

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	PIC
Core Size	8-Bit
Speed	8MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (8K x 16)
Program Memory Type	ОТР
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17lc44t-08-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 OVERVIEW

This data sheet covers the PIC17C4X group of the PIC17CXX family of microcontrollers. The following devices are discussed in this data sheet:

- PIC17C42
- PIC17CR42
- PIC17C42A
- PIC17C43
- PIC17CR43
- PIC17C44

The PIC17CR42, PIC17C42A, PIC17C43, PIC17CR43, and PIC17C44 devices include architectural enhancements over the PIC17C42. These enhancements will be discussed throughout this data sheet.

The PIC17C4X devices are 40/44-Pin, EPROM/ROM-based members of the versatile PIC17CXX family of low-cost, high-performance, CMOS, fully-static, 8-bit microcontrollers.

All PIC16/17 microcontrollers employ an advanced RISC architecture. The PIC17CXX has enhanced core features, 16-level deep stack, and multiple internal and external interrupt sources. The separate instruction and data buses of the Harvard architecture allow a 16-bit wide instruction word with a separate 8-bit wide data. The two stage instruction pipeline allows all instructions to execute in a single cycle, except for program branches (which require two cycles). A total of 55 instructions (reduced instruction set) are available in the PIC17C42 and 58 instructions in all the other devices. Additionally, a large register set gives some of the architectural innovations used to achieve a very high performance. For mathematical intensive applications all devices, except the PIC17C42, have a single cycle 8 x 8 Hardware Multiplier.

PIC17CXX microcontrollers typically achieve a 2:1 code compression and a 4:1 speed improvement over other 8-bit microcontrollers in their class.

PIC17C4X devices have up to 454 bytes of RAM and 33 I/O pins. In addition, the PIC17C4X adds several peripheral features useful in many high performance applications including:

- · Four timer/counters
- Two capture inputs
- Two PWM outputs
- A Universal Synchronous Asynchronous Receiver Transmitter (USART)

These special features reduce external components, thus reducing cost, enhancing system reliability and reducing power consumption. There are four oscillator options, of which the single pin RC oscillator provides a low-cost solution, the LF oscillator is for low frequency crystals and minimizes power consumption, XT is a standard crystal, and the EC is for external clock input. The SLEEP (power-down) mode offers additional power saving. The user can wake-up the chip from SLEEP through several external and internal interrupts and device resets.

There are four configuration options for the device operational modes:

- Microprocessor
- Microcontroller
- Extended microcontroller
- Protected microcontroller

The microprocessor and extended microcontroller modes allow up to 64K-words of external program memory.

A highly reliable Watchdog Timer with its own on-chip RC oscillator provides protection against software malfunction.

Table 1-1 lists the features of the PIC17C4X devices.

A UV-erasable CERDIP-packaged version is ideal for code development while the cost-effective One-Time Programmable (OTP) version is suitable for production in any volume.

The PIC17C4X fits perfectly in applications ranging from precise motor control and industrial process control to automotive, instrumentation, and telecom applications. Other applications that require extremely fast execution of complex software programs or the flexibility of programming the software code as one of the last steps of the manufacturing process would also be well suited. The EPROM technology makes customization of application programs (with unique security codes, combinations, model numbers, parameter storage, etc.) fast and convenient. Small footprint package options make the PIC17C4X ideal for applications with space limitations that require high performance. High speed execution, powerful peripheral features, flexible I/O, and low power consumption all at low cost make the PIC17C4X ideal for a wide range of embedded control applications.

1.1 Family and Upward Compatibility

Those users familiar with the PIC16C5X and PIC16CXX families of microcontrollers will see the architectural enhancements that have been implemented. These enhancements allow the device to be more efficient in software and hardware requirements. Please refer to Appendix A for a detailed list of enhancements and modifications. Code written for PIC16C5X or PIC16CXX can be easily ported to PIC17CXX family of devices (Appendix B).

1.2 Development Support

The PIC17CXX family is supported by a full-featured macro assembler, a software simulator, an in-circuit emulator, a universal programmer, a "C" compiler, and fuzzy logic support tools.

^{© 1996} Microchip Technology Inc.

5.4 Interrupt Operation

Global Interrupt Disable bit, GLINTD (CPUSTA<4>), enables all unmasked interrupts (if clear) or disables all interrupts (if set). Individual interrupts can be disabled through their corresponding enable bits in the INTSTA register. Peripheral interrupts need either the global peripheral enable PEIE bit disabled, or the specific peripheral enable bit disabled. Disabling the peripherals via the global peripheral enable bit, disables all peripheral interrupts. GLINTD is set on reset (interrupts disabled).

The RETFIE instruction allows returning from interrupt and re-enable interrupts at the same time.

When an interrupt is responded to, the GLINTD bit is automatically set to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with interrupt vector. There are four interrupt vectors to reduce interrupt latency.

The peripheral interrupt vector has multiple interrupt sources. Once in the peripheral interrupt service routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The peripheral interrupt flag bit(s) must be cleared in software before reenabling interrupts to avoid continuous interrupts.

The PIC17C4X devices have four interrupt vectors. These vectors and their hardware priority are shown in Table 5-1. If two enabled interrupts occur "at the same time", the interrupt of the highest priority will be serviced first. This means that the vector address of that interrupt will be loaded into the program counter (PC).

TABLE 5-1: INTERRUPT VECTORS/ PRIORITIES

Address	Vector	Priority
0008h	External Interrupt on RA0/ INT pin (INTF)	1 (Highest)
0010h	TMR0 overflow interrupt (T0IF)	2
0018h	External Interrupt on T0CKI (T0CKIF)	3
0020h	Peripherals (PEIF)	4 (Lowest)

- **Note 1:** Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GLINTD bit.
- **Note 2:** When disabling any of the INTSTA enable bits, the GLINTD bit should be set (disabled).

Note 3: For the PIC17C42 only: If an interrupt occurs while the Global Interrupt Disable (GLINTD) bit is being set, the GLINTD bit may unintentionally be reenabled by the user's Interrupt Service Routine (the RETFIE instruction). The events that would cause this to occur are:

- 1. An interrupt occurs simultaneously with an instruction that sets the GLINTD bit.
- 2. The program branches to the Interrupt vector and executes the Interrupt Service Routine.
- 3. The Interrupt Service Routine completes with the execution of the RET-FIE instruction. This causes the GLINTD bit to be cleared (enables interrupts), and the program returns to the instruction after the one which was meant to disable interrupts.

The method to ensure that interrupts are globally disabled is:

1. Ensure that the GLINTD bit was set by the instruction, as shown in the follow-ing code:

LOOP	BSF	CPUSTA,	GLINTD	;	Disable Global
				;	Interrupt
	BTFSS	CPUSTA,	GLINTD	;	Global Interrupt
				;	Disabled?
	GOTO	LOOP		;	NO, try again
				;	YES, continue
				;	with program
				:	low

Example 9-1 shows the instruction sequence to initialize PORTB. The Bank Select Register (BSR) must be selected to Bank 0 for the port to be initialized.

EXAMPLE 9-1: INITIALIZING PORTB

MOVLB	0	;	Select Bank 0
CLRF	PORTB	;	Initialize PORTB by clearing
		;	output data latches
MOVLW	0xCF	;	Value used to initialize
		;	data direction
MOVWF	DDRB	;	Set RB<3:0> as inputs
		;	RB<5:4> as outputs
		;	RB<7:6> as inputs

Name	Bit	Buffer Type	Function
RB0/CAP1	bit0	ST	Input/Output or the RB0/CAP1 input pin. Software programmable weak pull- up and interrupt on change features.
RB1/CAP2	bit1	ST	Input/Output or the RB1/CAP2 input pin. Software programmable weak pull- up and interrupt on change features.
RB2/PWM1	bit2	ST	Input/Output or the RB2/PWM1 output pin. Software programmable weak pull-up and interrupt on change features.
RB3/PWM2	bit3	ST	Input/Output or the RB3/PWM2 output pin. Software programmable weak pull-up and interrupt on change features.
RB4/TCLK12	bit4	ST	Input/Output or the external clock input to Timer1 and Timer2. Software pro- grammable weak pull-up and interrupt on change features.
RB5/TCLK3	bit5	ST	Input/Output or the external clock input to Timer3. Software programmable weak pull-up and interrupt on change features.
RB6	bit6	ST	Input/Output pin. Software programmable weak pull-up and interrupt on change features.
RB7	bit7	ST	Input/Output pin. Software programmable weak pull-up and interrupt on change features.

TABLE 9-3: PORTB FUNCTIONS

Legend: ST = Schmitt Trigger input.

TABLE 9-4: REGISTERS/BITS ASSOCIATED WITH PORTB

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
12h, Bank 0	PORTB	PORTB d	ata latch							xxxx xxxx	uuuu uuuu
11h, Bank 0	DDRB	Data dire	ction registe	er for PORTE	3					1111 1111	1111 1111
10h, Bank 0	PORTA	RBPU	—	RA5	RA4	RA3	RA2	RA1/T0CKI	RA0/INT	0-xx xxxx	0-uu uuuu
06h, Unbanked	CPUSTA	_	_	STKAV	GLINTD	TO	PD	—		11 11	11 qq
07h, Unbanked	INTSTA	PEIF	TOCKIF	T0IF	INTF	PEIE	TOCKIE	T0IE	INTE	0000 0000	0000 0000
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
16h, Bank 3	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h, Bank 3	TCON2	CA2OVF	CA10VF	PWM2ON	PWM1ON	CA1/PR3	TMR3ON	TMR2ON	TMR10N	0000 0000	0000 0000

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = Value depends on condition.

Shaded cells are not used by PORTB.

Note 1: Other (non power-up) resets include: external reset through MCLR and the Watchdog Timer Reset.

9.4 PORTD and DDRD Registers

PORTD is an 8-bit bi-directional port. The corresponding data direction register is DDRD. A '1' in DDRD configures the corresponding port pin as an input. A '0' in the DDRC register configures the corresponding port pin as an output. Reading PORTD reads the status of the pins, whereas writing to it will write to the port latch. PORTD is multiplexed with the system bus. When operating as the system bus, PORTD is the high order byte of the address/data bus (AD15:AD8). The timing for the system bus is shown in the Electrical Characteristics section.

Note: This port is configured as the system bus when the device's configuration bits are selected to Microprocessor or Extended Microcontroller modes. In the two other microcontroller modes, this port is a general purpose I/O. Example 9-3 shows the instruction sequence to initialize PORTD. The Bank Select Register (BSR) must be selected to Bank 1 for the port to be initialized.

EXAMPLE 9-3: INITIALIZING PORTD

MOVLB	1	;	Select Bank 1
CLRF	PORTD	;	Initialize PORTD data
		;	latches before setting
		;	the data direction
		;	register
MOVLW	0xCF	;	Value used to initialize
		;	data direction
MOVWF	DDRD	;	Set RD<3:0> as inputs
		;	RD<5:4> as outputs
		;	RD<7:6> as inputs

11.1 <u>Timer0 Operation</u>

When the TOCS (TOSTA<5>) bit is set, TMR0 increments on the internal clock. When TOCS is clear, TMR0 increments on the external clock (RA1/T0CKI pin). The external clock edge can be configured in software. When the TOSE (TOSTA<6>) bit is set, the timer will increment on the rising edge of the RA1/T0CKI pin. When T0SE is clear, the timer will increment on the falling edge of the RA1/T0CKI pin. The prescaler can be programmed to introduce a prescale of 1:1 to 1:256. The timer increments from 0000h to FFFFh and rolls over to 0000h. On overflow, the TMR0 Interrupt Flag bit (T0IF) is set. The TMR0 interrupt can be masked by clearing the corresponding TMR0 Interrupt Enable bit (T0IE). The TMR0 Interrupt Flag bit (T0IF) is automatically cleared when vectoring to the TMR0 interrupt vector.

11.2 Using Timer0 with External Clock

When the external clock input is used for Timer0, it is synchronized with the internal phase clocks. Figure 11-3 shows the synchronization of the external clock. This synchronization is done after the prescaler. The output of the prescaler (PSOUT) is sampled twice in every instruction cycle to detect a rising or a falling edge. The timing requirements for the external clock are detailed in the electrical specification section for the desired device.

11.2.1 DELAY FROM EXTERNAL CLOCK EDGE

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time TMR0 is actually incremented. Figure 11-3 shows that this delay is between 3Tosc and 7Tosc. Thus, for example, measuring the interval between two edges (e.g. period) will be accurate within \pm 4Tosc (\pm 121 ns @ 33 MHz).

FIGURE 11-2: TIMER0 MODULE BLOCK DIAGRAM

12.2.2 DUAL CAPTURE REGISTER MODE

This mode is selected by setting CA1/PR3. A block diagram is shown in Figure 12-8. In this mode, TMR3 runs without a period register and increments from 0000h to FFFFh and rolls over to 0000h. The TMR3 interrupt Flag (TMR3IF) is set on this roll over. The TMR3IF bit must be cleared in software.

Registers PR3H/CA1H and PR3L/CA1L make a 16-bit capture register (Capture1). It captures events on pin RB0/CAP1. Capture mode is configured by the CA1ED1 and CA1ED0 bits. Capture1 Interrupt Flag bit (CA1IF) is set on the capture event. The corresponding interrupt mask bit is CA1IE. The Capture1 Overflow Status bit is CA1OVF.

The Capture2 overflow status flag bit is double buffered. The master bit is set if one captured word is already residing in the Capture2 register and another "event" has occurred on the RB1/CA2 pin. The new event will not transfer the TMR3 value to the capture register which protects the previous unread capture value. When the user reads both the high and the low bytes (in any order) of the Capture2 register, the master overflow bit is transferred to the slave overflow bit (CA2OVF) and then the master bit is reset. The user can then read TCON2 to determine the value of CA2OVF.

The operation of the Capture1 feature is identical to Capture2 (as described in Section 12.2.1).

TABLE 12-5: REGISTERS ASSOCIATED WITH CAPTURE

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 3	TCON1	CA2ED1	CA2ED0	CA1ED1	CA1ED0	T16	TMR3CS	TMR2CS	TMR1CS	0000 0000	0000 0000
17h, Bank 3	TCON2	CA2OVF	CA10VF	PWM2ON	PWM1ON	CA1/PR3	TMR3ON	TMR2ON	TMR10N	0000 0000	0000 0000
12h, Bank 2	TMR3L	TMR3 reg	ister; low by	/te						xxxx xxxx	uuuu uuuu
13h, Bank 2	TMR3H	TMR3 reg	ister; high b	oyte						xxxx xxxx	uuuu uuuu
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
07h, Unbanked	INTSTA	PEIF	T0CKIF	T0IF	INTF	PEIE	T0CKIE	T0IE	INTE	0000 0000	0000 0000
06h, Unbanked	CPUSTA	—	_	STKAV	GLINTD	TO	PD	—	—	11 11	11 qq
16h, Bank 2	PR3L/CA1L	Timer3 pe	riod registe	r, low byte/ca	apture1 regis	ter, low byte	e			xxxx xxxx	uuuu uuuu
17h, Bank 2	PR3H/CA1H	Timer3 pe	riod registe	r, high byte/c	apture1 regi	ster, high b	yte			xxxx xxxx	uuuu uuuu
14h, Bank 3	CA2L	Capture2	low byte							xxxx xxxx	uuuu uuuu
15h, Bank 3	CA2H	Capture2	high byte							xxxx xxxx	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q - value depends on condition, shaded cells are not used by Capture.

Note 1: Other (non power-up) resets include: external reset through MCLR and WDT Timer Reset.

NOTES:

13.0 UNIVERSAL SYNCHRONOUS ASYNCHRONOUS RECEIVER TRANSMITTER (USART) MODULE

The USART module is a serial I/O module. The USART can be configured as a full duplex asynchronous system that can communicate with peripheral devices such as CRT terminals and personal computers, or it can be configured as a half duplex synchronous system that can communicate with peripheral devices such as A/D or D/A integrated circuits, Serial EEPROMs etc. The USART can be configured in the following modes:

- Asynchronous (full duplex)
- Synchronous Master (half duplex)
- Synchronous Slave (half duplex)

The SPEN (RCSTA<7>) bit has to be set in order to configure RA4 and RA5 as the Serial Communication Interface.

The USART module will control the direction of the RA4/RX/DT and RA5/TX/CK pins, depending on the states of the USART configuration bits in the RCSTA and TXSTA registers. The bits that control I/O direction are:

- SPEN
- TXEN
- SREN
- CREN
- CSRC

The Transmit Status And Control Register is shown in Figure 13-1, while the Receive Status And Control Register is shown in Figure 13-2.

P/M - 0	P/M - 0	P/M - 0	P/M - 0	11 - 0	11 - 0	P - 1	P/// - v	
CSRC	TX9	TXEN	SYNC			TRMT	TX9D	R = Readable bit
bit7							bit0	W = Writable bit -n = Value at POR reset (x = unknown)
bit 7:	CSRC : C Synchron 1 = Maste 0 = Slave <u>Asynchro</u> Don't care	lock Source ous mode r Mode (Clo mode (Clo nous mod e	ce Select t <u>:</u> lock gene ock from e <u>e</u> :	bit rated inter xternal so	nally from E urce)	BRG)		
bit 6:	TX9 : 9-bit 1 = Select 0 = Select	Transmit ts 9-bit tra ts 8-bit tra	Enable bit nsmission nsmission					
bit 5:	TXEN : Tra 1 = Transr 0 = Transr SREN/CF	ansmit Ena mit enable mit disable REN overri	able bit d d des TXEN	in SYNC	mode			
bit 4:	SYNC: US (Synchror 1 = Synch 0 = Async	SART moo nous/Asyn nronous m chronous n	le Select b chronous) ode node	vit				
bit 3-2:	Unimpler	nented: R	ead as '0'					
bit 1:	TRMT : Tra 1 = TSR e 0 = TSR f	ansmit Shi empty ull	ft Register	[·] (TSR) Er	npty bit			
bit 0:	TX9D : 9th	h bit of trar	nsmit data	(can be u	sed to calcu	lated the	parity in sof	ftware)

FIGURE 13-1: TXSTA REGISTER (ADDRESS: 15h, BANK 0)

© 1996 Microchip Technology Inc.

FIGURE 13-5: ASYNCHRONOUS MASTER TRANSMISSION

FIGURE 13-6: ASYNCHRONOUS MASTER TRANSMISSION (BACK TO BACK)

TABLE 13-5: REGISTERS ASSOCIATED WITH ASYNCHRONOUS TRANSMISSION

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Value on all other resets (Note1)
16h, Bank 1	PIR	RBIF	TMR3IF	TMR2IF	TMR1IF	CA2IF	CA1IF	TXIF	RCIF	0000 0010	0000 0010
13h, Bank 0	RCSTA	SPEN	RX9	SREN	CREN	_	FERR	OERR	RX9D	0000 -00x	0000 -00u
16h, Bank 0	TXREG	Serial port	t transmit r	egister	•					xxxx xxxx	uuuu uuuu
17h, Bank 1	PIE	RBIE	TMR3IE	TMR2IE	TMR1IE	CA2IE	CA1IE	TXIE	RCIE	0000 0000	0000 0000
15h, Bank 0	TXSTA	CSRC	TX9	TXEN	SYNC	_	—	TRMT	TX9D	00001x	00001u
17h, Bank 0	SPBRG	Baud rate	generator	register	•				•	xxxx xxxx	uuuu uuuu

Legend: x = unknown, u = unchanged, - = unimplemented read as a '0', shaded cells are not used for asynchronous transmission.

Note 1: Other (non power-up) resets include: external reset through MCLR and Watchdog Timer Reset.

15.2 <u>Q Cycle Activity</u>

Each instruction cycle (Tcy) is comprised of four Q cycles (Q1-Q4). The Q cycles provide the timing/designation for the Decode, Read, Execute, Write etc., of each instruction cycle. The following diagram shows the relationship of the Q cycles to the instruction cycle.

The 4 Q cycles that make up an instruction cycle (Tcy) can be generalized as:

- Q1: Instruction Decode Cycle or forced NOP
- Q2: Instruction Read Cycle or NOP
- Q3: Instruction Execute
- Q4: Instruction Write Cycle or NOP

Each instruction will show the detailed Q cycle operation for the instruction.

FIGURE 15-2: Q CYCLE ACTIVITY

RET	FIE	Return fi	Return from Interrupt					
Syn	tax:	[label]	RETFIE					
Ope	rands:	None						
Ope	eration:	$\begin{array}{l} TOS \rightarrow (I \\ 0 \rightarrow GLIN \\ PCLATH \end{array}$	PC); NTD; is uncha	nged.				
Stat	us Affected:	GLINTD						
Enc	oding:	0000	0000	0000	0101			
Des	cription:	Return from and Top of PC. Interru the GLINT interrupt d	m Interrup Stack (TC opts are ei D bit. GLI isable bit	ot. Stack is OS) is load nabled by NTD is the (CPUSTA+	POP'ed ded in the clearing global <4>).			
Wor	ds:	1						
Сус	les:	2						
QC	ycle Activity:							
	Q1	Q2	Q3	3	Q4			
	Decode	Read register T0STA	Execu	ute	NOP			
	Forced NOP	NOP	Execu	ute	NOP			
<u>Exa</u>	mple:	RETFIE						
	After Interrup PC GLINTD	ot = TOS = 0						

RET	LW	Return Literal to WREG							
Synt	tax:	[label]	RETLW k						
Ope	rands:	$0 \le k \le 25$	$0 \le k \le 255$						
Ope	ration:	k ightarrow (WRE PCLATH is	$G; TOS \rightarrow 0$ s unchanged	(PC);					
Stat	us Affected:	None							
Enc	oding:	1011	0110 kkł	k kkkk					
Des	cription:	WREG is lo 'k'. The prog the top of th The high ac remains un	aded with the gram counter is e stack (the re Idress latch (F changed.	eight bit literal s loaded from turn address). PCLATH)					
Wor	ds:	1							
Cycl	les:	2							
QC	ycle Activity:								
	Q1	Q2	Q3	Q4					
	Q1 Decode	Q2 Read literal 'k'	Q3 Execute	Q4 Write to WREG					
	Q1 Decode Forced NOP	Q2 Read literal 'k' NOP	Q3 Execute Execute	Q4 Write to WREG NOP					
<u>Exa</u>	Q1 Decode Forced NOP mple:	Q2 Read literal 'k' NOP CALL TAI : TABLE ADDWF PC RETLW k	Q3 Execute Execute BLE ; WREG con ; offset ; WREG nu ; table v ; table v ; Begin ta	Q4 Write to WREG NOP ntains table value ow has value					
<u>Exa</u>	Q1 Decode Forced NOP mple:	Q2 Read literal 'k' NOP CALL TAI : TABLE ADDWF PK RETLW kI RETLW kI :	Q3 Execute Execute BLE ; WREG con ; offset ; WREG no ; table v C ; WREG = (0) ; Begin table v ; ;	Q4 Write to WREG NOP ntains table value ow has value					
Exa	Q1 Decode Forced NOP mple:	Q2 Read literal 'k' NOP CALL TAI : TABLE ADDWF PC RETLW ki RETLW ki : : RETLW ki	Q3 Execute Execute BLE ; WREG con ; offset ; WREG n ; table of ; WREG = (0 ; Begin t; ; n ; End of f	Q4 Write to WREG NOP					
Exa	Q1 Decode Forced NOP mple: Before Instru WREG	Q2 Read literal 'k' NOP CALL TAI CALL TAI CALL TAI CALL TAI CALL TAI CALL TAI RETLW ki RETLW ki RETLW ki RETLW ki	Q3 Execute Execute BLE ; WREG con ; offset ; WREG nd ; table v C ; WREG = o ; Begin ta ; h ; End of t	Q4 Write to WREG NOP ntains table value ow has value					

RRN	ICF	Rotate F	Rotate Right f (no carry)						
Synt	tax:	[label]	[label] RRNCF f,d						
Ope	rands:	$0 \le f \le 25$ $d \in [0,1]$	$0 \le f \le 255$ $d \in [0,1]$						
Ope	ration:	$f < n > \rightarrow c$ $f < 0 > \rightarrow c$	$f < n > \rightarrow d < n - 1 >;$ $f < 0 > \rightarrow d < 7 >$						
Stat	us Affected:	None							
Enco	oding:	0010	000d	ffff	ffff				
Des	cription:	The conte one bit to placed in placed ba	The contents of register 'f' are rotated one bit to the right. If 'd' is 0 the result is placed in WREG. If 'd' is 1 the result is placed back in register 'f'.						
				5					
Wor	ds:	1							
Cycl	es:	1							
Q Cycle Activity:									
Q 0	,								
QU	Q1	Q2	Q	8	Q4				
Q U	Q1 Decode	Q2 Read register 'f'	Q3 Exect	B ute V des	Q4 Vrite to stination				
<u>Exa</u>	Q1 Decode mple 1:	Q2 Read register 'f'	Q3 Exect REG, 1) ute V des	Q4 Vrite to stination				
<u>Exa</u>	Q1 Decode mple 1: Before Instru WREG REG	Q2 Read register 'f' RRNCF action = ? = 1101	Q3 Exect REG, 1 0111	3 ute V des	Q4 Vrite to stination				
<u>Exa</u>	Q1 Decode mple 1: Before Instru WREG REG After Instruct	Q2 Read register 'f' RRNCF action = ? = 1101 tion	Q3 Exect REG, 1 0111	3 ute V de:	Q4 Vrite to stination				
<u>Exa</u>	Q1 Decode mple 1: Before Instru WREG REG After Instruct WREG REG	Q2 Read register 'f' RRNCF action = ? = 1101 tion = 0 = 1110	Q3 Exect REG, 1 0111	3 ute V de:	Q4 Vrite to stination				
<u>Exa</u>	Q1 Decode mple 1: Before Instru WREG REG After Instruct WREG REG	Q2 Read register 'f' RRNCF action = ? = 1101 tion = 0 = 1110 RRNCF	Q3 Exect REG, 1 0111 REG, 0	3 ute V de:	Q4 Vrite to stination				
Exa Exa	Q1 Decode mple 1: Before Instru WREG REG After Instruct WREG REG mple 2: Before Instru WREG REG	Q2 Read register 'f' RRNCF action = ? = 1101 tion = 0 = 1110 RRNCF action = ? = 1101	Q3 Exect REG, 1 0111 REG, 0 0111	3 ute V de:	Q4 Vrite to stination				
Exa Exa	Q1 Decode mple 1: Before Instru WREG REG After Instruct WREG REG mple 2: Before Instru WREG REG After Instruct	Q2 Read register 'f' RRNCF action = ? = 1101 tion RRNCF action = ? = 1110 RRNCF action = ? = 1110	Q3 Exect REG, 1 0111 REG, 0 0111	3 ute V des	Q4 Vrite to stination				

SETF	S	et f						
Syntax:	[/	abel]	SETF	f,s				
Operands:		0 ≤ f ≤ 255 s ∈ [0,1]						
Operation:	FI FI	$Fh \rightarrow f;$ $Fh \rightarrow d$						
Status Affected:	Ν	one						
Encoding:		0010	101s	ffff	ffff			
Description:	lf 'f' or to	If 's' is 0, both the data memory location 'f' and WREG are set to FFh. If 's' is 1 only the data memory location 'f' is set to FFh.						
Words:	1							
Cycles:	1							
Q Cycle Activity:								
Q1		Q2	Q	3	Q4			
Decode	re	Read gister 'f'	Exect	ute re a s	Write egister 'f' nd other pecified register			
Example1:	SI	STF	REG, 0					
Before Instru REG WREG	uctio = =	n 0xDA 0x05						
After Instruct REG WREG	tion = =	0xFF 0xFF						
Example2:	SE	TF	REG, 1					
Before Instru REG WREG	uctio = =	n 0xDA 0x05						
After Instruct REG WREG	tion = =	0xFF 0x05						

SWA	\PF	Swap f	Swap f					
Synt	ax:	[label]	SWAPF	f,d				
Ope	rands:	$\begin{array}{l} 0 \leq f \leq 25 \\ d \in \ [0,1] \end{array}$	5					
Ope	ration:	$f < 3:0 > \rightarrow f < 7:4 > \rightarrow$	dest<7: dest<3:	4>; 0>				
State	us Affected:	None						
Enco	oding:	0001	110d	ffff	ffff			
Des	cription:	The upper 'f' are exch placed in V placed in r	The upper and lower nibbles of register 'f' are exchanged. If 'd' is 0 the result is placed in WREG. If 'd' is 1 the result is placed in register 'f'.					
Word	ds:	1	1					
Cycl	es:	1						
QC	ycle Activity:							
	Q1	Q2	Q	3	Q4			
	Decode	Read register 'f'	Exect	ute V de:	Vrite to stination			
<u>Exar</u>	<u>mple</u> :	SWAPF	REG,	0				
Before Instruction REG = 0x53								
After Instruction REG = 0x35								

TAB	LRD	Table Rea	d					
Synt	ax:	[label]	TABLRD t,i,f					
Ope	rands:	0 ≤ f ≤ 255 i ∈ [0,1]	5					
		t ∈ [0,1]						
Ope	ration:	lf t = 1, TBLAT	$H \rightarrow f;$					
		If $t = 0$,						
		TBLAT	$L \rightarrow f;$					
		Prog IV	Iem (IBLPII	$R) \rightarrow IBLAI;$				
		TBLPT	$R + 1 \rightarrow TBI$	_PTR				
State	us Affected:	None						
Enco	oding:	1010	10ti ff	ff ffff				
Des	cription:	 A byte of the table latch (TBLAT) is moved to register file 'f'. If t = 0: the high byte is moved; If t = 1: the low byte is moved 						
		2. Then t memo the (TBLP 16-bit	he contents of ry location po 16-bit Tab TR) is loade Table Latch (T	the program ointed to by le Pointer ed into the BLAT).				
		3. If i = 1 If i = 0	: TBLPTR is i : TBLPTR is r incremented	ncremented; not I				
Wor	ds:	1						
Cycl	es:	2 (3 cycle	2 (3 cycle if f = PCL)					
QC	vcle Activity:							
	Q1	Q2	Q3	Q4				
	Decode	Read	Execute	Write				
		register TBLATH or TBLATL		register 'f'				

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 17-5: TIMER0 CLOCK TIMINGS

TABLE 17-5: TIMER0 CLOCK REQUIREMENTS

Parameter								
No.	Sym	Characteristic		Min	Typ†	Max	Units	Conditions
40	Tt0H	T0CKI High Pulse Width	No Prescaler	0.5TCY + 20 §	—	—	ns	
			With Prescaler	10*	—	_	ns	
41	Tt0L	T0CKI Low Pulse Width	No Prescaler	0.5TCY + 20 §	—	_	ns	
			With Prescaler	10*	—	_	ns	
42	Tt0P	T0CKI Period		<u>Tcy + 40</u> §	—	—	ns	N = prescale value
				N				(1, 2, 4,, 256)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

FIGURE 17-6: TIMER1, TIMER2, AND TIMER3 CLOCK TIMINGS

TABLE 17-6: TIMER1, TIMER2, AND TIMER3 CLOCK REQUIREMENTS

Parameter				Тур			
No.	Sym	Characteristic	Min	†	Max	Units	Conditions
45	Tt123H	TCLK12 and TCLK3 high time	0.5 TCY + 20 §	—	—	ns	
46	Tt123L	TCLK12 and TCLK3 low time	0.5 TCY + 20 §	—	_	ns	
47	Tt123P	TCLK12 and TCLK3 input period	<u>Tcy + 40</u> §	—	—	ns	N = prescale value
			N				(1, 2, 4, 8)
48	TckE2tmrl	Delay from selected External Clock Edge to	2Tosc §	—	6 Tosc §	_	
		Timer increment					

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

Applicable Devices 42 R42 42A 43 R43 44

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 18-12: MAXIMUM IPD vs. VDD WATCHDOG ENABLED

Applicable Devices 42 R42 42A 43 R43 44

19.3 **DC CHARACTERISTICS:**

PIC17CR42/42A/43/R43/44-16 (Commercial, Industrial) PIC17CR42/42A/43/R43/44-25 (Commercial, Industrial) PIC17CR42/42A/43/R43/44-33 (Commercial, Industrial) PIC17LCR42/42A/43/R43/44-08 (Commercial, Industrial)

Standard Operating Conditions (unless otherwise stated) Operating temperature

DC CH

D030

D031 D032

D033

D040

D041 D042 D043 D050

DC CHARA	CTERI	STICS	$-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial and $0^{\circ}C \le TA \le +70^{\circ}C$ for commercial					
Operating voltage VDD range as described in Section 19.1								
Parameter								
No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
		Input Low Voltage						
	VIL	I/O ports						
D030		with TTL buffer	Vss	-	0.8	V	$4.5V \le VDD \le 5.5V$	
			Vss	-	0.2Vdd	V	$2.5V \le VDD \le 4.5V$	
D031		with Schmitt Trigger buffer	Vss	-	0.2Vdd	V		
D032		MCLR, OSC1 (in EC and RC mode)	Vss	-	0.2Vdd	V	Note1	
D033		OSC1 (in XT, and LF mode)	-	0.5Vdd	_	V		
		Input High Voltage						
	Vін	I/O ports						
D040		with TTL buffer	2.0	-	Vdd	V	$4.5V \le VDD \le 5.5V$	
			1 + 0.2VDD	-	Vdd	V	$2.5V \le VDD \le 4.5V$	
D041		with Schmitt Trigger buffer	0.8Vdd	-	Vdd	V		
D042		MCLR	0.8Vdd	_	Vdd	V	Note1	
D043		OSC1 (XT, and LF mode)	-	0.5Vdd	_	V		
D050	VHYS	Hysteresis of	0.15Vdd *	-	-	V		
		Schmitt Trigger inputs						
		Input Leakage Current (Notes 2, 3)						
D060	lı∟	I/O ports (except RA2, RA3)	_	-	±1	μA	Vss \leq VPIN \leq VDD, I/O Pin at hi-impedance	

							disabled
D061		MCLR	_	_	±2	μA	VPIN = Vss or VPIN = VDD
D062		RA2, RA3			±2	μA	$Vss \le Vra2$, $Vra3 \le 12V$
D063		OSC1, TEST (EC, RC modes)	-	_	±1	μA	$Vss \le VPIN \le VDD$
D063B		OSC1, TEST (XT, LF modes)	-	-	VPIN	μA	$R_F \ge 1 M\Omega$, see Figure 14.2
D064		MCLR	-	_	10	μA	VMCLR = VPP = 12V (when not programming)
D070	IPURB	PORTB weak pull-up current	60	200	400	μA	VPIN = Vss, $\overline{\text{RBPU}} = 0$ 4.5V \leq VDD \leq 6.0V

These parameters are characterized but not tested.

t Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

ŧ These parameters are for design guidance only and are not tested, nor characterized.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC17CXX devices be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in: PIC17CXX Programming Specifications (Literature number DS30139).

5: The MCLR/VPP pin may be kept in this range at times other than programming, but is not recommended.

6: For TTL buffers, the better of the two specifications may be used.

NOTES:

21.0 PACKAGING INFORMATION

21.1 40-Lead Ceramic CERDIP Dual In-line, and CERDIP Dual In-line with Window (600 mil)

Package Group: Ceramic CERDIP Dual In-Line (CDP)								
		Millimeters		Inches				
Symbol	Min	Max	Notes	Min	Max	Notes		
α	0°	10°		0°	10°			
A	4.318	5.715		0.170	0.225			
A1	0.381	1.778		0.015	0.070			
A2	3.810	4.699		0.150	0.185			
A3	3.810	4.445		0.150	0.175			
В	0.355	0.585		0.014	0.023			
B1	1.270	1.651	Typical	0.050	0.065	Typical		
С	0.203	0.381	Typical	0.008	0.015	Typical		
D	51.435	52.705		2.025	2.075			
D1	48.260	48.260	Reference	1.900	1.900	Reference		
E	15.240	15.875		0.600	0.625			
E1	12.954	15.240		0.510	0.600			
e1	2.540	2.540	Reference	0.100	0.100	Reference		
eA	14.986	16.002	Typical	0.590	0.630	Typical		
eB	15.240	18.034		0.600	0.710			
L	3.175	3.810		0.125	0.150			
N	40	40		40	40			
S	1.016	2.286		0.040	0.090			
S1	0.381	1.778		0.015	0.070			

© 1996 Microchip Technology Inc.

NOTES: