

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	8MHz
Connectivity	UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	33
Program Memory Size	16KB (8K x 16)
Program Memory Type	OTP
EEPROM Size	-
RAM Size	454 x 8
Voltage - Supply (Vcc/Vdd)	2.5V ~ 6V
Data Converters	-
Oscillator Type	External
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-QFP
Supplier Device Package	44-MQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic17lc44t-08i-pq

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

5.2 <u>Peripheral Interrupt Enable Register</u> (PIE)

This register contains the individual flag bits for the Peripheral interrupts.

FIGURE 5-3: PIE REGISTER (ADDRESS: 17h, BANK 1)

_R/W - 0	
RBIE	TMR3IE TMR2IE TMR1IE CA2IE CA1IE TXIE RCIE R = Readable bit
bit7	bit0 W = Writable bit
bit 7:	RBIE : PORTB Interrupt on Change Enable bit 1 = Enable PORTB interrupt on change 0 = Disable PORTB interrupt on change
bit 6:	TMR3IE : Timer3 Interrupt Enable bit 1 = Enable Timer3 interrupt 0 = Disable Timer3 interrupt
bit 5:	TMR2IE : Timer2 Interrupt Enable bit 1 = Enable Timer2 interrupt 0 = Disable Timer2 interrupt
bit 4:	TMR1IE: Timer1 Interrupt Enable bit 1 = Enable Timer1 interrupt 0 = Disable Timer1 interrupt
bit 3:	CA2IE : Capture2 Interrupt Enable bit 1 = Enable Capture interrupt on RB1/CAP2 pin 0 = Disable Capture interrupt on RB1/CAP2 pin
bit 2:	CA1IE : Capture1 Interrupt Enable bit 1 = Enable Capture interrupt on RB2/CAP1 pin 0 = Disable Capture interrupt on RB2/CAP1 pin
bit 1:	TXIE : USART Transmit Interrupt Enable bit 1 = Enable Transmit buffer empty interrupt 0 = Disable Transmit buffer empty interrupt
bit 0:	RCIE : USART Receive Interrupt Enable bit 1 = Enable Receive buffer full interrupt 0 = Disable Receive buffer full interrupt

5.4 Interrupt Operation

Global Interrupt Disable bit, GLINTD (CPUSTA<4>), enables all unmasked interrupts (if clear) or disables all interrupts (if set). Individual interrupts can be disabled through their corresponding enable bits in the INTSTA register. Peripheral interrupts need either the global peripheral enable PEIE bit disabled, or the specific peripheral enable bit disabled. Disabling the peripherals via the global peripheral enable bit, disables all peripheral interrupts. GLINTD is set on reset (interrupts disabled).

The RETFIE instruction allows returning from interrupt and re-enable interrupts at the same time.

When an interrupt is responded to, the GLINTD bit is automatically set to disable any further interrupt, the return address is pushed onto the stack and the PC is loaded with interrupt vector. There are four interrupt vectors to reduce interrupt latency.

The peripheral interrupt vector has multiple interrupt sources. Once in the peripheral interrupt service routine, the source(s) of the interrupt can be determined by polling the interrupt flag bits. The peripheral interrupt flag bit(s) must be cleared in software before reenabling interrupts to avoid continuous interrupts.

The PIC17C4X devices have four interrupt vectors. These vectors and their hardware priority are shown in Table 5-1. If two enabled interrupts occur "at the same time", the interrupt of the highest priority will be serviced first. This means that the vector address of that interrupt will be loaded into the program counter (PC).

TABLE 5-1: INTERRUPT VECTORS/ PRIORITIES

Address	Vector	Priority
0008h	External Interrupt on RA0/ INT pin (INTF)	1 (Highest)
0010h	TMR0 overflow interrupt (T0IF)	2
0018h	External Interrupt on T0CKI (T0CKIF)	3
0020h	Peripherals (PEIF)	4 (Lowest)

- **Note 1:** Individual interrupt flag bits are set regardless of the status of their corresponding mask bit or the GLINTD bit.
- **Note 2:** When disabling any of the INTSTA enable bits, the GLINTD bit should be set (disabled).

Note 3: For the PIC17C42 only: If an interrupt occurs while the Global Interrupt Disable (GLINTD) bit is being set, the GLINTD bit may unintentionally be reenabled by the user's Interrupt Service Routine (the RETFIE instruction). The events that would cause this to occur are:

- 1. An interrupt occurs simultaneously with an instruction that sets the GLINTD bit.
- 2. The program branches to the Interrupt vector and executes the Interrupt Service Routine.
- 3. The Interrupt Service Routine completes with the execution of the RET-FIE instruction. This causes the GLINTD bit to be cleared (enables interrupts), and the program returns to the instruction after the one which was meant to disable interrupts.

The method to ensure that interrupts are globally disabled is:

1. Ensure that the GLINTD bit was set by the instruction, as shown in the follow-ing code:

LOOP	BSF	CPUSTA,	GLINTD	;	Disable Global
				;	Interrupt
	BTFSS	CPUSTA,	GLINTD	;	Global Interrupt
				;	Disabled?
	GOTO	LOOP		;	NO, try again
				;	YES, continue
				;	with program
				:	low

6.4.1 INDIRECT ADDRESSING REGISTERS

The PIC17C4X has four registers for indirect addressing. These registers are:

- INDF0 and FSR0
- INDF1 and FSR1

Registers INDF0 and INDF1 are not physically implemented. Reading or writing to these registers activates indirect addressing, with the value in the corresponding FSR register being the address of the data. The FSR is an 8-bit register and allows addressing anywhere in the 256-byte data memory address range. For banked memory, the bank of memory accessed is specified by the value in the BSR.

If file INDF0 (or INDF1) itself is read indirectly via an FSR, all '0's are read (Zero bit is set). Similarly, if INDF0 (or INDF1) is written to indirectly, the operation will be equivalent to a NOP, and the status bits are not affected.

6.4.2 INDIRECT ADDRESSING OPERATION

The indirect addressing capability has been enhanced over that of the PIC16CXX family. There are two control bits associated with each FSR register. These two bits configure the FSR register to:

- Auto-decrement the value (address) in the FSR after an indirect access
- Auto-increment the value (address) in the FSR after an indirect access
- No change to the value (address) in the FSR after an indirect access

These control bits are located in the ALUSTA register. The FSR1 register is controlled by the FS3:FS2 bits and FSR0 is controlled by the FS1:FS0 bits.

When using the auto-increment or auto-decrement features, the effect on the FSR is not reflected in the ALUSTA register. For example, if the indirect address causes the FSR to equal '0', the Z bit will not be set.

If the FSR register contains a value of 0h, an indirect read will read 0h (Zero bit is set) while an indirect write will be equivalent to a NOP (status bits are not affected).

Indirect addressing allows single cycle data transfers within the entire data space. This is possible with the use of the MOVPF and MOVFP instructions, where either 'p' or 'f' is specified as INDF0 (or INDF1).

If the source or destination of the indirect address is in banked memory, the location accessed will be determined by the value in the BSR. A simple program to clear RAM from 20h - FFh is shown in Example 6-1.

EXAMPLE 6-1: INDIRECT ADDRESSING

	MOVLW	0x20	;	
	MOVWF	FSR0	;	FSR0 = 20h
	BCF	ALUSTA, FS1	;	Increment FSR
	BSF	ALUSTA, FSO	;	after access
	BCF	ALUSTA, C	;	C = 0
	MOVLW	END_RAM + 1	;	
LP	CLRF	INDF0	;	Addr(FSR) = 0
	CPFSEQ	FSR0	;	FSR0 = END_RAM+1?
	GOTO	LP	;	NO, clear next
	:		;	YES, All RAM is
	:		;	cleared

6.5 <u>Table Pointer (TBLPTRL and</u> <u>TBLPTRH)</u>

File registers TBLPTRL and TBLPTRH form a 16-bit pointer to address the 64K program memory space. The table pointer is used by instructions TABLWT and TABLRD.

The TABLRD and the TABLWT instructions allow transfer of data between program and data space. The table pointer serves as the 16-bit address of the data word within the program memory. For a more complete description of these registers and the operation of Table Reads and Table Writes, see Section 7.0.

6.6 <u>Table Latch (TBLATH, TBLATL)</u>

The table latch (TBLAT) is a 16-bit register, with TBLATH and TBLATL referring to the high and low bytes of the register. It is not mapped into data or program memory. The table latch is used as a temporary holding latch during data transfer between program and data memory (see descriptions of instructions TABLRD, TABLWT, TLRD and TLWT). For a more complete description of these registers and the operation of Table Reads and Table Writes, see Section 7.0.

6.7 Program Counter Module

The Program Counter (PC) is a 16-bit register. PCL, the low byte of the PC, is mapped in the data memory. PCL is readable and writable just as is any other register. PCH is the high byte of the PC and is not directly addressable. Since PCH is not mapped in data or program memory, an 8-bit register PCLATH (PC high latch) is used as a holding latch for the high byte of the PC. PCLATH is mapped into data memory. The user can read or write PCH through PCLATH.

The 16-bit wide PC is incremented after each instruction fetch during Q1 unless:

- Modified by GOTO, CALL, LCALL, RETURN, RETLW, or RETFIE instruction
- · Modified by an interrupt response
- Due to destination write to PCL by an instruction

"Skips" are equivalent to a forced NOP cycle at the skipped address.

Figure 6-11 and Figure 6-12 show the operation of the program counter for various situations.

FIGURE 6-11: PROGRAM COUNTER OPERATION

FIGURE 6-12: PROGRAM COUNTER USING THE CALL AND GOTO INSTRUCTIONS

Using Figure 6-11, the operations of the PC and PCLATH for different instructions are as follows:

- a) <u>LCALL instructions</u>: An 8-bit destination address is provided in the instruction (opcode). PCLATH is unchanged. PCLATH → PCH Opcode<7:0> → PCL
- b) Read instructions on PCL: Any instruction that reads PCL. PCL \rightarrow data bus \rightarrow ALU or destination PCH \rightarrow PCLATH
- c) <u>Write instructions on PCL</u>: Any instruction that writes to PCL. 8-bit data \rightarrow data bus \rightarrow PCL PCLATH \rightarrow PCH
- d) <u>Read-Modify-Write instructions on PCL:</u> Any instruction that does a read-write-modify operation on PCL, such as ADDWF PCL. Read: PCL → data bus → ALU Write: 8-bit result → data bus → PCL
 - $\mathsf{PCLATH} \to \mathsf{PCH}$
- e) <u>RETURN instruction:</u> PCH \rightarrow PCLATH Stack<MRU> \rightarrow PC<15:0>

Using Figure 6-12, the operation of the PC and PCLATH for GOTO and CALL instructions is a follows:

CALL, GOTO instructions: A 13-bit destination address is provided in the instruction (opcode). Opcode<12:0> \rightarrow PC <12:0>

 $PC<15:13> \rightarrow PCLATH<7:5>$

Opcode<12:8> \rightarrow PCLATH <4:0>

The read-modify-write only affects the PCL with the result. PCH is loaded with the value in the PCLATH. For example, ADDWF PCL will result in a jump within the current page. If PC = 03F0h, WREG = 30h and PCLATH = 03h before instruction, PC = 0320h after the instruction. To accomplish a true 16-bit computed jump, the user needs to compute the 16-bit destination address, write the high byte to PCLATH and then write the low value to PCL.

The following PC related operations do not change PCLATH:

- a) LCALL, RETLW, and RETFIE instructions.
- b) Interrupt vector is forced onto the PC.
- c) Read-modify-write instructions on PCL (e.g.BSF PCL).

Example 8-3 shows the sequence to do a 16 x 16 unsigned multiply. Equation 8-1 shows the algorithm that is used. The 32-bit result is stored in 4 registers RES3:RES0.

EQUATION 8-1: 16 x 16 UNSIGNED MULTIPLICATION ALGORITHM

=

- ARG1H:ARG1L * ARG2H:ARG2L RES3:RES0 =
 - (ARG1H * ARG2H * 2¹⁶) +

(ARG1H * ARG2L * 2⁸) +

(ARG1L * ARG2H * 2⁸) (ARG1L * ARG2L)

+

EXAMPLE 8-3: 16 x 16 MULTIPLY ROUTINE

	MOVFP	ARG1L, WREG		
	MULWF	ARG2L	;	ARG1L * ARG2L ->
			;	PRODH:PRODL
	MOVPF	PRODH, RES1	;	
	MOVPF	PRODL, RESO	;	
;				
	MOVFP	ARG1H, WREG		
	MULWF	ARG2H	;	ARG1H * ARG2H ->
			;	PRODH:PRODL
	MOVPF	PRODH, RES3	;	
	MOVPF	PRODL, RES2	;	
;				
	MOVFP	ARG1L, WREG		
	MULWF	ARG2H	;	ARG1L * ARG2H ->
			;	PRODH:PRODL
	MOVFP	PRODL, WREG	;	
	ADDWF	RES1, F	;	Add cross
	MOVFP	PRODH, WREG	;	products
	ADDWFC	RES2, F	;	
		WIDEG E		
	CLRF	WREG, F	;	
	CLRF ADDWFC	RES3, F	; ;	
;	CLRF ADDWFC	RES3, F	; ;	
;	CLRF ADDWFC MOVFP	RES3, F ARG1H, WREG	; ; ;	
;	CLRF ADDWFC MOVFP MULWF	RES3, F RES3, F ARG1H, WREG ARG2L	; ; ; ;	ARG1H * ARG2L ->
;	CLRF ADDWFC MOVFP MULWF	RES3, F RES3, F ARG1H, WREG ARG2L	;;;;;;	ARG1H * ARG2L -> PRODH:PRODL
;	CLRF ADDWFC MOVFP MULWF	WREG, F RES3, F ARG1H, WREG ARG2L	;;;;;	ARG1H * ARG2L -> PRODH:PRODL
;	CLRF ADDWFC MOVFP MULWF MOVFP	WREG, F RES3, F ARG1H, WREG ARG2L PRODL, WREG	;;;;;;;	ARG1H * ARG2L -> PRODH:PRODL
;	CLRF ADDWFC MOVFP MULWF MOVFP ADDWF	WREG, F RES3, F ARG1H, WREG ARG2L PRODL, WREG RES1, F	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	ARG1H * ARG2L -> PRODH:PRODL Add cross
;	CLRF ADDWFC MOVFP MULWF MOVFP ADDWF MOVFP	WREG, F RES3, F ARG1H, WREG ARG2L PRODL, WREG RES1, F PRODH, WREG	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	ARG1H * ARG2L -> PRODH:PRODL Add cross products
;	CLRF ADDWFC MOVFP MULWF MOVFP ADDWF MOVFP ADDWFC	WREG, F RES3, F ARG1H, WREG ARG2L PRODL, WREG RES1, F PRODH, WREG RES2, F	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	ARG1H * ARG2L -> PRODH:PRODL Add cross products
;	CLRF ADDWFC MOVFP MULWF MOVFP ADDWF MOVFP ADDWFC CLRF	WREG, F RES3, F ARG1H, WREG ARG2L PRODL, WREG RES1, F PRODH, WREG RES2, F WREG, F	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	ARG1H * ARG2L -> PRODH:PRODL Add cross products

NOTES:

12.1.3 USING PULSE WIDTH MODULATION (PWM) OUTPUTS WITH TMR1 AND TMR2

Two high speed pulse width modulation (PWM) outputs are provided. The PWM1 output uses Timer1 as its time-base, while PWM2 may be software configured to use either Timer1 or Timer2 as the time-base. The PWM outputs are on the RB2/PWM1 and RB3/PWM2 pins.

Each PWM output has a maximum resolution of 10-bits. At 10-bit resolution, the PWM output frequency is 24.4 kHz (@ 25 MHz clock) and at 8-bit resolution the PWM output frequency is 97.7 kHz. The duty cycle of the output can vary from 0% to 100%.

Figure 12-5 shows a simplified block diagram of the PWM module. The duty cycle register is double buffered for glitch free operation. Figure 12-6 shows how a glitch could occur if the duty cycle registers were not double buffered.

The user needs to set the PWM1ON bit (TCON2<4>) to enable the PWM1 output. When the PWM1ON bit is set, the RB2/PWM1 pin is configured as PWM1 output and forced as an output irrespective of the data direction bit (DDRB<2>). When the PWM1ON bit is clear, the pin behaves as a port pin and its direction is controlled by its data direction bit (DDRB<2>). Similarly, the PWM2ON (TCON2<5>) bit controls the configuration of the RB3/PWM2 pin.

FIGURE 12-5: SIMPLIFIED PWM BLOCK DIAGRAM

FIGURE 12-6: PWM OUTPUT

12.2.3 EXTERNAL CLOCK INPUT FOR TIMER3

When TMR3CS is set, the 16-bit TMR3 increments on the falling edge of clock input TCLK3. The input on the RB5/TCLK3 pin is sampled and synchronized by the internal phase clocks twice every instruction cycle. This causes a delay from the time a falling edge appears on TCLK3 to the time TMR3 is actually incremented. For the external clock input timing requirements, see the Electrical Specification section. Figure 12-9 shows the timing diagram when operating from an external clock.

12.2.4 READING/WRITING TIMER3

Since Timer3 is a 16-bit timer and only 8-bits at a time can be read or written, care should be taken when reading or writing while the timer is running. The best method to read or write the timer is to stop the timer, perform any read or write operation, and then restart Timer3 (using the TMR3ON bit). However, if it is necessary to keep Timer3 free-running, care must be taken. For writing to the 16-bit TMR3, Example 12-2 may be used. For reading the 16-bit TMR3, Example 12-3 may be used. Interrupts must be disabled during this routine.

EXAMPLE 12-2: WRITING TO TMR3

BSF CPUSTA, GLINTD ;Disable interrupt MOVFP RAM_L, TMR3L ; MOVFP RAM_H, TMR3H ; BCF CPUSTA, GLINTD ;Done,enable interrupt

EXAMPLE 12-3: READING FROM TMR3

MOVPF	TMR3L,	TMPLO	;read low tmr0
MOVPF	TMR3H,	TMPHI	;read high tmr0
MOVFP	TMPLO,	WREG	;tmplo -> wreg
CPFSLT	TMR3L,	WREG	;tmr0l < wreg?
RETURN			;no then return
MOVPF	TMR3L,	TMPLO	;read low tmr0
MOVPF	TMR3H,	TMPHI	;read high tmr0
RETURN			;return

FIGURE 12-9: TMR1, TMR2, AND TMR3 OPERATION IN EXTERNAL CLOCK MODE

NOTES:

	FOSC - 3	3 MHz		Fosc - 2	5 MHz		FOSC - 2	0 MHz		FOSC - 1	6 MHz	
BAUD	1 000 - 0	5 1011 12	SPBRG	1 000 = 2	5 1011 12	SPBRG	1 030 - 2		SPBRG	1 030 - 1		SPBRG
RATE			value			value			value			value
(K)	KBAUD	%ERROR	(decimal)	KBAUD	%ERROR	(decimal)	KBAUD	%ERROR	(decimal)	KBAUD	%ERROR	(decimal)
0.3	NA	_	_	NA	_	_	NA	_	_	NA	_	_
1.2	NA	—	_	NA	_	_	1.221	+1.73	255	1.202	+0.16	207
2.4	2.398	-0.07	214	2.396	0.14	162	2.404	+0.16	129	2.404	+0.16	103
9.6	9.548	-0.54	53	9.53	-0.76	40	9.469	-1.36	32	9.615	+0.16	25
19.2	19.09	-0.54	26	19.53	+1.73	19	19.53	+1.73	15	19.23	+0.16	12
76.8	73.66	-4.09	6	78.13	+1.73	4	78.13	+1.73	3	83.33	+8.51	2
96	103.12	+7.42	4	97.65	+1.73	3	104.2	+8.51	2	NA	_	—
300	257.81	-14.06	1	390.63	+30.21	0	312.5	+4.17	0	NA	_	—
500	515.62	+3.13	0	NA	_	_	NA	—	_	NA	_	—
HIGH	515.62	—	0	-	—	0	312.5	—	0	250	—	0
LOW	2.014	—	255	1.53	_	255	1.221	—	255	0.977	—	255

TABLE 13-4: BAUD RATES FOR ASYNCHRONOUS MODE

BAUD	Fosc = 10 MH	łz	SPBRG	FOSC = 7.159	MHz	SPBRG	FOSC = 5.068	8 MHz	SPBRG
RATE			value			value			value
(K)	KBAUD	%ERROR	(decimal)	KBAUD	%ERROR	(decimal)	KBAUD	%ERROR	(decimal)
0.3	NA	_	_	NA	_	_	0.31	+3.13	255
1.2	1.202	+0.16	129	1.203	_0.23	92	1.2	0	65
2.4	2.404	+0.16	64	2.380	-0.83	46	2.4	0	32
9.6	9.766	+1.73	15	9.322	-2.90	11	9.9	-3.13	7
19.2	19.53	+1.73	7	18.64	-2.90	5	19.8	+3.13	3
76.8	78.13	+1.73	1	NA	_	_	79.2	+3.13	0
96	NA	_	_	NA	_	_	NA	_	_
300	NA	_	_	NA	_	_	NA	_	_
500	NA	_	_	NA	_	_	NA	_	_
HIGH	156.3	_	0	111.9	_	0	79.2	_	0
LOW	0.610	_	255	0.437	_	255	0.309	_	2 55
	Fosc = 3.579 MHz								
BAUD	Fosc = 3.579	MHz	SPBRG	Fosc = 1 MH	Z	SPBRG	Fosc = 32.76	i8 kHz	SPBRG
BAUD RATE	Fosc = 3.579	MHz	SPBRG value	Fosc = 1 MH	Z	SPBRG value	Fosc = 32.76	8 kHz	SPBRG value
BAUD RATE (K)	Fosc = 3.579 KBAUD	MHz %ERROR	SPBRG value (decimal)	Fosc = 1 MH KBAUD	z %ERROR	SPBRG value (decimal)	Fosc = 32.76 KBAUD	8 kHz %ERROR	SPBRG value (decimal)
BAUD RATE (K) 0.3	Fosc = 3.579 KBAUD 0.301	MHz %ERROR +0.23	SPBRG value (decimal) 185	Fosc = 1 MH KBAUD 0.300	z %ERROR +0.16	SPBRG value (decimal) 51	Fosc = 32.76 KBAUD 0.256	8 kHz %ERROR -14.67	SPBRG value (decimal)
BAUD RATE (K) 0.3 1.2	Fosc = 3.579 KBAUD 0.301 1.190	MHz %ERROR +0.23 -0.83	SPBRG value (decimal) 185 46	Fosc = 1 MH KBAUD 0.300 1.202	z %ERROR +0.16 +0.16	SPBRG value (decimal) 51 12	Fosc = 32.76 KBAUD 0.256 NA	68 kHz %ERROR -14.67 	SPBRG value (decimal)
BAUD RATE (K) 0.3 1.2 2.4	Fosc = 3.579 KBAUD 0.301 1.190 2.432	MHz %ERROR +0.23 -0.83 +1.32	SPBRG value (decimal) 185 46 22	FOSC = 1 MH KBAUD 0.300 1.202 2.232	z %ERROR +0.16 +0.16 -6.99	SPBRG value (decimal) 51 12 6	Fosc = 32.76 KBAUD 0.256 NA NA	8 kHz %ERROR -14.67 	SPBRG value (decimal) 1
BAUD RATE (K) 0.3 1.2 2.4 9.6	Fosc = 3.579 KBAUD 0.301 1.190 2.432 9.322	MHz %ERROR +0.23 -0.83 +1.32 -2.90	SPBRG value (decimal) 185 46 22 5	Fosc = 1 MH KBAUD 0.300 1.202 2.232 NA	z %ERROR +0.16 -6.99 —	SPBRG value (decimal) 51 12 6 —	Fosc = 32.76 KBAUD 0.256 NA NA NA	8 kHz %ERROR -14.67 	SPBRG value (decimal) 1 — — —
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2	Fosc = 3.579 KBAUD 0.301 1.190 2.432 9.322 18.64	MHz *0.23 -0.83 +1.32 -2.90 -2.90	SPBRG value (decimal) 185 46 22 5 5 2	Fosc = 1 MH KBAUD 0.300 1.202 2.232 NA NA	z *0.16 +0.16 -6.99 	SPBRG value (decimal) 51 12 6 —	Fosc = 32.76 KBAUD 0.256 NA NA NA NA	8 kHz %ERROR -14.67 	SPBRG value (decimal) 1 — — — — —
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2 76.8	Fosc = 3.579 KBAUD 0.301 1.190 2.432 9.322 18.64 NA	MHz *0.23 -0.83 +1.32 -2.90 -2.90 	SPBRG value (decimal) 185 46 22 5 2 2	Fosc = 1 MH KBAUD 0.300 1.202 2.232 NA NA NA	z *ERROR +0.16 -6.99 	SPBRG value (decimal) 51 12 6 — — — —	Fosc = 32.76 KBAUD 0.256 NA NA NA NA NA	i8 kHz %ERROR -14.67 	SPBRG value (decimal) 1
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2 76.8 96	Fosc = 3.579 KBAUD 0.301 1.190 2.432 9.322 18.64 NA NA	MHz *ERROR +0.23 -0.83 +1.32 -2.90 -2.90 	SPBRG value (decimal) 185 46 22 5 2 2 	Fosc = 1 MH KBAUD 0.300 1.202 2.232 NA NA NA NA	z +0.16 +0.16 -6.99 	SPBRG value (decimal) 51 12 6 	Fosc = 32.76 KBAUD 0.256 NA NA NA NA NA NA	8 kHz %ERROR -14.67 -	SPBRG value (decimal) 1
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2 76.8 96 300	Fosc = 3.579 KBAUD 0.301 1.190 2.432 9.322 18.64 NA NA NA	MHz %ERROR +0.23 -0.83 +1.32 -2.90 -2.90 - - - - - - - - - - - - -	SPBRG value (decimal) 185 46 22 5 2 2 	Fosc = 1 MH KBAUD 0.300 1.202 2.232 NA NA NA NA NA	z +0.16 +0.16 -6.99 	SPBRG value (decimal) 51 12 6 	Fosc = 32.76 KBAUD 0.256 NA NA NA NA NA NA NA	8 kHz %ERROR -14.67 -	SPBRG value (decimal) 1 -
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2 76.8 96 300 500	Fosc = 3.579 KBAUD 0.301 1.190 2.432 9.322 18.64 NA NA NA NA	MHz %ERROR +0.23 -0.83 +1.32 -2.90 -2.90 - - - - - - - - - - - - -	SPBRG value (decimal) 185 46 22 5 2 2 	Fosc = 1 MH KBAUD 0.300 1.202 2.232 NA NA NA NA NA NA	z *0.16 +0.16 -6.99 	SPBRG value (decimal) 51 12 6 	Fosc = 32.76 KBAUD 0.256 NA NA NA NA NA NA NA NA	8 kHz %ERROR -14.67 -	SPBRG value (decimal) 1 -
BAUD RATE (K) 0.3 1.2 2.4 9.6 19.2 76.8 96 300 500 HIGH	Fosc = 3.579 KBAUD 0.301 1.190 2.432 9.322 18.64 NA NA NA NA NA S5.93	MHz %ERROR +0.23 -0.83 +1.32 -2.90 -2.90 - - - - - - - - - - - - -	SPBRG value (decimal) 185 46 22 5 2 2 0	Fosc = 1 MH KBAUD 0.300 1.202 2.232 NA NA NA NA NA NA NA NA 15.63	z %ERROR +0.16 +0.16 -6.99 	SPBRG value (decimal) 51 12 6 0	Fosc = 32.76 KBAUD 0.256 NA NA NA NA NA NA NA NA NA 0.512	8 kHz %ERROR -14.67 	SPBRG value (decimal) 1 0

13.2.2 USART ASYNCHRONOUS RECEIVER

The receiver block diagram is shown in Figure 13-4. The data comes in the RA4/RX/DT pin and drives the data recovery block. The data recovery block is actually a high speed shifter operating at 16 times the baud rate, whereas the main receive serial shifter operates at the bit rate or at Fosc.

Once asynchronous mode is selected, reception is enabled by setting bit CREN (RCSTA<4>).

The heart of the receiver is the receive (serial) shift register (RSR). After sampling the stop bit, the received data in the RSR is transferred to the RCREG (if it is empty). If the transfer is complete, the interrupt bit RCIF (PIR<0>) is set. The actual interrupt can be enabled/disabled by setting/clearing the RCIE (PIE<0>) bit. RCIF is a read only bit which is cleared by the hardware. It is cleared when RCREG has been read and is empty. RCREG is a double buffered register; (i.e. it is a two deep FIFO). It is possible for two bytes of data to be received and transferred to the RCREG FIFO and a third byte begin shifting to the RSR. On detection of the stop bit of the third byte, if the RCREG is still full, then the overrun error bit, OERR (RCSTA<1>) will be set. The word in the RSR will be lost. RCREG can be read twice to retrieve the two bytes in the FIFO. The OERR bit has to be cleared in software which is done by resetting the receive logic (CREN is set). If the OERR bit is set, transfers from the RSR to RCREG are inhibited, so it is essential to clear the OERR bit if it is set. The framing error bit FERR (RCSTA<2>) is set if a stop bit is not detected.

FIGURE 13-7: RX PIN SAMPLING SCHEME

Note: The FERR and the 9th receive bit are buffered the same way as the receive data. Reading the RCREG register will allow the RX9D and FERR bits to be loaded with values for the next received Received data; therefore, it is essential for the user to read the RCSTA register before reading RCREG in order not to lose the old FERR and RX9D information.

13.2.3 SAMPLING

The data on the RA4/RX/DT pin is sampled three times by a majority detect circuit to determine if a high or a low level is present at the RA4/RX/DT pin. The sampling is done on the seventh, eighth and ninth falling edges of a x16 clock (Figure 11-3).

The x16 clock is a free running clock, and the three sample points occur at a frequency of every 16 falling edges.

RX		Start bit	Bit0
(RA4/RX/DT pin)	-	Baud CLK for all but start bit	
Jaud CLK	1		
x16 CLK		2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 1	
		Samples	

DECF	Decreme	nt f		DEC	CFSZ	Decreme	nt f, ski	p if 0	
Syntax:	[label] DECF f,d			Syn	tax:	[label] DECFSZ f,d			
Operands:	0 ≤ f ≤ 255 d ∈ [0,1]	5		Оре	erands:	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \ [0,1] \end{array}$	5		
Operation:	(f) – 1 \rightarrow ((dest)		Ope	eration:	(f) – 1 \rightarrow (dest);		
Status Affected:	OV, C, DC	C, Z				skip if resu	ult = 0		
Encoding:	0000	011d ff:	ff ffff	Stat	us Affected:	None			
Description:	Decrement	register 'f'. If 'o	d' is 0 the	Enc	oding:	0001	011d	ffff	ffff
·	result is sto result is sto	ored in WREG. ored back in re	If 'd' is 1 the gister 'f'.	Des	cription:	The contents of register 'f' are decre- mented. If 'd' is 0 the result is placed in			
Words:	1					WREG. If 'd	l' is 1 the stor 'f'	e result is	s placed
Cycles:	1					If the result	is 0. the	next ins	truction.
Q Cycle Activity:						which is alr	eady feto	ched, is o	discarded,
Q1	Q2	Q3	Q4			and an NOI	is exection	cuted ins	tead mak-
Decode	Read register 'f'	Execute	Write to destination	Wor	ds:	1			
Example:	DECF	CNT, 1		Сус	les:	1(2)			
Before Instru	iction			QC	ycle Activity:				
CNT	= 0x01				Q1	Q2	Q	3	Q4
Z	= 0				Decode	Read register 'f'	Exec	ute c	Write to lestination
CNT Z	= 0x00 = 1			<u>Exa</u>	mple:	HERE	DECFS GOTO	SZ CN	ЛТ, 1)ОР
						CONTINUE			
					Before Instru	uction			

PC	=	Address (HERE)
After Instruct	ion	
CNT	=	CNT - 1
If CNT	=	0;
PC	=	Address (CONTINUE)
If CNT	≠	0;
PC	=	Address (HERE+1)

DCF	DCFSNZ Decrement f, skip if not 0									
Synt	ax:	[label]	DC	FSNZ	f,d					
Ope	rands:	0 ≤ f ≤ 2 d ∈ [0,1	$\begin{array}{l} 0 \leq f \leq 255 \\ d \in \ [0,1] \end{array}$							
Ope	ration:	(f) – 1 – skip if n	(f) $-1 \rightarrow$ (dest); skip if not 0							
State	us Affected:	None	None							
Enco	oding:	0010		011d	fff	f	ffff			
Desc	cription:	The cont mented. WREG. I back in re If the res which is and an N ing it a tw	The contents of register 'f' are decre- mented. If 'd' is 0 the result is placed in WREG. If 'd' is 1 the result is placed back in register 'f'. If the result is not 0, the next instruction, which is already fetched, is discarded, and an NOP is executed instead mak- ing it a two-cycle instruction.							
Word	ds:	1								
Cycl	es:	1(2)								
QC	cle Activity:									
	Q1	Q2		Q3		Q4				
	Decode	Read register 'f		Exec	ute	Write to destination				
lf ski	p:									
	Q1	Q2		Q3		Q4				
	Forced NOP	NOP		Execute			NOP			
<u>Exar</u>	<u>mple</u> :	HERE ZERO NZERO	D : :	CFSNZ	TEM	₽,	1			
	Before Instru TEMP_V	ction ALUE	=	?						
	After Instruct TEMP_V/ If TEMP_ PC If TEMP_ PC	ion ALUE VALUE VALUE	= = ≠	TEMF 0; Addre 0; Addre	P_VAL ss(Z	UE - ERO ZER	• 1,) 0)			

GOTO	Unconditi	Unconditional Branch						
Syntax:	[label]	[<i>label</i>] GOTO k						
Operands:	$0 \le k \le 81$	$0 \le k \le 8191$						
Operation:	k → PC<1 k<12:8> – PC<15:13>	2:0>; → PCLAT > → PCL	「H<4:0> _ATH<7:	, 5>				
Status Affected:	None							
Encoding:	110k	kkkk	kkkk	kkkk				
Description:	anywhere w The thirteer loaded into upper eight PCLATH. G instruction.	GOTO allows an unconditional branch anywhere within an 8K page boundary. The thirteen bit immediate value is loaded into PC bits <12:0>. Then the upper eight bits of PC are loaded into PCLATH. GOTO is always a two-cycle instruction.						
Words:	1	1						
Cycles:	2							
Q Cycle Activity:								
Q1	Q2	Q3		Q4				
Decode	Read literal 'k'<7:0>	Execu	ite	NOP				
	NOP	Execu	ıte	NOP				
Forced NOP	-			NOI				
Example:	GOTO THEF	RE						
Example: After Instruct	GOTO THEF	RE						

TABLRD	Table Re	ead	
<u>Example1</u> :	TABLRD	1, 1,	REG ;
Before Instruct	tion		
REG		=	0x53
TBLATH		=	0xAA
TBLATL		=	0x55
TBLPTR		=	0xA356
MEMORY(TBLPTR)	=	0x1234
After Instruction	n (table v	vrite cor	mpletion)
REG		=	0xAA
TBLATH		=	0x12
TBLATL		=	0x34
TBLPTR		=	0xA357
MEMORY(TBLPTR)	=	0x5678
Example2:	TABLRD	0, 0,	REG ;
Before Instruct	tion		
REG		=	0x53
TBLATH		=	0xAA
TBLATL		=	0x55
TBLPTR		=	0xA356
MEMORY(TBLPTR)	=	0x1234
After Instruction	n (table v	vrite cor	mpletion)
REG		=	0x55
TBLATH		=	0x12
TBLATL		=	0x34
TBLPTR		=	0xA356
MEMORY(TBLPTR)	=	0x1234

TAB	LWT	Table Write
Synt	ax:	[label] TABLWT t,i,f
Ope	rands:	$0 \le f \le 255$ i $\in [0,1]$ t $\in [0,1]$
Ope	ration:	If t = 0, f \rightarrow TBLATL; If t = 1, f \rightarrow TBLATH; TBLAT \rightarrow Prog Mem (TBLPTR) If i = 1, TBLPTR + 1 \rightarrow TBLPTR
Stat	us Affected:	None
Enco	oding:	1010 11ti ffff ffff
N	ote: The MC voltage memory If MCLR the prog will be (althoug disturbe	 Load value in 'f' into 16-bit table latch (TBLAT) If t = 0: load into low byte; If t = 1: load into high byte The contents of TBLAT is written to the program memory location pointed to by TBLPTR If TBLPTR points to external program memory location, then the instruction takes two-cycle If TBLPTR points to an internal EPROM location, then the instruction is terminated when an interrupt is received. LR/VPP pin must be at the programming for successful programming of internal WPP = VDD gramming sequence of internal memory executed, but will not be successful h the internal memory location may be d)
		3. The TBLPTR can be automati- cally incremented
		If i = 0; TBLPTR is not
		Incremented If i = 1; TBLPTR is incremented
Wor	ds:	1
Cycl	es:	2 (many if write is to on-chip EPROM program memory)
QC	ycle Activity:	
	Q1	Q2 Q3 Q4
	Decode	Read Execute Write register 'f' TBLATH or TBLATL
		TBLATL

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 17-7: CAPTURE TIMINGS

TABLE 17-7: CAPTURE REQUIREMENTS

Parameter	_						
No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
50	TccL	Capture1 and Capture2 input low time	10 *	—	_	ns	
51	TccH	Capture1 and Capture2 input high time	10 *	—	_	ns	
52	TccP	Capture1 and Capture2 input period	<u>2 Tcy</u> § N	—	—	ns	N = prescale value (4 or 16)

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

FIGURE 17-8: PWM TIMINGS

TABLE 17-8: PWM REQUIREMENTS

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
53	TccR	PWM1 and PWM2 output rise time		10 *	35 *§	ns	
54	TccF	PWM1 and PWM2 output fall time	—	10 *	35 *§	ns	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

Applicable Devices 42 R42 42A 43 R43 44

FIGURE 17-11: MEMORY INTERFACE WRITE TIMING

TABLE 17-11: MEMORY INTERFACE WRITE REQUIREMENTS

Parameter							
No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
150	TadV2alL	AD<15:0> (address) valid to ALE↓ (address setup time)	0.25Tcy - 30	_	_	ns	
151	TalL2adl	ALE↓ to address out invalid (address hold time)	0	_	—	ns	
152	TadV2wrL	Data out valid to $\overline{WR} \downarrow$ (data setup time)	0.25Tcy - 40	—	_	ns	
153	TwrH2adl	WR [↑] to data out invalid (data hold time)	_	0.25Tcy §	_	ns	
154	TwrL	WR pulse width	_	0.25Tcy §	_	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification is guaranteed by design.

Applicable Devices 42 R42 42A 43 R43 44

Applicable Devices 42 R42 42A 43 R43 44

	Standard Operating Conditions (unless otherwise stated)							
			Operating temperature					
DC CHARA	CTERIS	STICS	$-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial and					
					0°C	≤TA	≤ +70°C for commercial	
			Operating v	oltage Vi	DD range a	s desc	ribed in Section 19.1	
Parameter							•	
No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions	
		Output Low Voltage						
D080	Vol	I/O ports (except RA2 and RA3)					IOL = VDD/1.250 mA	
			-	-	0.1Vdd	V	$4.5V \le VDD \le 6.0V$	
			-	-	0.1Vdd *	V	VDD = 2.5V	
D081		with TTL buffer	_	-	0.4	V	IOL = 6 mA, VDD = 4.5 V	
							Note 6	
D082		RA2 and RA3	_	-	3.0	V	IOL = 60.0 mA, VDD = 6.0 V	
D083		OSC2/CLKOUT	_	-	0.4	V	IOL = 1 mA, VDD = 4.5 V	
D084		(RC and EC osc modes)	-	-	0.1Vdd *	V	IOL = VDD/5 mA	
							(PIC17LC43/LC44 only)	
		Output High Voltage (Note 3)						
D090	Vон	I/O ports (except RA2 and RA3)					IOH = -VDD/2.500 mA	
			0.9VDD	-	-	V	$4.5V \le VDD \le 6.0V$	
			0.9VDD *	-	-	V	VDD = 2.5V	
D091		with TTL buffer	2.4	-	-	V	IOH = -6.0 mA, VDD=4.5V	
						.,	Note 6	
D092		RA2 and RA3	-	-	12	V	Pulled-up to externally applied voltage	
D093		OSC2/CLKOUT	2.4	_	-	V	IOH = -5 mA, VDD = 4.5 V	
D094		(RC and EC osc modes)	0.9Vdd *	-	-	V	IOH = -VDD/5 mA	
							(PIC17LC43/LC44 only)	
		Capacitive Loading Specs						
		on Output Pins						
D100	COSC2	OSC2/CLKOUT pin	-	-	25	pF	In EC or RC osc modes	
							when OSC2 pin is outputting	
							CLKOUI.	
							external clock is used to	
D 404	0				50	_	drive OSC1.	
D101	CIO	All I/O pins and OSC2	_	-	50	р⊢		
D 400					50			
0102	CAD		-	-	50	р⊢	In IVIICroprocessor or	
		(I OKIO, I OKID allu FORTE)					mode	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

t These parameters are for design guidance only and are not tested, nor characterized.

Note 1: In RC oscillator configuration, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC17CXX devices be driven with external clock in RC mode.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as coming out of the pin.

4: These specifications are for the programming of the on-chip program memory EPROM through the use of the table write instructions. The complete programming specifications can be found in: PIC17CXX Programming Specifications (Literature number DS30139).

5: The MCLR/VPP pin may be kept in this range at times other than programming, but is not recommended.

6: For TTL buffers, the better of the two specifications may be used.

Applicable Devices 42 R42 42A 43 R43 44

TABLE 19-11: MEMORY INTERFACE WRITE REQUIREMENTS (NOT SUPPORTED IN PIC17LC4X DEVICES)

Parameter No.	Sym	Characteristic	Min	Тур†	Max	Units	Conditions
150	TadV2alL	AD<15:0> (address) valid to ALE↓ (address setup time)	0.25Tcy - 10	_	_	ns	
151	TalL2adl	ALE↓ to address out invalid (address hold time)	0	_	_	ns	
152	TadV2wrL	Data out valid to $\overline{WR} \downarrow$ (data setup time)	0.25Tcy - 40	—	_	ns	
153	TwrH2adl	WR [↑] to data out invalid (data hold time)	_	0.25Tcy §	_	ns	
154	TwrL	WR pulse width	_	0.25TCY §	_	ns	

These parameters are characterized but not tested.

† Data in "Typ" column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

§ This specification ensured by design.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: http://www.microchip.com

Rocky Mountain

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7966 Fax: 480-792-7456

Atlanta

500 Sugar Mill Road, Suite 200B Atlanta, GA 30350 Tel: 770-640-0034 Fax: 770-640-0307

Boston

2 Lan Drive, Suite 120 Westford, MA 01886 Tel: 978-692-3848 Fax: 978-692-3821

Chicago

333 Pierce Road, Suite 180 Itasca, IL 60143 Tel: 630-285-0071 Fax: 630-285-0075

Dallas

4570 Westgrove Drive, Suite 160 Addison, TX 75001 Tel: 972-818-7423 Fax: 972-818-2924

Detroit Tri-Atria Office Building

32255 Northwestern Highway, Suite 190 Farmington Hills, MI 48334 Tel: 248-538-2250 Fax: 248-538-2260 Kokomo

2767 S. Albright Road

Kokomo, Indiana 46902 Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles

18201 Von Karman, Suite 1090 Irvine, CA 92612

Tel: 949-263-1888 Fax: 949-263-1338 New York

150 Motor Parkway, Suite 202 Hauppauge, NY 11788 Tel: 631-273-5305 Fax: 631-273-5335 San Jose

Microchip Technology Inc. 2107 North First Street, Suite 590 San Jose, CA 95131 Tel: 408-436-7950 Fax: 408-436-7955

Toronto

6285 Northam Drive, Suite 108 Mississauga, Ontario L4V 1X5, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia

Microchip Technology Australia Pty Ltd Suite 22, 41 Rawson Street Epping 2121, NSW Australia

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing

Microchip Technology Consulting (Shanghai) Co., Ltd., Beijing Liaison Office Unit 915 Bei Hai Wan Tai Bldg. No. 6 Chaoyangmen Beidajie Beijing, 100027, No. China Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu

Microchip Technology Consulting (Shanghai) Co., Ltd., Chengdu Liaison Office Rm. 2401, 24th Floor, Ming Xing Financial Tower No. 88 TIDU Street Chengdu 610016, China Tel: 86-28-6766200 Fax: 86-28-6766599

China - Fuzhou

Microchip Technology Consulting (Shanghai) Co., Ltd., Fuzhou Liaison Office Unit 28F, World Trade Plaza No. 71 Wusi Road Fuzhou 350001, China Tel: 86-591-7503506 Fax: 86-591-7503521 China - Shanghai

Microchip Technology Consulting (Shanghai) Co., Ltd. Room 701, Bldg. B Far East International Plaza No. 317 Xian Xia Road Shanghai, 200051 Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen

Microchip Technology Consulting (Shanghai) Co., Ltd., Shenzhen Liaison Office Rm. 1315, 13/F, Shenzhen Kerry Centre, Renminnan Lu Shenzhen 518001, China Tel: 86-755-2350361 Fax: 86-755-2366086 Hong Kong Microchip Technology Hongkong Ltd. Unit 901-6, Tower 2, Metroplaza

223 Hing Fong Road Kwai Fong, N.T., Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

India

Microchip Technology Inc. India Liaison Office **Divvasree Chambers** 1 Floor, Wing A (A3/A4) No. 11, O'Shaugnessey Road Bangalore, 560 025, India Tel: 91-80-2290061 Fax: 91-80-2290062

Japan

Microchip Technology Japan K.K. Benex S-1 6F 3-18-20, Shinyokohama Kohoku-Ku, Yokohama-shi Kanagawa, 222-0033, Japan Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea Microchip Technology Korea 168-1, Youngbo Bldg. 3 Floor Samsung-Dong, Kangnam-Ku Seoul, Korea 135-882 Tel: 82-2-554-7200 Fax: 82-2-558-5934 Singapore Microchip Technology Singapore Pte Ltd. 200 Middle Road #07-02 Prime Centre Singapore, 188980 Tel: 65-334-8870 Fax: 65-334-8850 Taiwan Microchip Technology Taiwan 11F-3, No. 207 Tung Hua North Road Taipei, 105, Taiwan Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE

Denmark

Microchip Technology Nordic ApS **Regus Business Centre** Lautrup hoj 1-3 Ballerup DK-2750 Denmark Tel: 45 4420 9895 Fax: 45 4420 9910 France Microchip Technology SARL Parc d'Activite du Moulin de Massy 43 Rue du Saule Trapu Batiment A - ler Etage 91300 Massy, France Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany Microchip Technology GmbH

Gustav-Heinemann Ring 125 D-81739 Munich, Germany Tel: 49-89-627-144 0 Fax: 49-89-627-144-44 Italy

Microchip Technology SRL Centro Direzionale Colleoni Palazzo Taurus 1 V. Le Colleoni 1 20041 Agrate Brianza Milan, Italy Tel: 39-039-65791-1 Fax: 39-039-6899883

United Kinadom

Arizona Microchip Technology Ltd. 505 Eskdale Road Winnersh Triangle Wokingham Berkshire, England RG41 5TU Tel: 44 118 921 5869 Fax: 44-118 921-5820

01/18/02