 07h, UNBANKED)

PEIF	TOCKIF TOIF INTE PEIE TOCKIE TOIE INTE R = Readable bit bito W = Writable bit						
DILI	- n = Value at POR reset						
bit 7:	 PEIF: Peripheral Interrupt Flag bit This bit is the OR of all peripheral interrupt flag bits AND'ed with their corresponding enable bits. 1 = A peripheral interrupt is pending 0 = No peripheral interrupt is pending 						
bit 6:	TOCKIF : External Interrupt on T0CKI Pin Flag bit This bit is cleared by hardware, when the interrupt logic forces program execution to vector (18h). 1 = The software specified edge occurred on the RA1/T0CKI pin 0 = The software specified edge did not occur on the RA1/T0CKI pin						
bit 5:	T0IF : TMR0 Overflow Interrupt Flag bit This bit is cleared by hardware, when the interrupt logic forces program execution to vector (10h). 1 = TMR0 overflowed 0 = TMR0 did not overflow						
bit 4:	 INTF: External Interrupt on INT Pin Flag bit This bit is cleared by hardware, when the interrupt logic forces program execution to vector (08h). 1 = The software specified edge occurred on the RA0/INT pin 0 = The software specified edge did not occur on the RA0/INT pin 						
bit 3:	PEIE : Peripheral Interrupt Enable bit This bit enables all peripheral interrupts that have their corresponding enable bits set. 1 = Enable peripheral interrupts 0 = Disable peripheral interrupts						
bit 2:	T0CKIE : External Interrupt on T0CKI Pin Enable bit 1 = Enable software specified edge interrupt on the RA1/T0CKI pin 0 = Disable interrupt on the RA1/T0CKI pin						
bit 1:	T0IE : TMR0 Overflow Interrupt Enable bit 1 = Enable TMR0 overflow interrupt 0 = Disable TMR0 overflow interrupt						
bit 0:	INTE: External Interrupt on RA0/INT Pin Enable bit 1 = Enable software specified edge interrupt on the RA0/INT pin 0 = Disable software specified edge interrupt on the RA0/INT pin						

6.2 Data Memory Organization

Data memory is partitioned into two areas. The first is the General Purpose Registers (GPR) area, while the second is the Special Function Registers (SFR) area. The SFRs control the operation of the device.

Portions of data memory are banked, this is for both areas. The GPR area is banked to allow greater than 232 bytes of general purpose RAM. SFRs are for the registers that control the peripheral functions. Banking requires the use of control bits for bank selection. These control bits are located in the Bank Select Register (BSR). If an access is made to a location outside this banked region, the BSR bits are ignored. Figure 6-5 shows the data memory map organization for the PIC17C42 and Figure 6-6 for all of the other PIC17C4X devices.

Instructions MOVPF and MOVFP provide the means to move values from the peripheral area ("P") to any location in the register file ("F"), and vice-versa. The definition of the "P" range is from 0h to 1Fh, while the "F" range is 0h to FFh. The "P" range has six more locations than peripheral registers (eight locations for the PIC17C42 device) which can be used as General Purpose Registers. This can be useful in some applications where variables need to be copied to other locations in the general purpose RAM (such as saving status information during an interrupt).

The entire data memory can be accessed either directly or indirectly through file select registers FSR0 and FSR1 (Section 6.4). Indirect addressing uses the appropriate control bits of the BSR for accesses into the banked areas of data memory. The BSR is explained in greater detail in Section 6.8.

6.2.1 GENERAL PURPOSE REGISTER (GPR)

All devices have some amount of GPR area. The GPRs are 8-bits wide. When the GPR area is greater than 232, it must be banked to allow access to the additional memory space.

Only the PIC17C43 and PIC17C44 devices have banked memory in the GPR area. To facilitate switching between these banks, the MOVLR bank instruction has been added to the instruction set. GPRs are not initialized by a Power-on Reset and are unchanged on all other resets.

6.2.2 SPECIAL FUNCTION REGISTERS (SFR)

The SFRs are used by the CPU and peripheral functions to control the operation of the device (Figure 6-5 and Figure 6-6). These registers are static RAM.

The SFRs can be classified into two sets, those associated with the "core" function and those related to the peripheral functions. Those registers related to the "core" are described here, while those related to a peripheral feature are described in the section for each peripheral feature.

The peripheral registers are in the banked portion of memory, while the core registers are in the unbanked region. To facilitate switching between the peripheral banks, the MOVLB bank instruction has been provided.

FIGURE 9-5: BLOCK DIAGRAM OF RB3 AND RB2 PORT PINS

TABLE 9-7: PORTD FUNCTIONS

Name	Bit	Buffer Type	Function
RD0/AD8	bit0	TTL	Input/Output or system bus address/data pin.
RD1/AD9	bit1	TTL	Input/Output or system bus address/data pin.
RD2/AD10	bit2	TTL	Input/Output or system bus address/data pin.
RD3/AD11	bit3	TTL	Input/Output or system bus address/data pin.
RD4/AD12	bit4	TTL	Input/Output or system bus address/data pin.
RD5/AD13	bit5	TTL	Input/Output or system bus address/data pin.
RD6/AD14	bit6	TTL	Input/Output or system bus address/data pin.
RD7/AD15	bit7	TTL	Input/Output or system bus address/data pin.

Legend: TTL = TTL input.

TABLE 9-8: REGISTERS/BITS ASSOCIATED WITH PORTD

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
13h, Bank 1	PORTD	RD7/ AD15	RD6/ AD14	RD5/ AD13	RD4/ AD12	RD3/ AD11	RD2/ AD10	RD1/ AD9	RD0/ AD8	xxxx xxxx	uuuu uuuu
12h, Bank 1	DDRD	Data dired	Data direction register for PORTD						1111 1111	1111 1111	

Legend: x = unknown, u = unchanged.

Note 1: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

12.2.2 DUAL CAPTURE REGISTER MODE

This mode is selected by setting CA1/PR3. A block diagram is shown in Figure 12-8. In this mode, TMR3 runs without a period register and increments from 0000h to FFFFh and rolls over to 0000h. The TMR3 interrupt Flag (TMR3IF) is set on this roll over. The TMR3IF bit must be cleared in software.

Registers PR3H/CA1H and PR3L/CA1L make a 16-bit capture register (Capture1). It captures events on pin RB0/CAP1. Capture mode is configured by the CA1ED1 and CA1ED0 bits. Capture1 Interrupt Flag bit (CA1IF) is set on the capture event. The corresponding interrupt mask bit is CA1IE. The Capture1 Overflow Status bit is CA1OVF.

The Capture2 overflow status flag bit is double buffered. The master bit is set if one captured word is already residing in the Capture2 register and another "event" has occurred on the RB1/CA2 pin. The new event will not transfer the TMR3 value to the capture register which protects the previous unread capture value. When the user reads both the high and the low bytes (in any order) of the Capture2 register, the master overflow bit is transferred to the slave overflow bit (CA2OVF) and then the master bit is reset. The user can then read TCON2 to determine the value of CA2OVF.

The operation of the Capture1 feature is identical to Capture2 (as described in Section 12.2.1).

TABLE 12-5: REGISTERS ASSOCIATED WITH CAPTURE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 3	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h, Bank 3	TCON2	CA2OVF	CA10VF	PWM2ON	PWM1ON	CA1/PR3	TMR3ON	TMR2ON	TMR10N	0000 0000	0000 0000
12h, Bank 2	TMR3L	TMR3 reg	ister; low by	/te						xxxx xxxx	uuuu uuuu
13h, Bank 2	TMR3H	TMR3 reg	ister; high b	oyte						xxxx xxxx	uuuu uuuu
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
07h, Unbanked	INTSTA	PEIF	T0CKIF	T0IF	INTF	PEIE	T0CKIE	T0IE	INTE	0000 0000	0000 0000
06h, Unbanked	CPUSTA	—	_	STKAV	GLINTD	TO	PD	—	—	11 11	11 qq
16h, Bank 2	PR3L/CA1L	Timer3 pe	riod registe	r, low byte/ca	apture1 regis	ter, low byte	e			xxxx xxxx	uuuu uuuu
17h, Bank 2	PR3H/CA1H	Timer3 pe	riod registe	r, high byte/c	apture1 regi	ster, high b	yte			xxxx xxxx	uuuu uuuu
14h, Bank 3	CA2L	Capture2	low byte							xxxx xxxx	uuuu uuuu
15h, Bank 3	CA2H	Capture2	high byte							xxxx xxxx	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q - value depends on condition, shaded cells are not used by Capture.

Note 1: Other (non power-up) resets include: external reset through MCLR and WDT Timer Reset.

FIGURE 13-3: USART TRANSMIT

TABLE 13-3:	BAUD RATES FOR SYNCHRONOUS MODE

BAUD RATE (K)	Fosc = 3	3 MHz %ERROR	SPBRG value (decimal)	Fosc = 2	5 MHz %ERROR	SPBRG value (decimal)	FOSC = 2	0 MHz %ERROR	SPBRG value (decimal)	Fosc = 1	6 MHz %ERROR	SPBRG value (decimal)
()		/02111011	(accinal)		,02111.011	(40011141)		<i>/</i> 021111011	(uconnai)		<i>/</i> 021111011	(uconnai)
0.3	NA	_	_	NA	—	_	NA	_	_	NA	_	—
1.2	NA	_	_	NA	—	_	NA	_	_	NA	_	_
2.4	NA	—	—	NA	—	—	NA	—	—	NA	—	—
9.6	NA	_	—	NA	_	—	NA	_	—	NA	_	_
19.2	NA	—	_	NA	—	_	19.53	+1.73	255	19.23	+0.16	207
76.8	77.10	+0.39	106	77.16	+0.47	80	76.92	+0.16	64	76.92	+0.16	51
96	95.93	-0.07	85	96.15	+0.16	64	96.15	+0.16	51	95.24	-0.79	41
300	294.64	-1.79	27	297.62	-0.79	20	294.1	-1.96	16	307.69	+2.56	12
500	485.29	-2.94	16	480.77	-3.85	12	500	0	9	500	0	7
HIGH	8250	—	0	6250	—	0	5000	—	0	4000	—	0
LOW	32.22	_	255	24.41	_	255	19.53	_	255	15.625	_	255

BAUD	Fosc = 10 M	Hz	SPBRG	Fosc = 7.159) MHz	SPBRG	FOSC = 5.068	3 MHz	SPBRG
RATE (K)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)	KBAUD	%ERROR	value (decimal)
0.3	NA	_	_	NA	_	_	NA	_	
1.2	NA	_	_	NA	_	_	NA	_	_
2.4	NA	_	_	NA	_	_	NA	_	_
9.6	9.766	+1.73	255	9.622	+0.23	185	9.6	0	131
19.2	19.23	+0.16	129	19.24	+0.23	92	19.2	0	65
76.8	75.76	-1.36	32	77.82	+1.32	22	79.2	+3.13	15
96	96.15	+0.16	25	94.20	-1.88	18	97.48	+1.54	12
300	312.5	+4.17	7	298.3	-0.57	5	316.8	+5.60	3
500	500	0	4	NA	_	_	NA	_	_
HIGH	2500	_	0	1789.8	_	0	1267	_	0
LOW	9.766	_	255	6.991	_	255	4.950	_	255
BAUD	Fosc = 3.579	MHz	SPBRG	Fosc = 1 MH	Z	SPBRG	Fosc = 32.76	8 kHz	SPBRG
BAUD RATE (K)	Fosc = 3.579 KBAUD	MHz %ERROR	SPBRG value (decimal)	Fosc = 1 MH KBAUD	z %ERROR	SPBRG value (decimal)	Fosc = 32.76 KBAUD	68 kHz %ERROR	SPBRG value (decimal)
BAUD RATE (K)	Fosc = 3.579 KBAUD NA	MHz %ERROR —	SPBRG value (decimal)	Fosc = 1 MH KBAUD NA	z %ERROR —	SPBRG value (decimal)	Fosc = 32.76 KBAUD 0.303	68 kHz %ERROR +1.14	SPBRG value (decimal) 26
BAUD RATE (K) 0.3 1.2	Fosc = 3.579 KBAUD NA NA	MHz %ERROR — —	SPBRG value (decimal) —	Fosc = 1 MH KBAUD NA 1.202	z %ERROR — +0.16	SPBRG value (decimal) — 207	Fosc = 32.76 KBAUD 0.303 1.170	58 kHz %ERROR +1.14 -2.48	SPBRG value (decimal) 26 6
BAUD RATE (K) 0.3 1.2 2.4	Fosc = 3.579 KBAUD NA NA NA	MHz %ERROR — — —	SPBRG value (decimal) — —	Fosc = 1 MH KBAUD NA 1.202 2.404	z %ERROR +0.16 +0.16	SPBRG value (decimal) — 207 103	Fosc = 32.76 KBAUD 0.303 1.170 NA	68 kHz %ERROR +1.14 -2.48 —	SPBRG value (decimal) 26 6 —
BAUD RATE (K) 0.3 1.2 2.4 9.6	Fosc = 3.579 KBAUD NA NA 9.622	MHz %ERROR +0.23	SPBRG value (decimal) — — — 92	Fosc = 1 MH KBAUD NA 1.202 2.404 9.615	z %ERROR 	SPBRG value (decimal) — 207 103 25	FOSC = 32.76 KBAUD 0.303 1.170 NA NA	8 kHz %ERROR +1.14 -2.48 	SPBRG value (decimal) 26 6
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2	Fosc = 3.579 KBAUD NA NA 9.622 19.04	MHz %ERROR +0.23 -0.83	SPBRG value (decimal) — — — 92 46	Fosc = 1 MH KBAUD NA 1.202 2.404 9.615 19.24	z %ERROR 	SPBRG value (decimal) — 207 103 25 12	Fosc = 32.76 KBAUD 0.303 1.170 NA NA NA	58 kHz %ERROR +1.14 -2.48 	SPBRG value (decimal) 26 6
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2 76.8	Fosc = 3.579 KBAUD NA NA 9.622 19.04 74.57	MHz %ERROR — — +0.23 -0.83 -2.90	SPBRG value (decimal) — — 92 46 11	FOSC = 1 MH KBAUD NA 1.202 2.404 9.615 19.24 83.34	Z %ERROR +0.16 +0.16 +0.16 +0.16 +0.16 +8.51	SPBRG value (decimal) — 207 103 25 12 2 2	Fosc = 32.76 KBAUD 0.303 1.170 NA NA NA NA	58 kHz %ERROR +1.14 -2.48 	SPBRG value (decimal) 26 6
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2 76.8 96	Fosc = 3.579 KBAUD NA NA 9.622 19.04 74.57 99.43	MHz %ERROR — — +0.23 -0.83 -2.90 _3.57	SPBRG value (decimal) — — — 92 46 11 8	FOSC = 1 MH KBAUD NA 1.202 2.404 9.615 19.24 83.34 NA	z <u>~</u> +0.16 +0.16 +0.16 +0.16 +8.51 _	SPBRG value (decimal) — 207 103 25 12 2 2 	Fosc = 32.76 KBAUD 0.303 1.170 NA NA NA NA NA	58 kHz %ERROR +1.14 -2.48 	SPBRG value (decimal) 26 6
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2 76.8 96 300	Fosc = 3.579 KBAUD NA NA 9.622 19.04 74.57 99.43 298.3	MHz %ERROR — +0.23 -0.83 -2.90 _3.57 -0.57	SPBRG value (decimal) — — 92 46 11 8 2	Fosc = 1 MH KBAUD NA 1.202 2.404 9.615 19.24 83.34 NA NA	Z %ERROR +0.16 +0.16 +0.16 +0.16 +8.51 	SPBRG value (decimal) — 207 103 25 12 2 2 — 2 —	Fosc = 32.76 KBAUD 0.303 1.170 NA NA NA NA NA NA	68 kHz %ERROR +1.14 -2.48 	SPBRG value (decimal) 26 6
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2 76.8 96 300 500	Fosc = 3.579 KBAUD NA NA 9.622 19.04 74.57 99.43 298.3 NA	MHz %ERROR — +0.23 -0.83 -2.90 _3.57 -0.57 —	SPBRG value (decimal) — — 92 46 11 8 2 	Fosc = 1 MH KBAUD NA 1.202 2.404 9.615 19.24 83.34 NA NA NA	Z %ERROR +0.16 +0.16 +0.16 +8.51 	SPBRG value (decimal) 207 103 25 12 2 2 2 	Fosc = 32.76 KBAUD 0.303 1.170 NA NA NA NA NA NA NA	58 kHz %ERROR +1.14 -2.48 	SPBRG value (decimal) 26 6
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2 76.8 96 300 500 HIGH	Fosc = 3.579 KBAUD NA NA 9.622 19.04 74.57 99.43 298.3 NA 894.9	MHz %ERROR — +0.23 -0.83 -2.90 _3.57 -0.57 — _ _	SPBRG value (decimal) — — 92 46 11 8 2 — 0	Fosc = 1 MH KBAUD NA 1.202 2.404 9.615 19.24 83.34 NA NA NA NA 250	Z %ERROR +0.16 +0.16 +0.16 +0.16 +8.51 	SPBRG value (decimal) 207 103 25 12 2 2 0	Fosc = 32.76 KBAUD 0.303 1.170 NA NA NA NA NA NA NA NA NA S.192	68 kHz %ERROR +1.14 -2.48 	SPBRG value (decimal) 26 6 0

Table 15-2 lists the instructions recognized by the MPASM assembler.

Note 1:	Any	unused o	pcode is	Rese	erved. l	Jse of
	any	reserved	opcode	may	cause	unex-
	pect	ed operati	ion.			

Note 2: The shaded instructions are not available in the PIC17C42

All instruction examples use the following format to represent a hexadecimal number:

0xhh

where h signifies a hexadecimal digit.

To represent a binary number:

0000 0100b

where b signifies a binary string.

FIGURE 15-1: GENERAL FORMAT FOR INSTRUCTIONS

15.1 <u>Special Function Registers as</u> <u>Source/Destination</u>

The PIC17C4X's orthogonal instruction set allows read and write of all file registers, including special function registers. There are some special situations the user should be aware of:

15.1.1 ALUSTA AS DESTINATION

If an instruction writes to ALUSTA, the Z, C, DC and OV bits may be set or cleared as a result of the instruction and overwrite the original data bits written. For example, executing CLRF ALUSTA will clear register ALUSTA, and then set the Z bit leaving 0000 0100b in the register.

15.1.2 PCL AS SOURCE OR DESTINATION

Read, write or read-modify-write on PCL may have the following results:

Read PC:	$\text{PCH} \rightarrow \text{PCLATH}; \text{PCL} \rightarrow \text{dest}$
Write PCL:	PCLATH \rightarrow PCH; 8-bit destination value \rightarrow PCL
Read-Modify-Write:	$PCL \rightarrow ALU$ operand $PCLATH \rightarrow PCH$; 8-bit result $\rightarrow PCL$

Where PCH = program counter high byte (not an addressable register), PCLATH = Program counter high holding latch, dest = destination, WREG or f.

15.1.3 BIT MANIPULATION

All bit manipulation instructions are done by first reading the entire register, operating on the selected bit and writing the result back (read-modify-write). The user should keep this in mind when operating on special function registers, such as ports.

WFC	ADD WRE	ADD WREG and Carry bit to f						
ax:	[<i>label</i>] A[DWFC	f,d					
rands:	0 ≤ f ≤ 255 d ∈ [0,1]	$0 \le f \le 255$ $d \in [0,1]$						
ration:	(WREG) +	• (f) + C -	\rightarrow (dest)					
us Affected:	OV, C, DC	, Z						
oding:	0001	000d	ffff	ffff				
cription:	Add WREG memory loc placed in W placed in da	, the Carr ation 'f'. If REG. If 'c ata memo	y Flag and 'd' is 0, th l' is 1, the ry locatior	d data e result is result is n 'f'.				
ds:	1							
es:	1							
vcle Activity:								
Q1	Q2	Q3		Q4				
Decode	Read register 'f'	Execut	te W des	rite to tination				
mple:	ADDWFC	REG	0					
Before Instru Carry bit REG WREG After Instruct Carry bit REG WREG	$ \begin{array}{rcl} = & 1 \\ = & 0x02 \\ = & 0x4D \\ $							
	wFC ax: rands: ration: us Affected: oding: cription: ds: es: vcle Activity: Q1 Decode mple: Before Instru Carry bit REG WREG After Instruct Carry bit REG WREG	WFCADD WREax: $[label] AErands:0 \le f \le 255d \in [0,1]ration:(WREG) +us Affected:OV, C, DCboding:0001cription:Add WREGmemory locplaced in Wplaced in WWREG = 0x02WREG = 0x02WREG = 0x50$	WFCADD WREG and Cax:[label] ADDWFCrands: $0 \le f \le 255$ d $\in [0,1]$ ration:(WREG) + (f) + C -us Affected:OV, C, DC, Zoding: 0001 cription:Add WREG, the Carrmemory location 'f'. Ifplaced in WREG. If 'cplaced in data memoryds:1es:1vcle Activity:Q1Q2Q3DecodeRead register 'f'ExecutionCarry bit =1REG =0x02WREG =0x4DAfter Instruction Carry bit =0REG =0x02WREG =0x202WREG =0x202WREG =0x202WREG =0x50	WFCADD WREG and Carry bitax: $[label]$ ADDWFC f,drands: $0 \le f \le 255$ $d \in [0,1]$ ration: $(WREG) + (f) + C \rightarrow (dest)$ us Affected: OV, C, DC, Z bding: 0001 0001 $000d$ ffffcription:Add WREG, the Carry Flag and memory location 'f'. If 'd' is 0, th placed in WREG. If 'd' is 1, the placed in data memory location'ds:1es:1vcle Activity:Q1Q1Q2Q3Read register 'f'Effore Instruction Carry bit = 1 REG = 0x02 WREG = 0x4DAfter Instruction Carry bit = 0 REG = 0x02 WREG = 0x50				

	N	And Literal with WREG							
Syntax	:	[label] A	NDLW	k				
Operar	nds:	0	$\leq k \leq 25$	55					
Operat	tion:	(\	VREG)	.AND. (k	$) \rightarrow ($	WR	EG)		
Status Affected:									
Encodi	ing:		1011	0101	kkł	ĸk	kkkk		
Description: The contents of WREG are AND'ed wit the 8-bit literal 'k'. The result is placed i WREG.					D'ed with placed in				
Words:									
Cycles	:	1							
Q Cycl	e Activity:								
	Q1		Q2	Q	3		Q4		
	Decode	Re	ad literal 'k'	Exec	ute	Write to WREG			
<u>Examp</u>	ole:	AI	NDLW	0x5F					
Be	efore Instru WREG	ictio =	n 0xA3						
Af	ter Instruc WREG	tion =	0x03						

AND	ANDWF AND WREG with f							
Synt	tax:	[label] A	NDWF	f,d				
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 25 \\ d \in \ [0,1] \end{array}$	5					
Ope	ration:	(WREG) .	AND. (f)	ightarrow (dest)	1			
Stat	us Affected:	Z						
Enco	oding:	0000	101d	ffff	ffff			
Description: The contents of WREG are AND'ed with register 'f'. If 'd' is 0 the result is stored in WREG. If 'd' is 1 the result is stored back in register 'f'.								
Words: 1								
Cycl	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q	3	Q4			
	Decode	Read register 'f'	Exect	ute V de:	Vrite to stination			
<u>Exa</u>	<u>mple</u> :	ANDWF	REG, 1					
Before Instruction WREG = 0x17 REG = 0xC2								
	After Instruct WREG REG	tion = 0x17 = 0x02						

BCF		Bit Clear	f			
Synt	tax:	[label] E	BCF f,I	b		
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 25 \\ 0 \leq b \leq 7 \end{array}$	5			
Ope	ration:	$0 \rightarrow (f < b >$	-)			
Stat	us Affected:	None				
Encoding: 1000 1bbb ffff ff					ffff	
Description: Bit 'b' in register 'f' is cleared.						
Wor	ds:	1				
Cycl	es:	1				
QC	ycle Activity:					
	Q1	Q2	Q3	3	Q4	
	Decode	Read register 'f'	Execu	ute	re	Write gister 'f'
<u>Exa</u>	<u>mple</u> :	BCF	FLAG_R	EG,	7	
Before Instruction FLAG_REG = 0xC7						
	After Instruct FLAG_R	tion EG = 0x47				

DECF	Decreme	nt f		DEC	CFSZ	Decreme	nt f, ski	p if 0		
Syntax:	[<i>label</i>] [[label] DECF f,d			tax:	[<i>label</i>] [[label] DECFSZ f,d			
Operands:	0 ≤ f ≤ 255 d ∈ [0,1]	≤ f ≤ 255 ∈ [0,1]		Оре	erands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \ [0,1] \end{array}$	5			
Operation:	(f) – 1 \rightarrow ((dest)		Ope	eration:	(f) – 1 \rightarrow (dest);			
Status Affected:	OV, C, DC	C, Z				skip if resu	ult = 0			
Encoding:	0000	011d ff:	ff ffff	Stat	us Affected:	None				
Description:	Decrement	register 'f'. If 'o	d' is 0 the	Enc	oding:	0001	011d	ffff	ffff	
·	result is sto result is sto	ored in WREG. ored back in re	If 'd' is 1 the gister 'f'.	Des	cription:	The content mented. If 'd	ts of reg d' is 0 the	ister 'f' a e result i	re decre- s placed in	
Words:	1					WREG. If 'd	l' is 1 the stor 'f'	e result is	s placed	
Cycles:	1					If the result	is 0. the	next ins	truction.	
Q Cycle Activity:						which is alr	eady feto	ched, is o	discarded,	
Q1	Q2	Q3	Q4			and an NOI	is exection	cuted ins	tead mak-	
Decode	Read register 'f'	Execute	Write to destination	Wor	ds:	1				
Example:	DECF	CNT, 1		Сус	les:	1(2)				
Before Instru	iction			QC	ycle Activity:					
CNT	= 0x01				Q1	Q2	Q	3	Q4	
Z	= 0				Decode	Read register 'f'	Exec	ute c	Write to lestination	
CNT Z	= 0x00 = 1			<u>Exa</u>	mple:	HERE	DECFS GOTO	SZ CN	ЛТ, 1)ОР	
						CONTINUE				
					Before Instru	uction				

PC	=	Address (HERE)
After Instruct	ion	
CNT	=	CNT - 1
If CNT	=	0;
PC	=	Address (CONTINUE)
If CNT	≠	0;
PC	=	Address (HERE+1)

INC	F	Incre	Increment f						
Synt	tax:	[labe	[label] INCF f,d						
Ope	rands:	0 ≤ f : d ∈ [0	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \ [0,1] \end{array}$						
Ope	ration:	(f) + ′	(f) + 1 \rightarrow (dest)						
Stat	us Affected:	OV, C	, DC	C, Z					
Enco	oding:	000)1	010d	ffff	ffff			
Des	cription:	The commenter WREC back i	onten ed. If G. If 'o n reg	its of regi d' is 0 the d' is 1 the ister 'f'.	ister 'f' are e result is e result is	e incre- placed in placed			
Wor	ds:	1							
Cycl	es:	1							
Q Cycle Activity:									
	Q1	Q2		Q	3	Q4			
	Decode	Rea registe	d er'f'	Exect	ute de	Write to estination			
<u>Exa</u>	mple:	INCF		CNT,	1				
	Before Instru	uction							
	CNT	= 0x	FF						
	Z C	= 0 = ?							
	After Instruct	tion							
	CNT	= 0x	00						
	Z C	= 1 = 1							

INCI	FSZ	Incremer	nt f, skip	if O			
Synt	ax:	[label]	INCFSZ	f,d			
Ope	rands:	0 ≤ f ≤ 25 d ∈ [0,1]	5				
Ope	ration:	(f) + 1 \rightarrow skip if res	(dest) sult = 0				
State	us Affected:	None					
Enco	oding:	0001	111d	ffff	ffff		
Des	cription:	The contents of register 'f' are incre- mented. If 'd' is 0 the result is placed in WREG. If 'd' is 1 the result is placed back in register 'f'. If the result is 0, the next instruction, which is already fetched, is discarded, and an NOP is executed instead making it a two-cycle instruction.					
Words: 1							
Cycl	es:	1(2)					
QC	ycle Activity:						
	Q1	Q2	Q	3	Q4		
	Decode	Read register 'f'	Exec	ute	Write to destination		
lf sk	ip:						
	Q1	Q2	Q	3	Q4		
	Forced NOP	NOP	Exec	ute	NOP		
<u>Exa</u>	<u>mple</u> :	HERE NZERO ZERO	INCFSZ : :	CNT	, 1		
	Before Instruction PC = Address (HERE)						
	After Instruct CNT If CNT PC If CNT PC	ion = CNT + = 0; = Addres ≠ 0; = Addres	1 SS(ZERO)))			

INFS	NFSNZ Increment f, skip if not 0							
Synt	tax:	[label]	NFSNZ	f,d				
Ope	rands:	0 ≤ f ≤ 25 d ∈ [0,1]	5					
Ope	ration:	(f) + 1 \rightarrow	(dest), s	kip if ı	not 0			
Stat	us Affected:	None						
Enco	oding:	0010	010d	fff	f ffff			
Description: The contents of register 'f' are mented. If 'd' is 0 the result is p WREG. If 'd' is 1 the result is p back in register 'f'. If the result is not 0, the next in which is already fetched, is dis and an NOP is executed instead it a two-cycle instruction.					are incre- t is placed in is placed xt instruction, s discarded, stead making			
Wor	ds:	1						
Cycl	es:	1(2)						
QC	ycle Activity:							
	Q1	Q2	Q	3	Q4			
	Decode	Read register 'f'	Exec	ute	Write to destination			
lf sk	ip:		•	•				
	Q1	Q2	Q	3	Q4			
	Forced NOP	NOP	Exec	ute	NOP			
<u>Exa</u>	<u>mple</u> :	HERE ZERO NZERO	INFSNZ	REG	, 1			
	Before Instru REG	iction = REG						
	After Instruct REG If REG PC If REG PC	tion = REG + = 1; = Addres = 0; = Addres	1 s (zero s (nzer))				

IORL	w	Inclusiv	Inclusive OR Literal with WREG						
Synta	ax:	[label]	IORLW	k					
Oper	ands:	$0 \le k \le 2$	255						
Oper	ation:	(WREG)	.OR. (k)	\rightarrow (W	RE	G)			
Statu	s Affected:	Z							
Enco	ding:	1011	0011	kkk	ĸk	kkkk			
Desc	ription:	The content the eight placed in	ents of WR bit literal 'k WREG.	EG ar .'. The	e Ol resu	R'ed with Ilt is			
Word	ls:	1							
Cycle	es:	1							
Q Cy	cle Activity:								
_	Q1	Q2	Q	3	Q4				
	Decode	Read literal 'k'	Exect	ute	V V	Vrite to VREG			
<u>Exan</u>	<u>nple</u> :	IORLW	0x35						
E	Before Instru	iction							
	WREG	= 0x9A							
/	After Instruct WREG	tion = 0xBF							

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 17-5: TIMER0 CLOCK TIMINGS

TABLE 17-5: TIMER0 CLOCK REQUIREMENTS

Parameter								
No.	Sym	Characteristic		Min	Typ†	Max	Units	Conditions
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5TCY + 20 §	—	—	ns	
			With Prescaler	10*	—	_	ns	
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5TCY + 20 §	—	_	ns	
			With Prescaler	10*	—	_	ns	
42	Tt0P	T0CKI Period		<u>Tcy + 40</u> §	—	—	ns	N = prescale value
				N				(1, 2, 4,, 256)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

FIGURE 17-6: TIMER1, TIMER2, AND TIMER3 CLOCK TIMINGS

TABLE 17-6: TIMER1, TIMER2, AND TIMER3 CLOCK REQUIREMENTS

Parameter				Тур			
No.	Sym	Characteristic	Min	†	Max	Units	Conditions
45	Tt123H	TCLK12 and TCLK3 high time	0.5 TCY + 20 §	—	—	ns	
46	Tt123L	TCLK12 and TCLK3 low time	0.5 TCY + 20 §	—	_	ns	
47	Tt123P	TCLK12 and TCLK3 input period	<u>Tcy + 40</u> §	—	—	ns	N = prescale value
			N				(1, 2, 4, 8)
48	TckE2tmrl	Delay from selected External Clock Edge to	2Tosc §	—	6 Tosc §	_	
		Timer increment					

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 17-9: USART MODULE: SYNCHRONOUS TRANSMISSION (MASTER/SLAVE) TIMING

TABLE 17-9: SERIAL PORT SYNCHRONOUS TRANSMISSION REQUIREMENTS

Parameter							
No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
120	TckH2dtV	SYNC XMIT (MASTER & SLAVE) Clock high to data out valid	_	_	65	ns	
121	TckRF	Clock out rise time and fall time (Master Mode)	_	10	35	ns	
122	TdtRF	Data out rise time and fall time	_	10	35	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 17-10: USART MODULE: SYNCHRONOUS RECEIVE (MASTER/SLAVE) TIMING

TABLE 17-10: SERIAL PORT SYNCHRONOUS RECEIVE REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
125	TdtV2ckL	SYNC RCV (MASTER & SLAVE) Data hold before CK↓ (DT hold time)	15		_	ns	
126	TckL2dtl	Data hold after CK \downarrow (DT hold time)	15	_	_	ns	

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 19-3: CLKOUT AND I/O TIMING

TABLE 19-3:	CLKOUT AND I/O TIMING REQUIREMENTS

Parameter No.	Sym	Characteristic		Min	Тур†	Max	Units	Conditions
10	TosH2ckL	OSC1↓ to CLKOUT↓		_	15‡	30 ‡	ns	Note 1
11	TosH2ckH	OSC1↓ to CLKOUT	\uparrow	_	15‡	30 ‡	ns	Note 1
12	TckR	CLKOUT rise time		—	5‡	15 ‡	ns	Note 1
13	TckF	CLKOUT fall time		—	5‡	15 ‡	ns	Note 1
14	TckH2ioV	CLKOUT ↑ to Port out valid	PIC17CR42/42A/43/ R43/44	—	_	0.5TCY + 20 ‡	ns	Note 1
			PIC17LCR42/42A/43/ R43/44	_	—	0.5TCY + 50 ‡	ns	Note 1
15	TioV2ckH	Port in valid before CLKOUT↑	PIC17CR42/42A/43/ R43/44	0.25Tcy + 25 ‡	_		ns	Note 1
			PIC17LCR42/42A/43/ R43/44	0.25Tcy + 50 ‡	—	—	ns	Note 1
16	TckH2iol	Port in hold after CLKOUT1		0 ‡	—	_	ns	Note 1
17	TosH2ioV	OSC1 \downarrow (Q1 cycle) to Port out valid		—	—	100 ‡	ns	
18	TosH2iol	OSC1↓ (Q2 cycle) to Port input invalid (I/O in hold time)		0 ‡	-	—	ns	
19	TioV2osH	Port input valid to OSC1↓ (I/O in setup time)		30 ‡	_	—	ns	
20	TioR	Port output rise time		—	10 ‡	35 ‡	ns	
21	TioF	Port output fall time		_	10 ‡	35 ‡	ns	
22	TinHL	INT pin high or low time		25 *	—		ns	
23	TrbHL	RB7:RB0 change INT high or low time		25 *	_		ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

Note 1: Measurements are taken in EC Mode where CLKOUT output is 4 x Tosc.

21.3 44-Lead Plastic Leaded Chip Carrier (Square)

Package Group: Plastic Leaded Chip Carrier (PLCC)								
		Millimeters		Inches				
Symbol	Min	Max	Notes	Min	Мах	Notes		
Α	4.191	4.572		0.165	0.180			
A1	2.413	2.921		0.095	0.115			
D	17.399	17.653		0.685	0.695			
D1	16.510	16.663		0.650	0.656			
D2	15.494	16.002		0.610	0.630			
D3	12.700	12.700	Reference	0.500	0.500	Reference		
E	17.399	17.653		0.685	0.695			
E1	16.510	16.663		0.650	0.656			
E2	15.494	16.002		0.610	0.630			
E3	12.700	12.700	Reference	0.500	0.500	Reference		
N	44	44		44	44			
CP	_	0.102		_	0.004			
LT	0.203	0.381		0.008	0.015			

NOTES: