

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

E·XFI

Product Status	Active
Туре	Fixed Point
Interface	Host Interface, SPI, SSP, UART
Clock Rate	140MHz
Non-Volatile Memory	External
On-Chip RAM	160kB
Voltage - I/O	3.00V, 3.30V
Voltage - Core	2.50V
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LFBGA
Supplier Device Package	144-MiniBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adsp-2191mbcaz-140

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Three programmable interval timers generate periodic interrupts. Each timer can be independently set to operate in one of three modes:

- Pulse Waveform Generation mode
- Pulsewidth Count/Capture mode
- External Event Watchdog mode

Each timer has one bidirectional pin and four registers that implement its mode of operation: A 7-bit configuration register, a 32-bit count register, a 32-bit period register, and a 32-bit pulsewidth register. A single status register supports all three timers. A bit in each timer's configuration register enables or disables the corresponding timer independently of the others.

Memory Architecture

The ADSP-2191M DSP provides 64K words of on-chip SRAM memory. This memory is divided into four 16K blocks located on memory Page 0 in the DSP's memory map. In addition to the internal and external memory space, the ADSP-2191M can address two additional and separate off-chip memory spaces: I/O space and boot space.

As shown in Figure 2, the DSP's two internal memory blocks populate all of Page 0. The entire DSP memory map consists of 256 pages (Pages 0–255), and each page is 64K words long. External memory space consists of four memory banks (banks 0–3) and supports a wide variety of SRAM memory devices. Each bank is selectable using the memory select pins ($\overline{MS3-0}$) and has configurable page boundaries, waitstates, and waitstate modes. The 1K word of on-chip boot-ROM populates the top of Page 255 while the remaining 254 pages are addressable off-chip. I/O memory pages differ from external memory pages in that I/O pages are 1K word long, and the external I/O pages have their own select pin (\overline{IOMS}). Pages 0–7 of I/O memory space reside on-chip and contain the configuration registers for the peripherals. Both the core and DMA-capable peripherals can access the DSP's entire memory map.

Internal (On-Chip) Memory

The ADSP-2191M's unified program and data memory space consists of 16M locations that are accessible through two 24-bit address buses, the PMA and DMA buses. The DSP uses slightly

different mechanisms to generate a 24-bit address for each bus. The DSP has three functions that support access to the full memory map.

- The DAGs generate 24-bit addresses for data fetches from the entire DSP memory address range. Because DAG index (address) registers are 16 bits wide and hold the lower 16 bits of the address, each of the DAGs has its own 8-bit page register (DMPGx) to hold the most significant eight address bits. Before a DAG generates an address, the program must set the DAG's DMPGx register to the appropriate memory page.
- The Program Sequencer generates the addresses for instruction fetches. For relative addressing instructions, the program sequencer bases addresses for relative jumps, calls, and loops on the 24-bit Program Counter (PC). In direct addressing instructions (two-word instructions),

the instruction provides an immediate 24-bit address value. The PC allows linear addressing of the full 24-bit address range.

• For indirect jumps and calls that use a 16-bit DAG address register for part of the branch address, the Program Sequencer relies on an 8-bit Indirect Jump page (IJPG) register to supply the most significant eight address bits. Before a cross page jump or call, the program must set the program sequencer's IJPG register to the appropriate memory page.

The ADSP-2191M has 1K word of on-chip ROM that holds boot routines. If peripheral booting is selected, the DSP starts executing instructions from the on-chip boot ROM, which starts the boot process from the selected peripheral. For more information, see "Booting Modes" on Page 11. The on-chip boot ROM is located on Page 255 in the DSP's memory space map.

External (Off-Chip) Memory

Each of the ADSP-2191M's off-chip memory spaces has a separate control register, so applications can configure unique access parameters for each space. The access parameters include read and write wait counts, waitstate completion mode, I/O clock divide ratio, write hold time extension, strobe polarity, and data bus width. The core clock and peripheral clock ratios influence the external memory access strobe widths. For more information, see "Clock Signals" on Page 11. The off-chip memory spaces are:

- External memory space ($\overline{MS3-0}$ pins)
- I/O memory space (IOMS pin)
- Boot memory space (BMS pin)

All of these off-chip memory spaces are accessible through the External Port, which can be configured for data widths of 8 or 16 bits.

External Memory Space

External memory space consists of four memory banks. These banks can contain a configurable number of 64K word pages. At reset, the page boundaries for external memory have Bank0 containing Pages 1–63, Bank1 containing Pages 64–127, Bank2 containing Pages 128–191, and Bank3 that contains Pages 192–254. The MS3–0 memory bank pins select Banks 3–0, respectively. The external memory interface is byte-addressable and decodes the 8 MSBs of the DSP program address to select one of the four banks. Both the ADSP-219x core and DMA-capable peripherals can access the DSP's external memory space.

IIO Memory Space

The ADSP-2191M supports an additional external memory called I/O memory space. This space is designed to support simple connections to peripherals (such as data converters and external registers) or to bus interface ASIC data registers. I/O space supports a total of 256K locations. The first 8K addresses are reserved for on-chip peripherals. The upper 248K addresses are available for external peripheral devices. The DSP's instruction set provides instructions for accessing I/O space. These instructions use an 18-bit address that is assembled from an

8-bit I/O page (IOPG) register and a 10-bit immediate value supplied in the instruction. Both the ADSP-219x core and a Host (through the Host Port Interface) can access I/O memory space.

Boot Memory Space

Boot memory space consists of one off-chip bank with 63 pages. The BMS memory bank pin selects boot memory space. Both the ADSP-219x core and DMA-capable peripherals can access the DSP's off-chip boot memory space. After reset, the DSP always starts executing instructions from the on-chip boot ROM. Depending on the boot configuration, the boot ROM code can start booting the DSP from boot memory. For more information, see "Booting Modes" on Page 11.

Interrupts

The interrupt controller lets the DSP respond to 17 interrupts with minimum overhead. The controller implements an interrupt priority scheme as shown in Table 1. Applications can use the unassigned slots for software and peripheral interrupts.

Table 2 shows the ID and priority at reset of each of the peripheral interrupts. To assign the peripheral interrupts a different priority, applications write the new priority to their corresponding control bits (determined by their ID) in the Interrupt Priority Control register. The peripheral interrupt's position in the IMASK and IRPTL register and its vector address depend on its priority level, as shown in Table 1. Because the IMASK and IRPTL registers are limited to 16 bits, any peripheral interrupts assigned a priority level of 11 are aliased to the lowest priority bit position (15) in these registers and share vector address 0x00 01E0.

Table 1. Interrupt Priorities/Addresses

Interrupt	IMASK/ IRPTL	Vector Address ¹
Emulator (NMI)—	NA	NA
Highest Priority		
Reset (NMI)	0	0x00 0000
Power-Down (NMI)	1	0x00 0020
Loop and PC Stack	2	0x00 0040
Emulation Kernel	3	0x00 0060
User Assigned Interrupt	4	0x00 0080
User Assigned Interrupt	5	0x00 00A0
User Assigned Interrupt	6	0x00 00C0
User Assigned Interrupt	7	0x00 00E0
User Assigned Interrupt	8	0x00 0100
User Assigned Interrupt	9	0x00 0120
User Assigned Interrupt	10	0x00 0140
User Assigned Interrupt	11	0x00 0160
User Assigned Interrupt	12	0x00 0180
User Assigned Interrupt	13	0x00 01A0
User Assigned Interrupt	14	0x00 01C0
User Assigned Interrupt—	15	0x00 01E0
Lowest Priority		

¹These interrupt vectors start at address 0x10000 when the DSP is in "no-boot," run from external memory mode.

Clock Signals

The ADSP-2191M can be clocked by a crystal oscillator or a buffered, shaped clock derived from an external clock oscillator. If a crystal oscillator is used, the crystal should be connected across the CLKIN and XTAL pins, with two capacitors and a 1 M Ω shunt resistor connected as shown in Figure 3. Capacitor values are dependent on crystal type and should be specified by the crystal manufacturer. A parallel-resonant, fundamental frequency, microprocessor-grade crystal should be used for this configuration.

If a buffered, shaped clock is used, this external clock connects to the DSP's CLKIN pin. CLKIN input cannot be halted, changed, or operated below the specified frequency during normal operation. When an external clock is used, the XTAL input must be left unconnected.

The DSP provides a user-programmable $1 \times to 32 \times$ multiplication of the input clock, including some fractional values, to support 128 external to internal (DSP core) clock ratios. The MSEL6–0, BYPASS, and DF pins decide the PLL multiplication factor at reset. At runtime, the multiplication factor can be controlled in software. The combination of pullup and pull-down resistors in Figure 3 sets up a core clock ratio of 6:1, which produces a 150 MHz core clock from the 25 MHz input. For other clock multiplier settings, see the *ADSP-219x/ADSP-2191 DSP Hardware Reference*.

The peripheral clock is supplied to the CLKOUT pin.

All on-chip peripherals for the ADSP-2191M operate at the rate set by the peripheral clock. The peripheral clock is either equal to the core clock rate or one-half the DSP core clock rate. This selection is controlled by the IOSEL bit in the PLLCTL register. The maximum core clock is 160 MHz and the maximum peripheral clock is 80 MHz—the combination of the input clock and core/peripheral clock ratios may not exceed these limits.

Reset

The $\overline{\text{RESET}}$ signal initiates a master reset of the ADSP-2191M. The $\overline{\text{RESET}}$ signal must be asserted during the powerup sequence to assure proper initialization. $\overline{\text{RESET}}$ during initial powerup must be held long enough to allow the internal clock to stabilize.

The powerup sequence is defined as the total time required for the crystal oscillator circuit to stabilize after a valid V_{DD} is applied to the processor, and for the internal phase-locked loop (PLL) to lock onto the specific crystal frequency. A minimum of 100 μ s ensures that the PLL has locked, but does not include the crystal oscillator start-up time. During this powerup sequence the RESET signal should be held low. On any subsequent resets, the RESET signal must meet the minimum pulsewidth specification, t_{WRST}.

The $\overline{\text{RESET}}$ input contains some hysteresis. If using an RC circuit to generate your $\overline{\text{RESET}}$ signal, the circuit should use an external Schmidt trigger.

Figure 3. External Crystal Connections

The master reset sets all internal stack pointers to the empty stack condition, masks all interrupts, and resets all registers to their default values (where applicable). When $\overline{\text{RESET}}$ is released, if there is no pending bus request and the chip is configured for booting, the boot-loading sequence is performed. Program control jumps to the location of the on-chip boot ROM (0xFF 0000).

Power Supplies

The ADSP-2191M has separate power supply connections for the internal (V_{DDINT}) and external (V_{DDEXT}) power supplies. The internal supply must meet the 2.5 V requirement. The external supply must be connected to a 3.3 V supply. All external supply pins must be connected to the same supply.

Power-Up Sequence

Power up together the two supplies V_{DDEXT} and V_{DDINT} . If they cannot be powered up together, power up the internal (core) supply first (powering up the core supply first reduces the risk of latchup events.

Booting Modes

The ADSP-2191M has five mechanisms (listed in Table 6) for automatically loading internal program memory after reset. Two no-boot modes are also supported.

Table 6. Select Boot Mode (OPMODE, BMODE1, andBMODE0)

PMODE	AODE1	AODE 0	
Ю	BA	BA	Function
0	0	0	Execute from external memory 16 bits
			(No Boot)
0	0	1	Boot from EPROM
0	1	0	Boot from Host
0	1	1	Reserved
1	0	0	Execute from external memory 8 bits
			(No Boot)
1	0	1	Boot from UART
1	1	0	Boot from SPI, up to 4K bits
1	1	1	Boot from SPI, >4K bits up to
			512K bits

The OPMODE, BMODE1, and BMODE0 pins, sampled during hardware reset, and three bits in the Reset Configuration Register implement these modes:

- Execute from memory external 16 bits—The memory boot routine located in boot ROM memory space executes a boot-stream-formatted program located at address 0x010000 of boot memory space, packing 16-bit external data into 24-bit internal data. The External Port Interface is configured for the default clock multiplier (128) and read waitstates (7).
- Boot from EPROM—The EPROM boot routine located in boot ROM memory space fetches a boot-stream-formatted program located at physical address 0x00 0000 of boot memory space, packing 8- or 16-bit external data into 24-bit internal data. The External Port Interface is configured for the default clock multiplier (32) and read waitstates (7).
- Boot from Host—The (8- or 16-bit) Host downloads a boot-stream-formatted program to internal or external memory. The Host's boot routine is located in internal ROM memory space and uses the top 16 locations of Page 0 program memory and the top 272 locations of Page 0 data memory.

The internal boot ROM sets semaphore A (an IO register within the Host port) and then polls until the semaphore is reset. Once detected, the internal boot ROM will remap the interrupt vector table to Page 0 internal memory and jump to address 0x00 0000 internal memory. From the point of view of the host interface, an external host has full control of the DSP's memory map. The Host has the freedom to directly write internal memory, external memory, and internal I/O memory space. The DSP core execution is held off until the Host clears the semaphore register. This strategy allows the maximum flexibility for the Host to boot in the program and data code, by leaving it up to the programmer.

- Execute from memory external 8 bits (No Boot)— Execution starts from Page 1 of external memory space, packing either 8- or 16-bit external data into 24-bit internal data. The External Port Interface is configured for the default clock multiplier (128) and read waitstates (7).
- Boot from UART—Using an autobaud handshake sequence, a boot-stream-formatted program is downloaded by the Host. The Host agent selects a baud rate within the UART's clocking capabilities. After a hardware reset, the DSP's UART expects a 0xAA character (eight bits data, one start bit, one stop bit, no parity bit) on the RXD pin to determine the bit rate; and then replies with an OK string. Once the host receives this OK it downloads the boot stream without further handshake. The UART boot routine is located in internal ROM memory space and uses the top 16 locations of Page 0 program memory and the top 272 locations of Page 0 data memory.
- Boot from SPI, up to 4K bits—The SPI0 port uses the SPI0SEL1 (reconfigured PF2) output pin to select a single serial EEPROM device, submits a read command at address 0x00, and begins clocking consecutive data into internal or external memory. Use only SPI-compatible EEPROMs of ≤ 4K bit (12-bit address range). The SPI0 boot routine located in internal ROM memory space executes a boot-stream-formatted program, using the top 16 locations of Page 0 program memory and the top 272 locations of Page 0 data memory. The SPI boot configuration is SPIBAUD0=60 (decimal), CPHA=1, CPOL=1, 8-bit data, and MSB first.
- Boot from SPI, from >4K bits to 512K bits—The SPI0 port uses the SPI0SEL1 (re-configured PF2) output pin to select a single serial EEPROM device, submits a read command at address 0x00, and begins clocking consecutive data into internal or external memory. Use only SPI-compatible EEPROMs of ≥ 4K bit (16-bit address range). The SPI0 boot routine, located in internal ROM memory space, executes a boot-stream-formatted program, using the top 16 locations of Page 0 program memory and the top 272 locations of Page 0 data memory.

As indicated in Table 6, the OPMODE pin has a dual role, acting as a boot mode select during reset and determining SPORT or SPI operation at runtime. If the OPMODE pin at reset is the opposite of what is needed in an application during runtime, the application needs to set the OPMODE bit appropriately during runtime prior to using the corresponding peripheral.

Bus Request and Bus Grant

The ADSP-2191M can relinquish control of the data and address buses to an external device. When the external device requires access to the bus, it asserts the bus request (\overline{BR}) signal. The (\overline{BR}) signal is arbitrated with core and peripheral requests. External Bus requests have the lowest priority. If no other internal request is pending, the external bus request will be granted.

Table 7.	Pin	Function	Descriptions	(continued)
----------	-----	----------	--------------	-------------

Pin	Туре	Function
PF5 /SPI1SEL2	I/O/T I	Programmable Flags 5/SPI1 Slave Select output 2 (when SPI0 enabled)/Multiplier Select 5 (during boot)
/MSEL5	Ι	
PF4	I/O/T	Programmable Flags 4/SPI0 Slave Select output 2 (when SPI0 enabled)/Multiplier Select 4
/SPI0SEL2	Ι	(during boot)
/MSEL4	Ι	
PF3	I/O/T	Programmable Flags 3/SPI1 Slave Select output 1 (when SPI0 enabled)/Multiplier Select 3
/SPI1SEL1	Ι	(during boot)
/MSEL3	Ι	
PF2	I/O/T	Programmable Flags 2/SPI0 Slave Select output 1 (when SPI0 enabled)/Multiplier Select 2
/SPI0SEL1	Ι	(during boot)
/MSEL2	I	
PF1	I/O/T	Programmable Flags 1/SPI1 Slave Select input (when SPI1 enabled)/Multiplier Select 1
/SPISS1	1	(during boot)
/MSEL1		
PFO	1/0/1	Programmable Flags 0/SP10 Slave Select input (when SP10 enabled)/Multiplier Select 0
/SP1550 /MSEL0	1 T	(during boot)
		Extornal Port Pord Stroba
WR	0/T	External Port Write Strobe
ACK	I I	External Port Access Ready Acknowledge
BMS	0/Т	External Port Boot Space Select
IOMS	O/T	External Port IO Space Select
$\overline{MS3-0}$	O/T	External Port Memory Space Selects
BR	Ι	External Port Bus Request
BG	0	External Port Bus Grant
BGH	0	External Port Bus Grant Hang
HAD15–0	I/O/T	Host Port Multiplexed Address and Data Bus
HA16	Ι	Host Port MSB of Address Bus
HACK_P	Ι	Host Port ACK Polarity
HRD	Ι	Host Port Read Strobe
HWR	Ι	Host Port Write Strobe
HACK	0	Host Port Access Ready Acknowledge
HALE	Ι	Host Port Address Latch Strobe or Address Cycle Control
HCMS	I	Host Port Internal Memory–Internal I/O Memory–Boot Memory Select
HCIOMS	I	Host Port Internal I/O Memory Select
CLKIN	I	Clock Input/Oscillator Input
XIAL	0	Oscillator Output
BMODEI-0		Boot Mode 1–0. The BMODE1 and BMODE0 pins have 85 ks2 internal pull-up resistors.
OPMODE CL KOUT		Clock Output
RVPASS	T	Phase Lock Loop (PLL) Bypass Mode The BVPASS nin has a 85 kO internal null un resistor
BUIA35		SPORT1 0 Receive Clock
RCLK2/SCK1	I/O/T	SPORT2 Receive Clock/SPI1 Serial Clock
RES1-0	I/O/T	SPORT1-0 Receive Frame Sync
RFS2/MOSI1	I/O/T	SPORT2 Receive Frame Sync/SPI1 Master-Output, Slave-Input Data
TCLK1-0	I/O/T	SPORT1–0 Transmit Clock
TCLK2/SCK0	I/O/T	SPORT2 Transmit Clock/SPI0 Serial Clock
TFS1–0	I/O/T	SPORT1–0 Transmit Frame Sync
TFS2/MOSI0	I/O/T	SPORT2 Transmit Frame Sync/SPI0 Master-Output, Slave-Input Data
DR1–0	I/T	SPORT1–0 Serial Data Receive
DR2/MISO1	I/O/T	SPORT2 Serial Data Receive/SPI1 Master-Input, Slave-Output Data
DT1-0	O/T	SPORT1–0 Serial Data Transmit
DT2/MISO0	I/O/T	SPORT2 Serial Data Transmit/SPI0 Master-Input, Slave-Output Data

Pin	Туре	Function
TMR2–0	I/O/T	Timer Output or Capture
RXD	Ι	UART Serial Receive Data
TXD	0	UART Serial Transmit Data
RESET	Ι	Processor Reset. Resets the ADSP-2191M to a known state and begins execution at the
		program memory location specified by the hardware reset vector address. The $\overline{\text{RESET}}$ input must be asserted (low) at powerup. The $\overline{\text{RESET}}$ pin has an 85 k Ω internal pull-up resistor.
ТСК	Ι	Test Clock (JTAG). Provides a clock for JTAG boundary scan. The TCK pin has an 85 k Ω internal pull-up resistor.
TMS	Ι	Test Mode Select (JTAG). Used to control the test state machine. The TMS pin has an 85 k Ω internal pull-up resistor.
TDI	Ι	Test Data Input (JTAG). Provides serial data for the boundary scan logic. The TDI pin has a 85 kΩ internal pull-up resistor.
TDO	0	Test Data Output (JTAG). Serial scan output of the boundary scan path.
TRST	Ι	Test Reset (JTAG). Resets the test state machine. TRST must be asserted (pulsed low) after powerup or held low for proper operation of the ADSP-2191M. The TRST pin has a 65 k Ω internal pull-down resistor.
EMU	0	Emulation Status (JTAG). Must be connected to the ADSP-2191M emulator target board connector only.
V _{DDINT}	Р	Core Power Supply. Nominally 2.5 V dc and supplies the DSP's core processor. (four pins)
V _{DDEXT}	Р	I/O Power Supply. Nominally 3.3 V dc. (nine pins)
GND	G	Power Supply Return. (twelve pins)
NC		Do Not Connect. Reserved pins that must be left open and unconnected.

 Table 7. Pin Function Descriptions (continued)

ADSP-2191M SPECIFICATIONS

RECOMMENDED OPERATING CONDITIONS

			K Grade	(Commercial)	B Grade	e (Industrial)	
Parameter		Test Conditions	Min	Max	Min	Max	Unit
V _{DDINT}	Internal (Core) Supply Voltage		2.37	2.63	2.37	2.63	V
V _{DDEXT}	External (I/O) Supply Voltage		2.97	3.6	2.97	3.6	v
$V_{\rm IH}$	High Level Input Voltage	(a) $V_{DDINT} = max$, $V_{DDEXT} = max$	2.0	V_{DDEXT} +0.3	2.0	V_{DDEXT} +0.3	V
V _{IL}	Low Level Input Voltage	(a) $V_{DDINT} = min$, $V_{DDEXT} = min$	-0.3	+0.8	-0.3	+0.8	V
T _{AMB}	Ambient Operating Temperature		0	70	-40	+85	°C

Specifications subject to change without notice.

ELECTRICAL CHARACTERISTICS

			K and B Grades			
Parameter		Test Conditions	Min	Тур	Max	Unit
V _{OH}	High Level Output Voltage ¹		2.4			V
V _{OL}	Low Level Output Voltage ¹				0.4	V
I _{IH}	High Level Input Current ^{2, 3}				10	μA
I _{IL}	Low Level Input Current ^{3, 4}	$(a) V_{\text{DDEXT}} = \max,$ $V_{\text{DDEXT}} = 0 V$			10	μΑ
I _{IHP}	High Level Input Current ⁵		30		100	μΑ
I _{ILP}	Low Level Input Current ⁴		20		70	μΑ
I _{OZH}	Three-State Leakage Current ⁵	$v_{\rm IN} = 0$ v (a) $V_{\rm DDEXT} = \max$,			10	μΑ
I _{OZL}	Three-State Leakage Current ⁶				10	μΑ
C _{IN}	Input Capacitance ^{6, 7}	$f_{IN} = 0 V$ $f_{IN} = 1 MHz,$ $T_{CASE} = 25^{\circ}C,$ $V_{IN} = 2.5 V$			8	pF

Specifications subject to change without notice.

¹Applies to output and bidirectional pins: DATA15–0, ADDR21–0, HAD15–0, MS3–0, IOMS, RD, WR, CLKOUT, HACK, PF7–0, TMR2–0, BGH, BG, DT0, DT1, DT2/MISO0, TCLK0, TCLK1, TCLK2/SCK0, RCLK0, RCLK1, RCLK2/SCK1, TFS0, TFS1, TFS2/MOSI0, RFS0, RFS1, RFS2/MOSI1, <u>BMS</u>, TD0, TXD, <u>EMU</u>, DR2/MISO1.

²Applies to input pins: ACK, BR, HCMS, HCIOMS, HA16, HALE, HRD, HWR, CLKIN, DR0, DR1, RXD, HACK_P.

³Applies to input pins with internal pull-ups: BMODE0, BMODE1, OPMODE, BYPASS, TCK, TMS, TDI, RESET.

⁴Applies to input pin with internal pull-down: TRST.

⁵Applies to three-statable pins: DATA15-0, ADDR21-0, MS3-0, RD, WR, PF7-0, BMS, IOMS, TFSx, RFSx, TDO, EMU, TCLKx, RCLKx, DTx, HAD15-0, TMR2-0.

⁶Applies to all signal pins.

⁷Guaranteed, but not tested.

Programmable Flags Cycle Timing

Table 10 and Figure 9 describe Programmable Flag operations.

Table 10. Programmable Flags Cycle Timing

Parameter		Min	Max	Unit
Switching Ch	aracteristics			
t _{DFO}	Flag Output Delay with Respect to CLKOUT		7	ns
t _{HFO}	Flag Output Hold After CLKOUT High		6	ns
Timing Requirement				
t _{HFI}	Flag Input Hold is Asynchronous	3		ns

Figure 9. Programmable Flags Cycle Timing

Timer PWM_OUT Cycle Timing

Table 11 and Figure 10 describe timer expired operations. The input signal is asynchronous in "width capture mode" and has an absolute maximum input frequency of 40 MHz.

Table 11. Timer PWM_OUT Cycle Timing

Parameter	Min	Max	Unit
Switching Characteristic			
t _{HTO} Timer Pulsewidth Output ¹	12.5	$(2^{32}-1)$ cycles	ns

¹The minimum time for t_{HTO} is one cycle, and the maximum time for t_{HTO} equals $(2^{32}-1)$ cycles.

Figure 10. Timer PWM_OUT Cycle Timing

External Port Read Cycle Timing

Table 13 and Figure 12 describe external port read operations. For additional information on the ACK signal, see the discussion on Page 22.

Table 13	3. Exter	nal Port	Read	Cycle	Timing

Parameter ¹ ,	2	Min	Max	Unit
Switching Ch	aracteristics			
t _{CSRS}	Chip Select Asserted to $\overline{\text{RD}}$ Asserted Delay	$0.5t_{HCLK}-3$		ns
t _{ARS}	Address Valid to RD Setup and Delay	$0.5t_{HCLK}-3$		ns
t _{RSCS}	RD Deasserted to Chip Select Deasserted Setup	$0.5t_{HCLK}-2$		ns
t _{RW}	RD Strobe Pulsewidth	$t_{HCLK} - 2 + W^3$		ns
t _{RSA}	RD Deasserted to Address Invalid Setup	$0.5t_{HCLK}-2$		ns
t _{RWR}	$\overline{\mathrm{RD}}$ Deasserted to $\overline{\mathrm{WR}}$, $\overline{\mathrm{RD}}$ Asserted	t _{HCLK}		
Timing Requi	rements			
t _{AKW}	ACK Strobe Pulsewidth	t _{HCLK}		ns
t _{RDA}	RD Asserted to Data Access Setup		$t_{HCLK} - 4 + W^3$	ns
t _{ADA}	Address Valid to Data Access Setup		$t_{HCLK} + W^3$	ns
t _{SDA}	Chip Select Asserted to Data Access Setup		t_{HCLK} + W^3	ns
t _{SD}	Data Valid to RD Deasserted Setup	7		ns
t _{HRD}	RD Deasserted to Data Invalid Hold	0		ns
t _{DRSAK}	ACK Delay from RD Low	0		ns

¹t_{HCLK} is the peripheral clock period. ²These are timing parameters that are based on worst-case operating conditions.

 ^{3}W = (number of waitstates specified in wait register) × t_{HCLK}.

Figure 12. External Port Read Cycle Timing

External Port Bus Request and Grant Cycle Timing

Table 14 and Figure 13 describe external port bus request and bus grant operations.

Table 14. External Port Bus Request and Grant Cycle Timing

Parameter ¹	,2	Min	Max	Unit
Switching Ch	naracteristics			
t _{SD}	CLKOUT High to \overline{xMS} , Address, and $\overline{RD}/\overline{WR}$ Disable		$0.5t_{HCLK}+1$	ns
t _{se}	CLKOUT Low to \overline{xMS} , Address, and $\overline{RD}/\overline{WR}$ Enable	0	4	ns
t _{DBG}	CLKOUT High to \overline{BG} Asserted Setup	0	4	ns
t _{EBG}	CLKOUT High to \overline{BG} Deasserted Hold Time	0	4	ns
t _{DBH}	CLKOUT High to BGH Asserted Setup	0	4	ns
t _{EBH}	CLKOUT High to BGH Deasserted Hold Time	0	4	ns
Timing Requ	irements			
t _{BS}	BR Asserted to CLKOUT High Setup	4.6		ns
t _{BH}	CLKOUT High to BR Deasserted Hold Time	0		ns

¹t_{HCLK} is the peripheral clock period.
 ²These are timing parameters that are based on worst-case operating conditions.

Figure 13. External Port Bus Request and Grant Cycle Timing

Figure 14. Host Port ALE Mode Write Cycle Timing

Figure 15. Host Port ACC Mode Write Cycle Timing

Host Port ALE Mode Read Cycle Timing

Table 17 and Figure 16 describe Host port read operations in Address Latch Enable (ALE) mode. For more information on ACK, Ready, ALE, and ACC mode selection, see the Host port modes description on Page 8.

Table 17.	Host Port	ALE Mod	e Read	Cycle	Timing
-----------	-----------	---------	--------	-------	--------

Parameter		Min	Max	Unit
Switching Ch	aracteristics			
t _{RHKS1}	HRD Asserted to HACK Asserted (ACK Mode) First Byte	12t _{HCLK}	$15t_{HCLK}+t_{NH}^{1}$	ns
t _{RHKS2}	$\overline{\text{HRD}}$ Asserted to HACK Asserted (Setup, ACK Mode) ²		12	ns
t _{RHKH}	HRD Deasserted to HACK Deasserted (Hold, ACK Mode)		10	ns
t _{RHS}	HRD Asserted to HACK Asserted (Setup, Ready Mode)		10	ns
t _{RHH}	HRD Asserted to HACK Deasserted (Hold, Ready Mode)	12t _{HCLK}	$15t_{HCLK}+t_{NH}^{1}$	ns
	First Byte			
t _{RDH}	HRD Deasserted to Data Invalid (Hold)	1		ns
t _{RDD}	HRD Deasserted to Data Disable		10	ns
Timing Requi	rements			
t _{CSAL}	HCMS or HCIOMS Asserted to HALE Asserted (Delay)	0		ns
t _{ALCS}	HALE Deasserted to Optional HCMS or HCIOMS	1		ns
	Deasserted			
t _{RCSW}	$\overline{\text{HRD}}$ Deasserted to $\overline{\text{HCMS}}$ or $\overline{\text{HCIOMS}}$ Deasserted	0		ns
t _{ALR}	HALE Deasserted to HRD Asserted	5		ns
t _{RCS}	$\overline{\text{HRD}}$ Deasserted (After Last Byte) to $\overline{\text{HCMS}}$ or	0		ns
	HCIOMS Deasserted (Ready for Next Read)			
t _{ALPW}	HALE Asserted Pulsewidth	4		ns
t _{HKRD}	HACK Asserted to HRD Deasserted (Hold, ACK Mode)	1.5		ns
t _{AALS}	Address Valid to HALE Deasserted (Setup)	2		ns
t _{ALAH}	HALE Deasserted to Address Invalid (Hold)	4		ns

 $^{1}t_{NH}$ are peripheral bus latencies (n × t_{HCLK}); these are internal DSP latencies related to the number of peripherals attempting to access DSP memory at the same time.

 2 Measurement is for the second, third, or fourth byte of a host read transaction. The quantity of bytes to complete a host read transaction is dependent on the data bus size (8 or 16 bits) and the data type (16 or 24 bits).

NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF RCLK OR TCLK CAN BE USED AS THE ACTIVE SAMPLING EDGE.

NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF RCLK OR TCLK CAN BE USED AS THE ACTIVE SAMPLING EDGE.

Figure 18. Serial Ports

Figure 19. Serial Ports – External Late Frame Sync (Frame Sync Setup > 0.5t_{SCLK})

Figure 20. Serial Ports – External Late Frame Sync (Frame Sync Setup < 0.5t_{HCLK})

Serial Peripheral Interface (SPI) Port—Slave Timing Table 21 and Figure 22 describe SPI port slave operations.

Parameter		Min	Max	Unit
Switching Ch	paracteristics			
t _{DSOE}	SPISS Assertion to Data Out Active	0	8	ns
t _{DSDHI}	SPISS Deassertion to Data High Impedance	0	10	ns
t _{DDSPID}	SCLK Edge to Data Out Valid (Data Out Delay)	0	10	ns
t _{HDSPID}	SCLK Edge to Data Out Invalid (Data Out Hold)	0	10	ns
Timing Requi	irements			
t _{SPICHS}	Serial Clock High Period	2t _{HCLK}		ns
t _{SPICLS}	Serial Clock Low Period	2t _{HCLK}		ns
t _{SPICLK}	Serial Clock Period	4t _{HCLK}		ns
t _{HDS}	Last SPICLK Edge to SPISS Not Asserted	2t _{HCLK}		ns
t _{SPITDS}	Sequential Transfer Delay	$2t_{HCLK} + 4$		ns
t _{SDSCI}	SPISS Assertion to First SPICLK Edge	2t _{HCLK}		ns
t _{SSPID}	Data Input Valid to SCLK Edge (Data Input Setup)	1.6		ns
t _{HSPID}	SCLK Sampling Edge to Data Input Invalid (Data In Hold)	2.4		ns

Figure 22. Serial Peripheral Interface (SPI) Port-Slave Timing

Universal Asynchronous Receiver-Transmitter (UART) Port—Receive and Transmit Timing

Figure 23 describes UART port receive and transmit operations. The maximum baud rate is HCLK/16. As shown in Figure 23 there is some latency between the generation internal UART interrupts and the external data operations. These latencies are negligible at the data transmission rates for the UART.

Figure 23. UART Port—Receive and Transmit Timing

144-Lead Mini-BGA Pinout

Table 27 lists the mini-BGA pinout by signal name.Table 28lists the mini-BGA pinout by ball number.

	Ball		Ball		Ball		Ball		Ball
Signal	No.	Signal	No.	Signal	No.	Signal	No.	Signal	No.
A0	J11	BYPASS	M11	GND	F7	HALE	J1	TCLK0	J6
A1	H9	CLKIN	A5	GND	F8	HCIOMS	J3	TCLK1	M9
A2	H10	CLKOUT	C6	GND	F9	HCMS	H1	TCLK2	K5
A3	G12	D0	D7	GND	G4	HRD	J2	TDI	K12
A4	H11	D1	A7	GND	G5	HWR	K2	TDO	L11
A5	G10	D2	C7	GND	G6	IOMS	E8	TFS0	M8
A6	F12	D3	A6	GND	H5	MS0	D9	TFS1	J8
A7	G11	D4	B7	GND	L6	MS1	A9	TFS2	M5
A8	F10	D5	A4	GND	M1	MS2	C9	TMR0	K4
A9	F11	D6	C5	GND	M12	MS3	D8	TMR1	L4
A10	E12	D7	B5	HACK	H3	OPMODE	H12	TMR2	J4
A11	E11	D8	D5	HACK_P	G1	PF0	K1	TMS	K10
A12	E10	D9	A3	HAD0	C1	PF1	L1	TRST	J12
A13	E9	D10	C4	HAD1	B3	PF2	M2	TXD	M7
A14	D11	D11	B4	HAD2	C2	PF3	L2	V _{DDEXT}	E5
A15	D10	D12	C3	HAD3	D1	PF4	M3	V _{DDEXT}	E6
A16	D12	D13	A2	HAD4	D4	PF5	L3	V _{DDEXT}	F5
A17	C11	D14	B1	HAD5	D3	PF6	K3	V _{DDEXT}	F6
A18	C12	D15	B2	HAD6	D2	PF7	M4	V _{DDEXT}	G7
A19	B12	DR0	L7	HAD7	E1	RCLK0	K7	V _{DDEXT}	G8
A20	B11	DR1	K9	HAD8	E4	RCLK1	J9	V _{DDEXT}	H7
A21	A11	DR2	L5	HAD9	E2	RCLK2	J5	V _{DDEXT}	H8
ACK	A8	DT0	H6	HAD10	F1	RD	B8	V _{DDINT}	D6
BG	C10	DT1	L8	HAD11	E3	RESET	L12	V _{DDINT}	F4
BGH	B10	DT2	H4	HAD12	F2	RFS0	K8	V _{DDINT}	G9
BMODE0	L10	EMU	J10	HAD13	G2	RFS1	M10	V _{DDINT}	J7
BMODE1	L9	GND	A1	HAD14	F3	RFS2	M6	WR	C8
BMS	A10	GND	A12	HAD15	G3	RXD	K6	XTAL	B6
BR	B9	GND	E7	HA16	H2	TCK	K11		

Table 27. 144-Lead Mini-BGA Pins (Alphabetically by Signal)

OUTLINE DIMENSIONS

144-Lead Metric Thin Plastic Quad Flatpack [LQFP] (ST-144)

NOTES:

1. DIMENSIONS ARE IN MILLIMETERS AND COMPLY WITH JEDEC STANDARD MS-026-BFB.

2 ACTUAL POSITION OF EACH LEAD IS WITHIN 0.08 OF ITS IDEAL POSITION, WHEN MEASURED IN THE LATERAL DIRECTION.

3. CENTER DIMENSIONS ARE NOMINAL.

0.25 MIN

0.10 MAX (BALL

COPLANARITY)

NOTES:

- 1. DIMENSIONS ARE IN MILLIMETERS AND COMPLY WITH JEDEC STANDARD MO-205-AC.
- 2. ACTUAL POSITION OF THE BALL GRID IS WITHIN 0.15 OF ITS IDEAL POSITION, RELATIVE TO THE PACKAGE EDGES.
- 3. ACTUAL POSITION OF EACH BALL IS WITHIN 0.08 OF ITS IDEAL POSITION, RELATIVE TO THE BALL GRID.
- 4. CENTER DIMENSIONS ARE NOMINAL.

DETAIL A

0.45

(BALL DIAMETER)

ORDERING GUIDE

Part Number ^{1, 2}	Ambient Temperature Range	Instruction Rate (MHz)	Package Description	Operating Voltage
ADSP-2191MKST-160	0°C to 70°C	160	144-Lead LQFP	2.5 Int./3.3 Ext. V
ADSP-2191MBST-140	-40° C to $+85^{\circ}$ C	140	144-Lead LQFP	2.5 Int./3.3 Ext. V
ADSP-2191MKCA-160	0°C to 70°C	160	144-Ball Mini-BGA	2.5 Int./3.3 Ext. V
ADSP-2191MBCA-140	-40° C to $+85^{\circ}$ C	140	144-Ball Mini-BGA	2.5 Int./3.3 Ext. V

¹ST = Plastic Thin Quad Flatpack (LQFP). ²CA = Mini Ball Grid Array (PBGA)

Revision History

Location Page 7/02-Changed from Rev. 0 to Rev. A