E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Obsolete
Core Processor	ST10
Core Size	16-Bit
Speed	64MHz
Connectivity	ASC, CANbus, EBI/EMI, I ² C, SSC, UART/USART
Peripherals	POR, PWM, WDT
Number of I/O	111
Program Memory Size	512KB (512K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	36K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 24x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	144-BQFP
Supplier Device Package	144-PQFP (28x28)
Purchase URL	https://www.e-xfl.com/product-detail/stmicroelectronics/st10f273z4q3

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

57

		13.2.1 Open drain mode	65
		13.2.2 Input threshold control	65
	13.3	Alternate port functions	65
14	A/D c	onverter	67
15	Seria	I channels	69
	15.1	Asynchronous / synchronous serial interfaces	69
	15.2	ASCx in asynchronous mode	69
	15.3	ASCx in synchronous mode	70
	15.4	High speed synchronous serial interfaces	71
16	I2C in	nterface	73
17	CAN	modules	74
	17.1	Configuration support	74
	17.2	CAN bus configurations	75
18	Real t	time clock	77
19	Watcl	hdog timer	78
19 20	Watcl Syste	hdog timer	78 79
19 20	Watch Syste	hdog timer em reset	78 79 79
19 20	Watcl Syste 20.1 20.2	hdog timer em reset Input filter Asynchronous reset	78 79 80
19 20	Watch Syste 20.1 20.2 20.3	hdog timer em reset Input filter Asynchronous reset Synchronous reset (warm reset)	78 79 80 85
19 20	Watch Syste 20.1 20.2 20.3 20.4	hdog timer em reset Input filter Asynchronous reset Synchronous reset (warm reset) Software reset	78 79 80 85 91
19 20	Watcl Syste 20.1 20.2 20.3 20.4 20.5	hdog timer	78 79 79 80 85 91 92
19 20	Watcl Syste 20.1 20.2 20.3 20.4 20.5 20.6	hdog timer	78 79 79 80 85 91 92 93
19 20	Watcl Syste 20.1 20.2 20.3 20.4 20.5 20.6 20.7	hdog timer	78 79 79 80 85 91 92 93 97
19 20	Watcl Syste 20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8	hdog timer	78 79 79 80 91 91 92 93 97 100
19 20	Watcl Syste 20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9	hdog timer m reset Input filter Asynchronous reset Synchronous reset (warm reset) Software reset Watchdog timer reset Bidirectional reset Reset circuitry Reset application examples Reset summary	78 79 80 85 91 92 93 97 97 100 102
19 20 21	Watcl Syste 20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 Powe	hdog timer m reset Input filter Asynchronous reset Synchronous reset (warm reset) Software reset Watchdog timer reset Bidirectional reset Reset circuitry Reset application examples Reset summary r reduction modes	78 79 80 91 92 93 97 100 102 105
19 20 21	Watcl Syste 20.1 20.2 20.3 20.4 20.5 20.6 20.7 20.8 20.9 Powe 21.1	hdog timer	78 79 80 85 91 92 93 97 .100 .102 105 105

List of figures

Figure 1.	ST10F273 Logic symbol	13
Figure 2.	Pin configuration (top view)	14
Figure 3.	Block diagram	21
Figure 4.	Flash structure	25
Figure 5.	CPU block diagram (MAC unit not included)	46
Figure 6.	MAC unit architecture	47
Figure 7.	X-Interrupt basic structure	55
Figure 8.	Block diagram of GPT1	60
Figure 9.	Block diagram of GPT2.	62
Figure 10.	Block diagram of PWM module	. 63
Figure 11	Connection to single CAN bus via separate CAN transceivers	75
Figure 12	Connection to single CAN bus via common CAN transceivers	75
Figure 13	Connection to two different CAN buses (e.g. for gateway application)	76
Figure 14	Connection to one CAN bus with internal Parallel mode enabled	76
Figure 15	Asynchronous nower-on BESET (EA = 1)	82
Figure 16	Asynchronous power-on $BESET(EA = 0)$	83
Figure 17	Asynchronous hardware BESET (EA -1)	84
Figure 18	Asynchronous hardware $BESET (EA = 0)$	
Figure 19	Synchronous short / long hardware $BESET (EA - 1)$	88
Figure 20	Synchronous short / long hardware $BESET (EA = 0)$	89
Figure 21	Synchronous long hardware $BESET (EA - 1)$	
Figure 22	Synchronous long hardware RESET ($EA = 0$)	
Figure 23	SW / WDT unidirectional RESET ($EA = 0$)	02
Figure 24	SW / WDT unidirectional RESET $(EA = 0)$	03
Figure 25	SW / WDT bidirectional RESET ($EA = 0$)	95
Figure 26	SW / WDT bidirectional RESET ($EA = 0$)	90
Figure 20.	SW / WDT bidirectional RESET (EA = 0) followed by a HW RESET	
Figure 28	Minimum external reset circuitry	98
Figure 20.	System reset circuit	
Figure 30	Internal (simulified) reset circuitry	00
Figure 31	Example of software or watchdog hidiractional reset ($EA = 1$)	100
Figure 32	Example of software or watchdog bidirectional reset $(EA = 1)$	101
Figure 32	PORTO bits latebad into the different registers after reset	10/
Figure 34	External RC circuitry on RPD nin	104
Figure 35	Port2 tost mode structure	122
Figure 36	Supply current versus the operating frequency (PLIN and IDLE modes)	122
Figure 37	A/D conversion characteristic	122
Figure 38	A/D convertor input ping scheme	120
Figure 30.	Charge sharing timing diagram during compling phase	140
Figure 39.	Anti aliasing filter and conversion rate	1/1
Figure 40.		. 141 111
Figure 41.		. 144 144
Figure 42.	Concretion mechanisms for the CDU clock	144
Figure 43.		. 140
Figure 44.		101
Figure 45.	Crystal oscillator and resonator connection diagram	. 152
Figure 46.	SZ KITZ Crystal Oscillator connection diagram	. 153
Figure 47.		. 154
rigure 48.	External memory cycle: wulliplexed bus, with/without read/write delay, normal ALE	. 158

Symbol	Pin	Туре	Function				
	85-92	I/O	Port 4 is an 8-bit bidirectional I/O port. It is bit-wise programmable for input or output via direction bit. Programming an I/O pin as input forces the corresponding output driver to high impedance state. The input threshold is selectable (TTL or CMOS). Port 4.4, 4.5, 4.6 and 4.7 outputs can be configured as push-pull or open drain drivers. In case of an external bus configuration, Port 4 can be used to output the segment address lines:				
	85	0	P4.0	A16	Segment address line		
	86	0	P4.1	A17	Segment address line		
	87	0	P4.2	A18	Segment address line		
	88	0	P4.3	A19	Segment address line		
	89	0	P4.4	A20	Segment address line		
P4.0 –P4.7		I	CAN2_RxD CAN2: receive data input				
		I/O	SCL I ² C Interface: serial clock				
	90	0	P4.5	A21	Segment address line		
		I		CAN1_RxD CAN1: receive data input			
		I		CAN2_RxD	CAN2: receive data input		
	91	0	P4.6	A22	Segment address line		
O CAN1_TxD CAN1: transmit data ou				CAN1: transmit data output			
		0		CAN2_TxD	CAN2: transmit data output		
	92	0	P4.7	A23	Most significant segment address line		
		0		CAN2_TxD	CAN2: transmit data output		
		I/O		SDA	I ² C Interface: serial data		
RD	95	0	External memory read strobe. $\overline{\text{RD}}$ is activated for every external instruction or data read access.				
WR/WRL	96	0	External memory write strobe. In $\overline{\text{WR}}$ -mode this pin is activated for every external data write access. In $\overline{\text{WR}}$ mode this pin is activated for low byte data write accesses on a 16-bit bus, and for every data write access on an 8-bit bus. See WRCFG in the SYSCON register for mode selection.				
READY/ READY	97	I	Ready input. The active level is programmable. When the ready function is enabled, the selected inactive level at this pin, during an external memory access, will force the insertion of waitstate cycles until the pin returns to the selected active level.				
ALE	98	0	Addres multiple	s latch enable exed mode, thi	output. In case of use of external addressing or of signal is the latch command of the address lines.		

 Table 2.
 Pin description (continued)

7.2 Instruction set summary

The *Table 28* lists the instructions of the ST10F273Z4. The detailed description of each instruction can be found in the "ST10 Family Programming Manual".

Mnemonic	Mnemonic Description			
ADD(B)	Add word (byte) operands	2/4		
ADDC(B)	Add word (byte) operands with Carry	2/4		
SUB(B)	Subtract word (byte) operands			
SUBC(B)	Subtract word (byte) operands with Carry	2/4		
MUL(U)	(Un)Signed multiply direct GPR by direct GPR (16-16-bit)	2		
DIV(U)	(Un)Signed divide register MDL by direct GPR (16-/16-bit)	2		
DIVL(U)	(Un)Signed long divide reg. MD by direct GPR (32-/16-bit)	2		
CPL(B)	Complement direct word (byte) GPR	2		
NEG(B)	Negate direct word (byte) GPR	2		
AND(B)	Bit-wise AND, (word/byte operands)	2/4		
OR(B)	Bit-wise OR, (word/byte operands)	2/4		
XOR(B)	Bit-wise XOR, (word/byte operands)	2/4		
BCLR	Clear direct bit	2		
BSET	Set direct bit	2		
BMOV(N)	Move (negated) direct bit to direct bit	4		
BAND, BOR, BXOR	AND/OR/XOR direct bit with direct bit	4		
BCMP	Compare direct bit to direct bit	4		
BFLDH/L	Bit-wise modify masked high/low byte of bit-addressable direct word memory with immediate data	4		
CMP(B)	Compare word (byte) operands	2/4		
CMPD1/2	Compare word data to GPR and decrement GPR by 1/2	2/4		
CMPI1/2	Compare word data to GPR and increment GPR by 1/2	2/4		
PRIOR	Determine number of shift cycles to normalize direct word GPR and store result in direct word GPR	2		
SHL / SHR	Shift left/right direct word GPR	2		
ROL / ROR	Rotate left/right direct word GPR	2		
ASHR	Arithmetic (sign bit) shift right direct word GPR	2		
MOV(B)	Move word (byte) data	2/4		
MOVBS	Move byte operand to word operand with sign extension	2/4		
MOVBZ	Move byte operand to word operand with zero extension	2/4		
JMPA, JMPI, JMPR	Jump absolute/indirect/relative if condition is met	4		
JMPS	Jump absolute to a code segment	4		

Table 28. Standard instruction set summary

13 Parallel ports

13.1 Introduction

The ST10F273Z4 MCU provides up to 111 I/O lines with programmable features. These capabilities bring very flexible adaptation of this MCU to wide range of applications.

ST10F273Z4 has nine groups of I/O lines gathered as follows:

- Port 0 is a two time 8-bit port named P0L (Low as less significant byte) and P0H (high as most significant byte)
- Port 1 is a two time 8-bit port named P1L and P1H
- Port 2 is a 16-bit port
- Port 3 is a 15-bit port (P3.14 line is not implemented)
- Port 4 is a 8-bit port
- Port 5 is a 16-bit port input only
- Port 6, Port 7 and Port 8 are 8-bit ports

These ports may be used as general purpose bidirectional input or output, software controlled with dedicated registers.

For example, the output drivers of six of the ports (2, 3, 4, 6, 7, 8) can be configured (bitwise) for push-pull or open drain operation using ODPx registers.

The input threshold levels are programmable (TTL/CMOS) for all the ports. The logic level of a pin is clocked into the input latch once per state time, regardless whether the port is configured for input or output. The threshold is selected with PICON and XPICON registers control bits.

A write operation to a port pin configured as an input causes the value to be written into the port output latch, while a read operation returns the latched state of the pin itself. A read-modify-write operation reads the value of the pin, modifies it, and writes it back to the output latch.

Writing to a pin configured as an output (DPx.y='1') causes the output latch and the pin to have the written value, since the output buffer is enabled. Reading this pin returns the value of the output latch. A read-modify-write operation reads the value of the output latch, modifies it, and writes it back to the output latch, thus also modifying the level at the pin.

I/O lines support an alternate function which is detailed in the following description of each port.

sufficient: anyway, a maximum of 100nF on V₁₈ pin should not generate problems of over-current (higher value is allowed if current is limited by the external hardware). External current limitation is anyway recommended also to avoid risks of damage in case of temporary short between V₁₈ and ground: the internal 1.8V drivers are sized to drive currents of several tens of Ampere, so the current shall be limited by the external hardware. The limit of current is imposed by power dissipation considerations (Refer to Electrical Characteristics Section).

In next Figures 15 and 16 Asynchronous Power-on timing diagrams are reported, respectively with boot from internal or external memory, highlighting the reset phase extension introduced by the embedded FLASH module when selected.

Note: Never power the device without keeping RSTIN pin grounded: the device could enter in unpredictable states, risking also permanent damages.

Figure 20. Synchronous short / long hardware RESET (EA = 0)

1) RSTIN assertion can be released there. Refer also to Section 21.1 for details on minimum pulse duration.

2) If during the reset condition (RSTIN low), RPD voltage drops below the threshold voltage (about 2.5V for 5V operation), the asynchronous reset is then immediately entered.

3) 3 to 8 TCL depending on clock source selection.

4) RSTIN pin is pulled low if bit BDRSTEN (bit 3 of SYSCON register) was previously set by software. Bit BDRSTEN is cleared after reset.

5) Minimum RSTIN low pulse duration shall also be longer than 500ns to guarantee the pulse is not masked by the internal filter (refer to *Section 21.1*).

Warning: During power-off phase, it is important that the external hardware maintains a stable ground level on RSTIN pin, without any glitch, in order to avoid spurious exiting from reset status with unstable power supply.

21.3.2 Exiting stand-by mode

After the system has entered the Stand-by mode, the procedure to exit this mode consists of a standard Power-on sequence, with the only difference that the RAM is already powered through V_{18SB} internal reference (derived from V_{STBY} pin external voltage).

It is recommended to held the device under RESET (RSTIN pin forced low) until external V_{DD} voltage pin is stable. Even though, at the very beginning of the power-on phase, the device is maintained under reset by the internal low voltage detector circuit (implemented inside the main voltage regulator) till the internal V_{18} becomes higher than about 1.0V, there is no warranty that the device stays under reset status if RSTIN is at high level during power ramp up. So, it is important the external hardware is able to guarantee a stable ground level on RSTIN along the power-on phase, without any temporary glitch.

The external hardware shall be responsible to drive low the $\overline{\text{RSTIN}}$ pin until the V_{DD} is stable, even though the internal LVD is active.

Once the internal Reset signal goes low, the RAM (still frozen) power supply is switched to the main V_{18} .

At this time, everything becomes stable, and the execution of the initialization routines can start: XRAM2EN bit can be set, enabling the RAM.

21.3.3 Real-time clock and stand-by mode

When Stand-by mode is entered (turning off the main supply V_{DD}), the Real-Time Clock counting can be maintained running in case the on-chip 32 kHz oscillator is used to provide the reference to the counter. This is not possible if the main oscillator is used as reference for the counter: Being the main oscillator powered by V_{DD} , once this is switched off, the oscillator is stopped.

22 Programmable output clock divider

A specific register mapped on the XBUS allows to choose the division factor on the CLKOUT signal (P3.15). This register is mapped on X-Miscellaneous memory address range.

When CLKOUT function is enabled by setting bit CLKEN of register SYSCON, by default the CPU clock is output on P3.15. Setting bit XMISCEN of register XPERCON and bit XPEN of register SYSCON, it is possible to program the clock prescaling factor: in this way on P3.15 a prescaled value of the CPU clock can be output.

When CLKOUT function is not enabled (bit CLKEN of register SYSCON cleared), P3.15 does not output any clock signal, even though XCLKOUTDIV register is programmed.

Name		Physical address		8-bit address	Description	Reset value
DP0H	b	F102h	Е	81h	P0h direction control register	00h
DP1L	b	F104h	Е	82h	P1L direction control register	00h
DP1H	b	F106h	Е	83h	P1h direction control register	00h
DP2	b	FFC2h		E1h	Port 2 direction control register	0000h
DP3	b	FFC6h		E3h	Port 3 direction control register	0000h
DP4	b	FFCAh		E5h	Port 4 direction control register	00h
DP6	b	FFCEh		E7h	Port 6 direction control register	00h
DP7	b	FFD2h		E9h	Port 7 direction control register	00h
DP8	b	FFD6h		EBh	Port 8 direction control register	00h
DPP0		FE00h		00h	CPU data page pointer 0 register (10-bit)	0000h
DPP1		FE02h		01h	CPU data page pointer 1 register (10-bit)	0001h
DPP2		FE04h		02h	CPU data page pointer 2 register (10-bit)	0002h
DPP3		FE06h		03h	CPU data page pointer 3 register (10-bit)	0003h
EMUCON		FE0Ah		05h	Emulation control register	XXh
EXICON	b	F1C0h	Е	E0h External interrupt control register		0000h
EXISEL	b	F1DAh	Е	EDh	External interrupt source selection register	0000h
IDCHIP		F07Ch	Е	3Eh	Device identifier register (n is the device revision)	114nh
IDMANUF		F07Eh	Е	3Fh	Manufacturer identifier register	0403h
IDMEM		F07Ah	Е	3Dh	On-chip memory identifier register	30D0h
IDPROG		F078h	Е	3Ch	Programming voltage identifier register	0040h
IDX0	b	FF08h		84h	MAC unit address pointer 0	0000h
IDX1	b	FF0Ah		85h	MAC unit address pointer 1	0000h
MAH		FE5Eh		2Fh	MAC unit accumulator - high word	0000h
MAL		FE5Ch		2Eh	MAC unit accumulator - low word	0000h
MCW	b	FFDCh		EEh	MAC unit control word	0000h
MDC	b	FF0Eh		87h	CPU multiply divide control register	0000h
MDH		FE0Ch		06h	CPU multiply divide register – high word	0000h
MDL		FE0Eh		07h	CPU multiply divide register – low word	0000h
MRW	b	FFDAh		EDh	MAC unit repeat word	0000h
MSW	b	FFDEh		EFh	MAC unit status word	0200h
ODP2	b	F1C2h	Е	E1h	Port 2 open drain control register	0000h
ODP3	b	F1C6h	Е	E3h	Port 3 open drain control register	0000h
ODP4	b	F1CAh	Е	E5h	Port 4 open drain control register	00h
ODP6	b	F1CEh	Е	E7h	Port 6 open drain control register	00h

 Table 54.
 List of special function registers (continued)

Name		Physical address		8-bit address	Description	Reset value
PW1		FE32h		19h	PWM module pulse width register 1	0000h
PW2		FE34h		1Ah	PWM module pulse width register 2	0000h
PW3		FE36h		1Bh	PWM module pulse width register 3	0000h
PWMCON0 b		FF30h		98h	PWM module control register 0	0000h
PWMCON1 b		FF32h		99h	PWM module control register 1	0000h
PWMIC b	1	F17Eh	Е	BFh	PWM module interrupt control register	00h
QR0		F004h	Е	02h	MAC unit offset register r0	0000h
QR1		F006h	Е	03h	MAC unit offset register R1	0000h
QX0		F000h	Е	00h	MAC unit offset register X0	0000h
QX1		F002h	Е	01h	MAC unit offset register X1	0000h
RP0H b		F108h	Е	84h	System start-up configuration register (read only)	XXh
SOBG		FEB4h		5Ah	Serial channel 0 baud rate generator reload register	0000h
SOCON b		FFB0h		D8h	Serial channel 0 control register	0000h
SOEIC b	DEIC b FF70h		B8h	Serial channel 0 error interrupt control register	00h	
SORBUF	SORBUF FEB2h		59h	Serial channel 0 receive buffer register (read only)	XXh	
SORIC b		FF6Eh		B7h	Serial channel 0 receive interrupt control register	00h
SOTBIC b	TBIC b F19Ch E		CEh	Serial channel 0 transmit buffer interrupt control reg.	00h	
SOTBUF		FEB0h		58h	Serial channel 0 transmit buffer register (write only)	0000h
SOTIC b	1	FF6Ch		B6h	Serial channel 0 transmit interrupt control register	00h
SP		FE12h		09h	CPU system stack pointer register	FC00h
SSCBR		F0B4h	Е	5Ah	SSC Baud rate register	0000h
SSCCON b	1	FFB2h		D9h	SSC control register	0000h
SSCEIC b	1	FF76h		BBh	SSC error interrupt control register	00h
SSCRB		F0B2h	Е	59h	SSC receive buffer (read only)	XXXXh
SSCRIC b	1	FF74h		BAh	SSC receive interrupt control register	00h
SSCTB		F0B0h	Е	58h	SSC transmit buffer (write only)	0000h
SSCTIC b		FF72h		B9h	SSC transmit interrupt control register	00h
STKOV		FE14h		0Ah	CPU stack overflow pointer register	FA00h
STKUN		FE16h		0Bh	CPU stack underflow pointer register	FC00h
SYSCON b		FF12h		89h	CPU system configuration register	0xx0h 1)
Т0		FE50h		28h	CAPCOM timer 0 register	0000h
T01CON b		FF50h		A8h	CAPCOM timer 0 and timer 1 control register	0000h
TOIC b		FF9Ch		CEh	CAPCOM timer 0 interrupt control register	00h
TOREL		FE54h		2Ah	CAPCOM timer 0 reload register	0000h

 Table 54.
 List of special function registers (continued)

Symbol	Description	Value (typical)	Unit
Θ_{JA}	Thermal resistance junction-ambient PQFP 144 - 28 x 28 x 3.4 mm / 0.65 mm pitch LQFP 144 - 20 x 20 mm / 0.5 mm pitch LQFP 144 - 20 x 20 mm / 0.5 mm pitch on four layer FR4 board (2 layers signals / 2 layers power)	30 40 35	°C/W

	Table 63.	Thermal	characteristics
--	-----------	---------	-----------------

Based on thermal characteristics of the package and with reference to the power consumption figures provided in next tables and diagrams, the following product classification can be proposed. Anyhow, the exact power consumption of the device inside the application must be computed according to different working conditions, thermal profiles, real thermal resistance of the system (including printed circuit board or other substrata), I/O activity, and so on.

Table 64.	Product	classification

Package	Ambient temperature range	CPU frequency range		
Die	–40°C to +125°C	1 to 64 MHz		
PQFP 144	-40°C to +125°C	1 to 64 MHz		
	–40°C to +125°C	1 to 40 MHz		
	-40°C to +105°C	1 to 48 MHz		

24.4 Parameter interpretation

The parameters listed in the following tables represent the characteristics of the ST10F273Z4 and its demands on the system.

Where the ST10F273Z4 logic provides signals with their respective timing characteristics, the symbol "CC" for Controller Characteristics, is included in the "Symbol" column. Where the external system must provide signals with their respective timing characteristics to the ST10F273Z4, the symbol "SR" for System Requirement, is included in the "Symbol" column.

24.7.2 A/D conversion accuracy

The A/D Converter compares the analog voltage sampled on the selected analog input channel to its analog reference voltage (V_{AREF}) and converts it into 10-bit digital data. The absolute accuracy of the A/D conversion is the deviation between the input analog value and the output digital value. It includes the following errors:

- Offset error (OFS)
- Gain Error (GE)
- Quantization error
- Non-Linearity error (Differential and Integral)

These four error quantities are explained below using Figure 37.

Offset error

Offset error is the deviation between actual and ideal A/D conversion characteristics when the digital output value changes from the minimum (zero voltage) 00 to 01 (*Figure 37*, see OFS).

Gain error

Gain error is the deviation between the actual and ideal A/D conversion characteristics when the digital output value changes from the 3FE to the maximum 3FF, once offset error is subtracted. Gain error combined with offset error represents the so-called full-scale error (*Figure 37*, OFS + GE).

Quantization error

Quantization error is the intrinsic error of the A/D converter and is expressed as 1/2 LSB.

Non-linearity error

Non-Linearity error is the deviation between actual and the best-fitting A/D conversion characteristics (see *Figure 37*):

- Differential Non-Linearity error is the actual step dimension versus the ideal one (1 LSB_{IDEAL}).
- Integral Non-Linearity error is the distance between the center of the actual step and the center of the bisector line, in the actual characteristics. Note that for Integral Non-Linearity error, the effect of offset, gain and quantization errors is not included.

Note: Bisector characteristic is obtained drawing a line from 1/2 LSB before the first step of the real characteristic, and 1/2 LSB after the last step again of the real characteristic.

24.7.3 Total unadjusted error

The Total Unadjusted Error specifies the maximum deviation from the ideal characteristic: the number provided in the Data Sheet represents the maximum error with respect to the entire characteristic. It is a combination of the Offset, Gain and Integral Linearity errors. The different errors may compensate each other depending on the relative sign of the Offset and Gain errors. Refer to *Figure 37*, see TUE.

24.8.7 Phase locked loop (PLL)

For all other combinations of pins P0.15-13 (P0H.7-5) during reset the on-chip phase locked loop is enabled and it provides the CPU clock (see *Table 70*). The PLL multiplies the input frequency by the factor F which is selected via the combination of pins P0.15-13 ($f_{CPU} = f_{XTAL} x F$). With every F'th transition of f_{XTAL} the PLL circuit synchronizes the CPU clock to the input clock. This synchronization is done smoothly, so the CPU clock frequency does not change abruptly.

Due to this adaptation to the input clock the frequency of f_{CPU} is constantly adjusted so it is locked to f_{XTAL} . The slight variation causes a jitter of f_{CPU} which also effects the duration of individual TCLs.

The timings listed in the AC Characteristics that refer to TCLs therefore must be calculated using the minimum TCL that is possible under the respective circumstances.

The real minimum value for TCL depends on the jitter of the PLL. The PLL tunes f_{CPU} to keep it locked on f_{XTAL} . The relative deviation of TCL is the maximum when it is referred to one TCL period.

This is especially important for bus cycles using wait states and e.g. for the operation of timers, serial interfaces, etc. For all slower operations and longer periods (e.g. pulse train generation or measurement, lower Baud rates, etc.) the deviation caused by the PLL jitter is negligible. Refer to next *Section 24.8.9: PLL jitter* for more details.

24.8.8 Voltage controlled oscillator

The ST10F273Z4 implements a PLL which combines different levels of frequency dividers with a Voltage Controlled Oscillator (VCO) working as frequency multiplier. In the following table, a detailed summary of the internal settings and VCO frequency is reported.

P0.15-13 (P0H.7-5)		12		Innut	PI	LL	Output	CPU frequency f _{CPU} = f _{XTAL} x F
		-5)	XTAL frequency	prescaler	Multiply by	Divide by	prescaler	
1	1	1	4 to 8 MHz		64	Л		F _{XTAL} x 4
1	1	0	5.3 to 10.6 MHz	E / 4	48	4		F _{XTAL} x 3
1	0	1	4 to 8 MHz	' XTAL / 4	64	2	_	F _{XTAL} x 8
1	0	0	6.4 to 12 MHz	40 2		2		F _{XTAL} x 5
0	1	1	1 to 64 MHz	_	PLL by	passed		F _{XTAL} x 1
0	1	0	4 to 6.4 MHz	F _{XTAL} /2	40	2	1	F _{XTAL} x 10
0	0	1	4 to 12 MHz ¹⁾	_	PLL bypassed		F _{PLL} / 2	F _{XTAL} / 2
0	0	0	4 MHz	F _{XTAL} / 2	64	2	_	F _{XTAL} x 16

 Table 71.
 Internal PLL divider mechanism

The PLL input frequency range is limited to 1 to 3.5 MHz, while the VCO oscillation range is 64 to 128 MHz. The CPU clock frequency range when PLL is used is 16 to 64 MHz.

24.8.10 PLL lock / unlock

During normal operation, if the PLL gets unlocked for any reason, an interrupt request to the CPU is generated, and the reference clock (oscillator) is automatically disconnected from the PLL input: in this way, the PLL goes into free-running mode, providing the system with a backup clock signal (free running frequency F_{free}). This feature allows to recover from a crystal failure occurrence without risking to go in an undefined configuration: the system is provided with a clock allowing the execution of the PLL unlock interrupt routine in a safe mode.

The path between reference clock and PLL input can be restored only by a hardware reset, or by a bidirectional software or watchdog reset event that forces the RSTIN pin low.

Note: The external RC circuit on RSTIN pin shall be properly sized in order to extend the duration of the low pulse to grant the PLL gets locked before the level at RSTIN pin is recognized high: bidirectional reset internally drives RSTIN pin low for just 1024 TCL (definitively not sufficient to get the PLL locked starting from free-running mode).

	-				
Symbol	Parameter	Conditions	Value		Unit
		Conditions	Min.	Max.	Unit
T _{PSUP}	PLL start-up time ⁽¹⁾	Stable $V_{\mbox{\scriptsize DD}}$ and reference clock	-	300	
T _{LOCK}	PLL lock-in time	Stable V _{DD} and reference clock, starting from free-running mode	-	250	μs
T _{JIT}	Single period jitter ⁽¹⁾ (cycle to cycle = 2 TCL)	6 sigma time period variation (peak to peak)	-500	+500	ps
F _{free}	PLL free running frequency	Multiplication factors: 3, 4 Multiplication factors: 5, 8, 10, 16	250 500	2000 4000	kHz

Table 72. PLL characteristics $[V_{DD} = 5V \pm 10\%, V_{SS} = 0 V, T_A = -40 \degree C \text{ to } +125 \degree C]$

1. Not 100% tested, guaranteed by design characterization.

24.8.11 Main oscillator specifications

 V_{DD} = 5V \pm 10%, V_{SS} = 0V, T_A = –40°C to +125°C

Sym bol	Parameter	Conditions	Value			Unit	
		Conditions	Min.	Тур.	Max.	Unit	
9 _m	Oscillator transconductance		8	17	35	mA/V	
V _{OSC}	Oscillation amplitude ⁽¹⁾	Peak to peak		V _{DD} – 0.4	-	V	
V _{AV}	Oscillation voltage level ⁽¹⁾	Sine wave middle		V _{DD} / 2 – 0.25	-	v	
t _{STUP}	Oscillator start-up time ⁽¹⁾	Stable V _{DD} - crystal	_	3	4	me	
		Stable V _{DD} -resonator		2	3	1115	

 Table 73.
 Main oscillator characteristics

1. Not 100% tested, guaranteed by design characterization.

Figure 45. Crystal oscillator and resonator connection diagram

Figure 51. External memory cycle: multiplexed bus, with/without r/w delay, extended ALE, r/w CS

Figure 56. CLKOUT and READY

1. Cycle as programmed, including MCTC wait states (Example shows 0 MCTC WS).

- 2. The leading edge of the respective command depends on RW-delay.
- 3. READY sampled HIGH at this sampling point generates a READY controlled wait state, READY sampled LOW at this sampling point terminates the currently running bus cycle.
- 4. READY may be deactivated in response to the trailing (rising) edge of the corresponding command (RD or WR).
- If the Asynchronous READY signal does not fulfill the indicated setup and hold times with respect to CLKOUT (e.g. because CLKOUT is not enabled), it must fulfill t₃₇ in order to be safely synchronized. This is guaranteed, if READY is removed in response to the command (see Note 4).
- Multiplexed bus modes have a MUX wait state added after a bus cycle, and an additional MTTC wait state may be inserted here.
 For a multiplexed bus with MTTC wait state this delay is two CLKOUT cycles, for a demultiplexed bus
- without MTTC wait state this delay is zero. 7. The next external bus cycle may start here.

25.1.4 Spurious BREQ pulse in slave mode during external bus arbitration phase

Description

Sporadic bus errors may occur when the device operates as a slave and the HOLD signal is used for external bus arbitration.

After the slave has been granted the bus, it deactivates sporadically BREQ signal for a short time, even though its access to the bus has not been completed. The master then starts accessing the bus, thus causing a bus conflict between master and slave.

Workaround

To avoid producing any spurious BREQ pulse during slave external bus arbitrations, it is necessary to ensure that the time between the HLDA assertion (Bus Acknowledge from Master device) and the following HOLD falling edge (Bus Request from Master) is longer than three clock cycles.

This can be achieved by delaying the HOLD signal with an RC circuit (see Figure 63).

Figure 63. Connecting an ST10 in slave mode

25.1.5 Executing PWRDN instructions

Description

The Power-down mode is not entered and the PWRDN instruction is ignored in the following cases:

- The PWRDN instruction is executed while NMI is high (PWDCFG bit of the SYSCON register cleared)
- The PWRDN instruction is executed while at least one of the Port 2 pins used to exit from Power-down mode (PWDCFG bit of the SYSCON register is set) is at the active level.

Table 85.LQFP144 - 144 pin low profile quad flat package 20x20mm, 0.5 mm pitch,
package mechanical data

Dim.	mm			inches ⁽¹⁾		
	Min	Тур	Мах	Min	Тур	Мах
А			1.60			0.063
A1	0.05		0.15	0.002		0.006
A2	1.35	1.40	1.45	0.053		0.057
b	0.17	0.22	0.27	0.007		0.011
с	0.09		0.20	0.004		0.008
D	21.80	22.00	22.20	0.858	0.867	0.874
D1	19.80	20.00	20.20	0.780	0.787	0.795
D3		17.50			0.689	
E	21.80	22.00	22.20	0.858	0.867	0.874
E1	19.80	20.00	20.20	0.780	0.787	0.795
E3		17.50			0.689	
е		0.50			0.020	
К	0°	3.5°	7 °	0°	3.5°	7 °
L	0.45	0.60	0.75	0.018	0.024	0.030
L1		1.00			0.039	

1. Values in inches are converted from mm and rounded up to 4 decimal places.