

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	8MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (8K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17lc44-08-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.0 PIC17C4X DEVICE VARIETIES

A variety of frequency ranges and packaging options are available. Depending on application and production requirements, the proper device option can be selected using the information in the PIC17C4X Product Selection System section at the end of this data sheet. When placing orders, please use the "PIC17C4X Product Identification System" at the back of this data sheet to specify the correct part number.

For the PIC17C4X family of devices, there are four device "types" as indicated in the device number:

- C, as in PIC17C42. These devices have EPROM type memory and operate over the standard voltage range.
- 2. LC, as in PIC17LC42. These devices have EPROM type memory, operate over an extended voltage range, and reduced frequency range.
- 3. **CR**, as in PIC17**CR**42. These devices have ROM type memory and operate over the standard voltage range.
- 4. LCR, as in PIC17LCR42. These devices have ROM type memory, operate over an extended voltage range, and reduced frequency range.

2.1 UV Erasable Devices

The UV erasable version, offered in CERDIP package, is optimal for prototype development and pilot programs.

The UV erasable version can be erased and reprogrammed to any of the configuration modes. Microchip's PRO MATETM programmer supports programming of the PIC17C4X. Third party programmers also are available; refer to the *Third Party Guide* for a list of sources.

2.2 <u>One-Time-Programmable (OTP)</u> <u>Devices</u>

The availability of OTP devices is especially useful for customers expecting frequent code changes and updates.

The OTP devices, packaged in plastic packages, permit the user to program them once. In addition to the program memory, the configuration bits must also be programmed.

2.3 <u>Quick-Turnaround-Production (QTP)</u> <u>Devices</u>

Microchip offers a QTP Programming Service for factory production orders. This service is made available for users who choose not to program a medium to high quantity of units and whose code patterns have stabilized. The devices are identical to the OTP devices but with all EPROM locations and configuration options already programmed by the factory. Certain code and prototype verification procedures apply before production shipments are available. Please contact your local Microchip Technology sales office for more details.

2.4 <u>Serialized Quick-Turnaround</u> <u>Production (SQTPSM) Devices</u>

Microchip offers a unique programming service where a few user-defined locations in each device are programmed with different serial numbers. The serial numbers may be random, pseudo-random or sequential.

Serial programming allows each device to have a unique number which can serve as an entry-code, password or ID number.

ROM devices do not allow serialization information in the program memory space.

For information on submitting ROM code, please contact your regional sales office.

2.5 Read Only Memory (ROM) Devices

Microchip offers masked ROM versions of several of the highest volume parts, thus giving customers a low cost option for high volume, mature products.

For information on submitting ROM code, please contact your regional sales office.

TABLE 9-7: PORTD FUNCTIONS

Name	Bit	Buffer Type	Function	
RD0/AD8	bit0	TTL	Input/Output or system bus address/data pin.	
RD1/AD9	bit1	TTL	Input/Output or system bus address/data pin.	
RD2/AD10	bit2	TTL	Input/Output or system bus address/data pin.	
RD3/AD11	bit3	TTL	Input/Output or system bus address/data pin.	
RD4/AD12	bit4	TTL	Input/Output or system bus address/data pin.	
RD5/AD13	bit5	TTL	Input/Output or system bus address/data pin.	
RD6/AD14	bit6	TTL	Input/Output or system bus address/data pin.	
RD7/AD15	bit7	TTL	Input/Output or system bus address/data pin.	

Legend: TTL = TTL input.

TABLE 9-8: REGISTERS/BITS ASSOCIATED WITH PORTD

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
13h, Bank 1	PORTD	RD7/ AD15	RD6/ AD14	RD5/ AD13	RD4/ AD12	RD3/ AD11	RD2/ AD10	RD1/ AD9	RD0/ AD8	xxxx xxxx	uuuu uuuu
12h, Bank 1	DDRD	DRD Data direction register for PORTD							1111 1111	1111 1111	

Legend: x = unknown, u = unchanged.

Note 1: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

9.4.1 PORTE AND DDRE REGISTER

PORTE is a 3-bit bi-directional port. The corresponding data direction register is DDRE. A '1' in DDRE configures the corresponding port pin as an input. A '0' in the DDRE register configures the corresponding port pin as an output. Reading PORTE reads the status of the pins, whereas writing to it will write to the port latch. PORTE is multiplexed with the system bus. When operating as the system bus, PORTE contains the control signals for the address/data bus (AD15:AD0). These control signals are Address Latch Enable (ALE), Output Enable (\overline{OE}), and Write (\overline{WR}). The control signals \overline{OE} and \overline{WR} are active low signals. The timing for the system bus is shown in the Electrical Characteristics section.

Note: This port is configured as the system bus when the device's configuration bits are selected to Microprocessor or Extended Microcontroller modes. In the two other microcontroller modes, this port is a general purpose I/O. Example 9-4 shows the instruction sequence to initialize PORTE. The Bank Select Register (BSR) must be selected to Bank 1 for the port to be initialized.

EXAMPLE 9-4: INITIALIZING PORTE

MOVLB	1	;	Select Bank 1
CLRF	PORTE	;	Initialize PORTE data
		;	latches before setting
		;	the data direction
		;	register
MOVLW	0x03	;	Value used to initialize
		;	data direction
MOVWF	DDRE	;	Set RE<1:0> as inputs
		;	RE<2> as outputs
		;	RE<7:3> are always
		;	read as '0'

FIGURE 9-8: PORTE BLOCK DIAGRAM (IN I/O PORT MODE)

FIGURE 12-2: TCON2 REGISTER (ADDRESS: 17h, BANK 3)

<u> </u>	<u> </u>	
CA2OV	F CA1OVF PWM2ON PWM1ON CA1/PR3 TMR3ON TMR2ON TMR1ON	R = Readable bit
bit7	bitO	-n = Value at POR reset
bit 7:	CA2OVF : Capture2 Overflow Status bit This bit indicates that the capture value had not been read from the captur before the next capture event occurred. The capture register retains the older capture before overflow). Subsequent capture events will not update the capt value until the capture register has been read (both bytes). 1 = Overflow occurred on Capture2 register 0 = No overflow occurred on Capture2 register	e register pair (CA2H:CA2L) st unread capture value (last oture register with the Timer3
bit 6:	CA10VF : Capture1 Overflow Status bit This bit indicates that the capture value had not been read from (PR3H/CA2H:PR3L/CA2L) before the next capture event occurred. The cap est unread capture value (last capture before overflow). Subsequent captur capture register with the TMR3 value until the capture register has been read 1 = Overflow occurred on Capture1 register 0 = No overflow occurred on Capture1 register	the capture register pair oture register retains the old- re events will not update the ad (both bytes).
bit 5:	PWM2ON : PWM2 On bit 1 = PWM2 is enabled (The RB3/PWM2 pin ignores the state of the DDRB< 0 = PWM2 is disabled (The RB3/PWM2 pin uses the state of the DDRB<3>	3> bit) bit for data direction)
bit 4:	PWM10N : PWM1 On bit 1 = PWM1 is enabled (The RB2/PWM1 pin ignores the state of the DDRB< 0 = PWM1 is disabled (The RB2/PWM1 pin uses the state of the DDRB<2>	2> bit) bit for data direction)
bit 3:	CA1/PR3 : CA1/PR3 Register Mode Select bit 1 = Enables Capture1 (PR3H/CA1H:PR3L/CA1L is the Capture1 register. To a period register) 0 = Enables the Period register (PR3H/CA1H:PR3L/CA1L is the Period regi	imer3 runs without ster for Timer3)
bit 2:	TMR3ON : Timer3 On bit 1 = Starts Timer3 0 = Stops Timer3	
bit 1:	TMR2ON : Timer2 On bit This bit controls the incrementing of the Timer2 register. When Timer2:Time is set), TMR2ON must be set. This allows the MSB of the timer to increment 1 = Starts Timer2 (Must be enabled if the T16 bit (TCON1<3>) is set) 0 = Stops Timer2	er1 form the 16-bit timer (T16 ht.
bit 0:	TMR1ON : Timer1 On bit <u>When T16 is set (in 16-bit Timer Mode)</u> 1 = Starts 16-bit Timer2:Timer1 0 = Stops 16-bit Timer2:Timer1	
	<u>When T16 is clear (in 8-bit Timer Mode)</u> 1 = Starts 8-bit Timer1 0 = Stops 8-bit Timer1	

12.1.3 USING PULSE WIDTH MODULATION (PWM) OUTPUTS WITH TMR1 AND TMR2

Two high speed pulse width modulation (PWM) outputs are provided. The PWM1 output uses Timer1 as its time-base, while PWM2 may be software configured to use either Timer1 or Timer2 as the time-base. The PWM outputs are on the RB2/PWM1 and RB3/PWM2 pins.

Each PWM output has a maximum resolution of 10-bits. At 10-bit resolution, the PWM output frequency is 24.4 kHz (@ 25 MHz clock) and at 8-bit resolution the PWM output frequency is 97.7 kHz. The duty cycle of the output can vary from 0% to 100%.

Figure 12-5 shows a simplified block diagram of the PWM module. The duty cycle register is double buffered for glitch free operation. Figure 12-6 shows how a glitch could occur if the duty cycle registers were not double buffered.

The user needs to set the PWM1ON bit (TCON2<4>) to enable the PWM1 output. When the PWM1ON bit is set, the RB2/PWM1 pin is configured as PWM1 output and forced as an output irrespective of the data direction bit (DDRB<2>). When the PWM1ON bit is clear, the pin behaves as a port pin and its direction is controlled by its data direction bit (DDRB<2>). Similarly, the PWM2ON (TCON2<5>) bit controls the configuration of the RB3/PWM2 pin.

FIGURE 12-5: SIMPLIFIED PWM BLOCK DIAGRAM

FIGURE 12-6: PWM OUTPUT

12.2.3 EXTERNAL CLOCK INPUT FOR TIMER3

When TMR3CS is set, the 16-bit TMR3 increments on the falling edge of clock input TCLK3. The input on the RB5/TCLK3 pin is sampled and synchronized by the internal phase clocks twice every instruction cycle. This causes a delay from the time a falling edge appears on TCLK3 to the time TMR3 is actually incremented. For the external clock input timing requirements, see the Electrical Specification section. Figure 12-9 shows the timing diagram when operating from an external clock.

12.2.4 READING/WRITING TIMER3

Since Timer3 is a 16-bit timer and only 8-bits at a time can be read or written, care should be taken when reading or writing while the timer is running. The best method to read or write the timer is to stop the timer, perform any read or write operation, and then restart Timer3 (using the TMR3ON bit). However, if it is necessary to keep Timer3 free-running, care must be taken. For writing to the 16-bit TMR3, Example 12-2 may be used. For reading the 16-bit TMR3, Example 12-3 may be used. Interrupts must be disabled during this routine.

EXAMPLE 12-2: WRITING TO TMR3

BSF CPUSTA, GLINTD ;Disable interrupt MOVFP RAM_L, TMR3L ; MOVFP RAM_H, TMR3H ; BCF CPUSTA, GLINTD ;Done,enable interrupt

EXAMPLE 12-3: READING FROM TMR3

MOVPF	TMR3L,	TMPLO	;read low tmr0
MOVPF	TMR3H,	TMPHI	;read high tmr0
MOVFP	TMPLO,	WREG	;tmplo -> wreg
CPFSLT	TMR3L,	WREG	;tmr0l < wreg?
RETURN			;no then return
MOVPF	TMR3L,	TMPLO	;read low tmr0
MOVPF	TMR3H,	TMPHI	;read high tmr0
RETURN			;return

FIGURE 12-9: TMR1, TMR2, AND TMR3 OPERATION IN EXTERNAL CLOCK MODE

FIGURE 12-10: TMR1, TMR2, AND TMR3 OPERATION IN TIMER MODE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 3	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h, Bank 3	TCON2	CA2OVF	CA10VF	PWM2ON	PWM1ON	CA1/PR3	TMR3ON	TMR2ON	TMR10N	0000 0000	0000 0000
10h, Bank 2	TMR1	Timer1 re	gister							xxxx xxxx	uuuu uuuu
11h, Bank 2	TMR2	Timer2 re	gister							xxxx xxxx	uuuu uuuu
12h, Bank 2	TMR3L	TMR3 reg	ister; low by	⁄te						xxxx xxxx	uuuu uuuu
13h, Bank 2	TMR3H	TMR3 reg	ister; high b	yte						xxxx xxxx	uuuu uuuu
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
07h, Unbanked	INTSTA	PEIF	T0CKIF	T0IF	INTF	PEIE	T0CKIE	TOIE	INTE	0000 0000	0000 0000
06h, Unbanked	CPUSTA	—	-	STKAV	GLINTD	TO	PD	—	—	11 11	11 qq
14h, Bank 2	PR1	Timer1 pe	riod registe	r		•				xxxx xxxx	uuuu uuuu
15h, Bank 2	PR2	Timer2 pe	riod registe	r						xxxx xxxx	uuuu uuuu
16h, Bank 2	PR3L/CA1L	Timer3 pe	riod/capture	e1 register; l	ow byte					xxxx xxxx	uuuu uuuu
17h, Bank 2	PR3H/CA1H	Timer3 pe	riod/capture	e1 register; l	high byte					xxxx xxxx	uuuu uuuu
10h, Bank 3	PW1DCL	DC1	DC0	—	_	—	—	—	—	xx	uu
11h, Bank 3	PW2DCL	DC1	DC0	TM2PW2	_	—	—	—	—	xx0	uu0
12h, Bank 3	PW1DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	xxxx xxxx	uuuu uuuu
13h, Bank 3	PW2DCH	DC9	DC8	DC7	DC6	DC5	DC4	DC3	DC2	xxxx xxxx	uuuu uuuu
14h, Bank 3	CA2L	Capture2	low byte							xxxx xxxx	uuuu uuuu
15h, Bank 3	CA2H	Capture2	high byte							xxxx xxxx	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q - value depends on condition, shaded cells are not used by TMR1, TMR2 or TMR3.

Note 1: Other (non power-up) resets include: external reset through MCLR and WDT Timer Reset.

FIGURE 14-3: CRYSTAL OPERATION, OVERTONE CRYSTALS (XT OSC CONFIGURATION)

TABLE 14-2: CAPACITOR SELECTION FOR CERAMIC RESONATORS

Oscillator Type	Resonator Frequency	Capacitor Range C1 = C2
LF	455 kHz 2.0 MHz	15 - 68 pF 10 - 33 pF
ХТ	4.0 MHz 8.0 MHz 16.0 MHz	22 - 68 pF 33 - 100 pF 33 - 100 pF

Higher capacitance increases the stability of the oscillator but also increases the start-up time. These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.

Resonators Used:

455 kHz	Panasonic EFO-A455K04B	± 0.3%	
2.0 MHz	Murata Erie CSA2.00MG	± 0.5%	
4.0 MHz	Murata Erie CSA4.00MG	± 0.5%	
8.0 MHz	Murata Erie CSA8.00MT	± 0.5%	
16.0 MHz	Murata Erie CSA16.00MX	± 0.5%	
Resonators used did not have built-in capacitors.			

TABLE 14-3:CAPACITOR SELECTION
FOR CRYSTAL OSCILLATOR

Osc Type	Freq	C1	C2
LF	32 kHz ⁽¹⁾	100-150 pF	100-150 pF
	1 MHz	10-33 pF	10-33 pF
	2 MHz	10-33 pF	10-33 pF
XT	2 MHz	47-100 pF	47-100 pF
	4 MHz	15-68 pF	15-68 pF
	8 MHz ⁽²⁾	15-47 pF	15-47 pF
	16 MHz	TBD	TBD
	25 MHz	15-47 pF	15-47 pF
	32 MHz ⁽³⁾	₍₃₎	₍₃₎

Higher capacitance increases the stability of the oscillator but also increases the start-up time and the oscillator current. These values are for design guidance only. Rs may be required in XT mode to avoid overdriving the crystals with low drive level specification. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values for external components.

- Note 1: For VDD > 4.5V, C1 = C2 \approx 30 pF is recommended.
 - Rs of 330Ω is required for a capacitor combination of 15/15 pF.
 - 3: Only the capacitance of the board was present.

Crystals Used:

32.768 kHz	Epson C-001R32.768K-A	± 20 PPM
1.0 MHz	ECS-10-13-1	\pm 50 PPM
2.0 MHz	ECS-20-20-1	± 50 PPM
4.0 MHz	ECS-40-20-1	± 50 PPM
8.0 MHz	ECS ECS-80-S-4	± 50 PPM
	ECS-80-18-1	
16.0 MHz	ECS-160-20-1	TBD
25 MHz	CTS CTS25M	± 50 PPM
32 MHz	CRYSTEK HF-2	± 50 PPM

14.2.3 EXTERNAL CLOCK OSCILLATOR

In the EC oscillator mode, the OSC1 input can be driven by CMOS drivers. In this mode, the OSC1/CLKIN pin is hi-impedance and the OSC2/CLK-OUT pin is the CLKOUT output (4 Tosc).

FIGURE 14-4: EXTERNAL CLOCK INPUT OPERATION (EC OSC CONFIGURATION)

14.2.4 EXTERNAL CRYSTAL OSCILLATOR CIRCUIT

Either a prepackaged oscillator can be used or a simple oscillator circuit with TTL gates can be built. Prepackaged oscillators provide a wide operating range and better stability. A well-designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with series resonance, or one with parallel resonance.

Figure 14-5 shows implementation of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180-degree phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometer biases the 74AS04 in the linear region. This could be used for external oscillator designs.

FIGURE 14-5: EXTERNAL PARALLEL RESONANT CRYSTAL OSCILLATOR CIRCUIT

Figure 14-6 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverter performs a 180-degree phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

FIGURE 14-6: EXTERNAL SERIES RESONANT CRYSTAL OSCILLATOR CIRCUIT

14.2.5 RC OSCILLATOR

For timing insensitive applications, the RC device option offers additional cost savings. RC oscillator frequency is a function of the supply voltage, the resistor (Rext) and capacitor (Cext) values, and the operating temperature. In addition to this, oscillator frequency will vary from unit to unit due to normal process parameter variation. Furthermore, the difference in lead frame capacitance between package types will also affect oscillation frequency, especially for low Cext values. The user also needs to take into account variation due to tolerance of external R and C components used. Figure 14-6 shows how the R/C combination is connected to the PIC17CXX. For Rext values below 2.2 kQ, the oscillator operation may become unstable, or stop completely. For very high Rext values (e.g. 1 M Ω), the oscillator becomes sensitive to noise, humidity and leakage. Thus, we recommend to keep Rext between 3 $k\Omega$ and 100 $k\Omega$.

Although the oscillator will operate with no external capacitor (Cext = 0 pF), we recommend using values above 20 pF for noise and stability reasons. With little or no external capacitance, oscillation frequency can vary dramatically due to changes in external capacitances, such as PCB trace capacitance or package lead frame capacitance.

See Section 18.0 for RC frequency variation from part to part due to normal process variation. The variation is larger for larger R (since leakage current variation will affect RC frequency more for large R) and for smaller C (since variation of input capacitance will affect RC frequency more).

See Section 18.0 for variation of oscillator frequency due to VDD for given Rext/Cext values as well as frequency variation due to operating temperature for given R, C, and VDD values.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin, and can be used for test purposes or to synchronize other logic (see Figure 3-2 for waveform).

FIGURE 14-7: RC OSCILLATOR MODE

AND	ANDWF AND WREG with f							
Synt	tax:	[label] A	NDWF	f,d				
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 25 \\ d \in \ [0,1] \end{array}$	5					
Ope	ration:	(WREG) .	(WREG) .AND. (f) \rightarrow (dest)					
Stat	us Affected:	Z						
Enco	oding:	0000	101d	ffff	ffff			
Des	cription:	The conten register 'f'. in WREG. I back in reg	its of WR If 'd' is 0 f 'd' is 1 t ister 'f'.	EG are AN the result he result is	D'ed with is stored s stored			
Wor	ds:	1						
Cycl	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q	3	Q4			
	Decode	Read register 'f'	Exect	ute V de:	Vrite to stination			
<u>Exa</u>	<u>mple</u> :	ANDWF	REG, 1					
Before Instruction WREG = 0x17 REG = 0xC2								
	After Instruct WREG REG	tion = 0x17 = 0x02						

BCF		Bit Clear	f					
Synt	tax:	[label] E	[label] BCF f,b					
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 25 \\ 0 \leq b \leq 7 \end{array}$	$\begin{array}{l} 0 \leq f \leq 255 \\ 0 \leq b \leq 7 \end{array}$					
Ope	ration:	$0 \rightarrow (f < b >$	»)					
Stat	us Affected:	None						
Enc	oding:	1000	1bbb	fff	f	ffff		
Des	cription:	Bit 'b' in re	Bit 'b' in register 'f' is cleared.					
Words:		1	1					
Cycles:		1	1					
QC	ycle Activity:							
	Q1	Q2	Q3		Q4			
	Decode	Read register 'f'	Execu	ute	re	Write gister 'f'		
Example:		BCF	FLAG_R	EG,	7			
Before Instruction FLAG_REG = 0xC7								
After Instruction FLAG_REG = 0x47								

CAL	.L	Subroutir	ne Call		С	LRF	Clear f			
Synt	ax:	[label] C	CALL k		S	yntax:	[<i>label</i>] CL	.RF f,s	;	
Ope	rands:	$0 \le k \le 40$	95		0	perands:	$0 \le f \le 25$	5		
Ope	ration:	PC+ 1→ T k<12:8> –	$OS, k \rightarrow PC \rightarrow PCLATH < 4$	<12:0>, :0>;	0	peration:	$00h \rightarrow f, s$ $00h \rightarrow de$	s ∈ [0,1] est	l	
		PC<15:13	$> \rightarrow PCLATH$	1<7:5>	S	atus Affected:	None			
Stat	us Affected:	None			E	ncoding:	0010	100s	ffff	ffff
Enc	oding:	111k	kkkk kkl	k kkkk	D	escription:	Clears the	contents	of the sp	pecified rea-
Description: Subroutine call within 8K page. First, return address (PC+1) is pushed onto the stack. The 13-bit value is loaded into PC bits<12:0>. Then the upper-eight bits of the PC are copied into PCLATH.			·	ister(s). s = 0: Data WREG are s = 1: Data cleared.	a memory e cleared. a memory	v location	'f' and 'f' is			
	Call is a two-cycle instruction.		W	ords:	1					
		See LCALL for calls outside 8K memory space.			С	ycles:	1			
Wor	ds:	1			Q	Cycle Activity:				
Cycl	es:	2				Q1	Q2	Q	3	Q4
QC	vcle Activity:					Decode	Read	Exec	ute	Write
	Q1	Q2	Q3	Q4						and other
	Decode	Read literal 'k'<7:0>	Execute	NOP						specified register
	Forced NOP	NOP	Execute	NOP] <u>E</u> :	<u>kample</u> :	CLRF	FLAC	G_REG	
<u>Exa</u>	<u>mple</u> : Before Instru	HERE	CALL THE	RE		Before Instr FLAG_R	uction EG = 0x	κ5A		
PC = Address(HERE)				After Instruc	tion					
	After Instruct PC =	tion Address(THI	ERE)			FLAG_R	EG = 0	« 00		

PC = Address(THERE) TOS = Address(HERE + 1)

SLE	SLEEP Enter SLEEP mode						
Synt	ax:	[label] S	[label] SLEEP				
Ope	rands:	None					
Ope	ration:	$00h \rightarrow W$	DT;				
		$0 \rightarrow WDT$	F postsc	aler;			
		$1 \rightarrow IO;$ $0 \rightarrow \overline{PD}$					
Stat	us Affected.						
Enor	us Allecteu.		0000	0000	0.011		
Enco	baing.	0000	0000	0000	0011		
Des	cription:	The power cleared. Th set. Watch are cleared The proce	The power down status bit (PD) is cleared. The time-out status bit (TO) is set. Watchdog Timer and its prescaler are cleared.				
		mode with	mode with the oscillator stopped.				
Wor	ds:	1					
Cycl	es:	1					
QC	ycle Activity:						
	Q1	Q2	Q3		Q4		
	Decode	Read register PCLATH	Execu	ite	NOP		
<u>Exa</u>	<u>mple</u> :	SLEEP					
Before Instruction $\overline{TO} = ?$ $\overline{PD} = ?$							
	After Instruc	tion					
1 W	$\overline{TO} = \overline{PD} =$	1† 0		-1			

†	If WDT	causes	wake-up,	this b	it is cleared	ł
---	--------	--------	----------	--------	---------------	---

SUE	BLW	s	ubtr	act	WREG	from	n Lit	eral	
Synt	ax:	[label] :	SUBLW	k			
Ope	rands:	0	$0 \le k \le 255$						
Ope	ration:	k	- (N	/RE	$\Xi G) \rightarrow (V$	VRE	G)		
Stat	us Affected:	C	V, C	, D	C, Z				
Encoding:			1013	1	0010	kk}	ck	kkkk	
Description:			/REG eral ' /REG	6 is : k'. T 6.	subtracte he result	d fron is pla	n the aced	e eight bit in	
Wor	ds:	1							
Cycl	es:	1							
QC	ycle Activity:								
	Q1		Q2		Q3			Q4	
	Decode	F lite	Read eral 'k	.'	Execu	ite	۷	Vrite to VREG	
<u>Exa</u>	<u>mple 1</u> :	S	UBLW	(0x02				
	Before Instru WREG C After Instruct	ictior = = tion	ו 1 ?						
	WREG C Z	= = =	1 1 0	; re	esult is po	ositive			
<u>Exa</u>	<u>mple 2</u> :								
	Before Instru WREG C	ictior = =	ו 2 ?						
Exai	After Instruct WREG C Z mple 3:	tion = = =	0 1 1	; re	esult is ze	ero			
	Before Instru WREG C	ictior = =	ו 3 ?						
	After Instruct WREG C Z	tion = = =	FF 0 1	; (2 ; re	's comple esult is ne	ement egativ	t) e		

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 18-6: TRANSCONDUCTANCE (gm) OF XT OSCILLATOR vs. VDD

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 18-17: IOL vs. VOL, VDD = 5V

Applicable Devices 42 R42 42A 43 R43 44

19.0 PIC17CR42/42A/43/R43/44 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †

Ambient temperature under bias	55 to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0 to +7.5V
Voltage on MCLR with respect to Vss (Note 2)	0.6V to +14V
Voltage on RA2 and RA3 with respect to Vss	0.6V to +14V
Voltage on all other pins with respect to Vss	0.6V to VDD + 0.6V
Total power dissipation (Note 1)	1.0W
Maximum current out of Vss pin(s) - total	250 mA
Maximum current into VDD pin(s) - total	200 mA
Input clamp current, Iik (VI < 0 or VI > VDD)	±20 mA
Output clamp current, IOK (VO < 0 or VO > VDD)	±20 mA
Maximum output current sunk by any I/O pin (except RA2 and RA3)	35 mA
Maximum output current sunk by RA2 or RA3 pins	60 mA
Maximum output current sourced by any I/O pin	20 mA
Maximum current sunk by PORTA and PORTB (combined)	150 mA
Maximum current sourced by PORTA and PORTB (combined)	100 mA
Maximum current sunk by PORTC, PORTD and PORTE (combined)	150 mA
Maximum current sourced by PORTC, PORTD and PORTE (combined)	100 mA
Note 1: Power dissipation is calculated as follows: Pdis = VDD x {IDD - Σ IOH} + Σ {(VDD-VOH)) x IOH} + Σ (Vol x IOL)

Note 2: Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50-100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

NOTES:

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 20-9: TYPICAL IPD vs. VDD WATCHDOG DISABLED 25°C

FIGURE 20-10: MAXIMUM IPD vs. VDD WATCHDOG DISABLED

E.7 <u>PIC16C9XX Family Of Devices</u>

MP-C C Compiler	145
MPSIM Software Simulator	143, 145
MULLW	129
Multiply Examples	
16 x 16 Routine	50
16 x 16 Signed Routine	51
8 x 8 Routine	49
8 x 8 Signed Routine	49
MULWF	129

Ν

NEGW 1	30
NOP1	30

0

OERR	84
Opcode Field Descriptions	107
OSC Selection	
Oscillator	
Configuration	100
Crystal	
External Clock	101
External Crystal Circuit	102
External Parallel Resonant Crystal Circuit	102
External Series Resonant Crystal Circuit	102
RC	102
RC Frequencies	165, 195
Oscillator Start-up Time (Figure)	
Oscillator Start-up Timer (OST)	15, 99
OST	15, 99
OV	
Overflow (OV)	9

Ρ

Package Marking Information	
Packaging Information	
Parameter Measurement Information	
PC (Program Counter)	
PCH	
PCL	34, 41, 108
PCLATH	
PD	
PEIE	
PEIF	
Peripheral Bank	
Peripheral Interrupt Enable	
Peripheral Interrupt Request (PIR)	
PICDEM-1 Low-Cost PIC16/17 Demo Board	143, 144
PICDEM-2 Low-Cost PIC16CXX Demo Board	143, 144
PICDEM-3 Low-Cost PIC16C9XXX Demo Boar	d144
PICMASTER [®] RT In-Circuit Emulator	
PICSTART [®] Low-Cost Development System	
PIE	34, 92, 96, 98
Pin Compatible Devices	
PIR	34, 92, 96, 98
PM0	
PM1	
POP	
POR	
PORTA	19, 34, 53
PORTB	19, 34, 55
PORTC	19, 34, 58

PORTD	19,	34,	60
PORTE	19,	34,	62
Power-down Mode		1	05
Power-on Reset (POR)		15.	99
Power-up Timer (PWRT)		15	99
PR1		20	35
PR2		20,	35
		20,	20
			20
	•••••		20
	•••••		30
PR3L/CATL	•••••		35
	•••••		69
PRO MATE® Universal Programmer	•••••	1	43
PRODH	•••••		20
PRODL	•••••		20
Program Counter (PC)	•••••		41
Program Memory			
External Access Waveforms			31
External Connection Diagram			31
Мар			29
Modes			
Extended Microcontroller			29
Microcontroller			29
Microprocessor			29
Protected Microcontroller			29
			20
Organization			20
Transfore from Date Momeny			42
Prate start Misses as testler	•••••		43
Protected Microcontroller	•••••		29
PS0	•••••	38,	67
PS1	•••••	38,	67
PS2		38,	67
PS3		38,	67
PUSH		27,	39
PW1DCH		20,	35
PW1DCL		20,	35
PW2DCH		20,	35
PW2DCL		20,	35
PWM		71,	75
Duty Cycle			76
External Clock Source			76
Frequency vs. Resolution			76
			76
Max Resolution/Frequency for External			
Clock Input			77
			75
Poriode			76
	•••••		70
	•••••	 70	12
	•••••	12,	15
	•••••	 — a	12
PWM2ON		72,	75
P/WR I		15,	99

R

RA1/T0CKI pin	
RBIE	
RBIF	
RBPU	
RC Oscillator	
RC Oscillator Frequencies	
RCIE	
RCIF	
RCREG	19, 34, 91, 92, 96, 97
RCSTA	
Reading 16-bit Value	