

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

E·XFl

Product Status	Obsolete
Туре	Fixed Point
Interface	Host Interface, SPI, SSP, UART
Clock Rate	160MHz
Non-Volatile Memory	External
On-Chip RAM	160kB
Voltage - I/O	3.00V, 3.30V
Voltage - Core	2.50V
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LFBGA
Supplier Device Package	144-MiniBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adsp-2191mkca-160

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- EE-156: Support for the H.100 protocol on the ADSP-2191
- EE-158: ADSP-2181 EZ-Kit Lite IDMA to PC Printer Port Interface
- EE-159: Initializing DSP System & Control Registers From C and C++
- EE-164: Advanced EPROM Boot and No-boot Scenarios with ADSP-219x DSPs
- EE-168: Using Third Overtone Crystals with the ADSP-218x DSP
- EE-17: ADSP-2187L Memory Organization
- EE-18: Choosing and Using FFTs for ADSP-21xx
- EE-188: Using C To Implement Interrupt-Driven Systems On ADSP-219x DSPs
- EE-2: Using ADSP-218x I/O Space
- EE-226: ADSP-2191 DSP Host Port Booting
- EE-227: CAN Configuration Procedure for ADSP-21992 DSPs
- EE-249: Implementing Software Overlays on ADSP-218x DSPs with VisualDSP++*
- EE-32: Language Extensions: Memory Storage Types, ASM & Inline Constructs
- EE-35: Troubleshooting your ADSP-218x EZ-ICE
- EE-356: Emulator and Evaluation Hardware Troubleshooting Guide for CCES Users
- EE-38: ADSP-2181 IDMA Port Cycle Steal Timing
- EE-39: Interfacing 5V Flash Memory to an ADSP-218x (Byte Programming Algorithm)
- EE-5: ADSP-218x Full Memory Mode vs. Host Memory Mode
- EE-60: Simulating an RS-232 UART Using the Synchronous Serial Ports on the ADSP-21xx Family DSPs
- EE-64: Setting Mode Pins on Reset
- EE-68: Analog Devices JTAG Emulation Technical Reference
- EE-71: Minimum Rise Time Specs for Critical Interrupt and Clock Signals on the ADSP-21x1/21x5
- EE-74: Analog Devices Serial Port Development and Troubleshooting Guide
- EE-78: BDMA Usage on 100 pin ADSP-218x DSPs Configured for IDMA Use
- EE-79: EPROM Booting In Host Mode with 100 Pin 218x Processors
- EE-82: Using an ADSP-2181 DSP's IO Space to IDMA Boot Another ADSP-2181
- EE-89: Implementing A Software UART on the ADSP-2181 EZ-Kit-Lite
- EE-96: Interfacing Two AD73311 Codecs to the ADSP-218x

Data Sheet

ADSP-2191M: DSP Microcomputer Data Sheet

Evaluation Kit Manuals

ADSP-2191 EZ-KIT Lite[®] Manual

Integrated Circuit Anomalies

ADSP-2191/95/96 Anomaly List for Revision 1.0

Processor Manuals

- ADSP-219x/2191 DSP Hardware Reference
- ADSP 21xx Processors: Manuals
- ADSP-219x DSP Instruction Set Reference
- ADSP-219x/2192 DSP Hardware Reference (Rev 1.1, April 2004)
- Using the ADSP-2100 Family Volume 1
- Using the ADSP-2100 Family Volume 2

Product Highlight

• ADSP-2191 16-Bit Fixed Point DSP Product Brief

Software Manuals

- VisualDSP++ 3.5 Assembler and Preprocessor Manual for ADSP-218x and ADSP-219x DSPs
- VisualDSP++ 3.5 C Compiler and Library Manual for ADSP-218x DSPs
- VisualDSP++ 3.5 C/C++ Compiler and Library Manual for ADSP-219x Processors
- VisualDSP++ 3.5 Component Software Engineering User's Guide for 16-Bit Processors
- VisualDSP++ 3.5 Getting Started Guide for 16-Bit Processors
- VisualDSP++ 3.5 Kernel VDK User's Guide for 16-Bit Processors
- VisualDSP++ 3.5 Linker and Utilities Manual for 16-Bit Processors
- VisualDSP++ 3.5 Loader Manual for 16-Bit Processors
- VisualDSP++ 3.5 Quick Installation Reference Card
- VisualDSP++ 3.5 User's Guide for 16-Bit Processors

SOFTWARE AND SYSTEMS REQUIREMENTS 🖵

Software and Tools Anomalies Search

TOOLS AND SIMULATIONS \square

- ADSP-2191M: LQFP package
- ADSP-21xx Processors: Software and Tools
- ADSP-2191M IBIS Datafile (BGA Package), Version 2.1
- ADSP-2191M IBIS Datafile (LQFP Package)
- ADSP-2191M IBIS Datafile (LQFP Package), Version 2.1

INTEGRATION FEATURES 160K Bytes On-Chip RAM Configured as 32K Words 24-Bit Memory RAM and 32K Words 16-Bit Memory RAM **Dual-Purpose 24-Bit Memory for Both Instruction and Data Storage** Independent ALU, Multiplier/Accumulator, and Barrel Shifter Computational Units with Dual 40-Bit Accumulators Unified Memory Space Allows Flexible Address Generation, Using Two Independent DAG Units Powerful Program Sequencer Provides Zero-Overhead Looping and Conditional Instruction Execution **Enhanced Interrupt Controller Enables Programming of Interrupt Priorities and Nesting Modes** SYSTEM INTERFACE FEATURES Host Port with DMA Capability for Glueless 8- or 16-Bit **Host Interface** 16-Bit External Memory Interface for up to 16M Words of **Addressable Memory Space** Three Full-Duplex Multichannel Serial Ports, with Support for H.100 and up to 128 TDM Channels with A-Law and µ-Law Companding Optimized for Telecommunications Systems Two SPI-Compatible Ports with DMA Support **UART Port with DMA Support** 16 General-Purpose I/O Pins with Integrated Interrupt Support Three Programmable Interval Timers with PWM Generation, PWM Capture/Pulsewidth Measurement, and External Event Counter Capabilities Up to 11 DMA Channels Can Be Active at Any Given Time for High I/O Throughput **On-Chip Boot ROM for Automatic Booting from External**

8- or 16-Bit Host Device, SPI ROM, or UART with Autobaud Detection Programmable PLL Supports 1× to 32× Input Frequency

- Multiplication and Can Be Altered during Runtime
- IEEE JTAG Standard 1149.1 Test Access Port Supports On-Chip Emulation and System Debugging

2.5 V Internal Operation and 3.3 V I/O

144-Lead LQFP and 144-Ball Mini-BGA Packages

TABLE OF CONTENTS

GENERAL DESCRIPTION
DSP Core Architecture
DSP Peripherals Architecture
Memory Architecture
Interrupts
DMA Controller
Host Port
DSP Serial Ports (SPORTs)
Serial Peripheral Interface (SPI) Ports
UART Port
Programmable Flag (PFx) Pins
Low Power Operation
Clock Signals
Reset
Power Supplies
Booting Modes
Bus Request and Bus Grant
Instruction Set Description
Development Tools
Additional Information15
PIN FUNCTION DESCRIPTIONS15
SPECIFICATIONS
ABSOLUTE MAXIMUM RATINGS
ESD SENSITIVITY
Power Dissipation
TIMING SPECIFICATIONS
Output Drive Currents
Power Dissipation
Test Conditions
Environmental Conditions
144-Lead LQFP Pinout
144-Lead Mini-BGA Pinout
OUTLINE DIMENSIONS
ORDERING GUIDE48
Revision History

The two address buses (PMA and DMA) share a single external address bus, allowing memory to be expanded off-chip, and the two data buses (PMD and DMD) share a single external data bus. Boot memory space and I/O memory space also share the external buses.

Program memory can store both instructions and data, permitting the ADSP-2191M to fetch two operands in a single cycle, one from program memory and one from data memory. The DSP's dual memory buses also let the ADSP-219x core fetch an operand from data memory and the next instruction from program memory in a single cycle.

DSP Peripherals Architecture

The functional block diagram on Page 1 shows the DSP's on-chip peripherals, which include the external memory interface, Host port, serial ports, SPI-compatible ports, UART port, JTAG test and emulation port, timers, flags, and interrupt controller. These on-chip peripherals can connect to off-chip devices as shown in Figure 1.

The ADSP-2191M has a 16-bit Host port with DMA capability that lets external Hosts access on-chip memory. This 24-pin parallel port consists of a 16-pin multiplexed data/address bus and provides a lowservice overhead data move capability. Configurable for 8 or 16 bits, this port provides a glueless interface to a wide variety of 8- and 16-bit microcontrollers. Two chip-selects provide Hosts access to the DSP's entire memory map. The DSP is bootable through this port.

The ADSP-2191M also has an external memory interface that is shared by the DSP's core, the DMA controller, and DMA capable peripherals, which include the UART, SPORT0, SPORT1, SPORT2, SPI0, SPI1, and the Host port. The external port consists of a 16-bit data bus, a 22-bit address bus, and control signals. The data bus is configurable to provide an 8- or 16-bit interface to external memory. Support for word packing lets the DSP access 16- or 24-bit words from external memory regardless of the external data bus width. When configured for an 8-bit interface, the unused eight lines provide eight programmable, bidirectional general-purpose Programmable Flag lines, six of which can be mapped to software condition signals.

The memory DMA controller lets the ADSP-2191M move data and instructions from between memory spaces: internal-to-external, internal-to-internal, and external-to-external. On-chip peripherals can also use this controller for DMA transfers.

The ADSP-2191M can respond to up to seventeen interrupts at any given time: three internal (stack, emulator kernel, and power-down), two external (emulator and reset), and twelve userdefined (peripherals) interrupts. The programmer assigns a peripheral to one of the 12 user-defined interrupts. The priority of each peripheral for interrupt service is determined by these assignments.

There are three serial ports on the ADSP-2191M that provide a complete synchronous, full-duplex serial interface. This interface includes optional companding in hardware as well as a wide variety of framed or frameless data transmit and receive modes

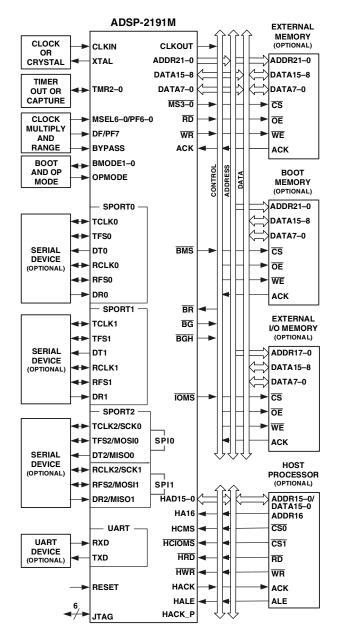


Figure 1. System Diagram

of operation. Each serial port can transmit or receive an internal or external, programmable serial clock and frame syncs. Each serial port supports 128-channel Time Division Multiplexing.

The ADSP-2191M provides up to sixteen general-purpose I/O pins, which are programmable as either inputs or outputs. Eight of these pins are dedicated-general purpose Programmable Flag pins. The other eight of them are multifunctional pins, acting as general-purpose I/O pins when the DSP connects to an 8-bit external data bus and acting as the upper eight data pins when the DSP connects to a 16-bit external data bus. These Programmable Flag pins can implement edge- or level-sensitive interrupts, some of which can be used to base the execution of conditional instructions.

the instruction provides an immediate 24-bit address value. The PC allows linear addressing of the full 24-bit address range.

• For indirect jumps and calls that use a 16-bit DAG address register for part of the branch address, the Program Sequencer relies on an 8-bit Indirect Jump page (IJPG) register to supply the most significant eight address bits. Before a cross page jump or call, the program must set the program sequencer's IJPG register to the appropriate memory page.

The ADSP-2191M has 1K word of on-chip ROM that holds boot routines. If peripheral booting is selected, the DSP starts executing instructions from the on-chip boot ROM, which starts the boot process from the selected peripheral. For more information, see "Booting Modes" on Page 11. The on-chip boot ROM is located on Page 255 in the DSP's memory space map.

External (Off-Chip) Memory

Each of the ADSP-2191M's off-chip memory spaces has a separate control register, so applications can configure unique access parameters for each space. The access parameters include read and write wait counts, waitstate completion mode, I/O clock divide ratio, write hold time extension, strobe polarity, and data bus width. The core clock and peripheral clock ratios influence the external memory access strobe widths. For more information, see "Clock Signals" on Page 11. The off-chip memory spaces are:

- External memory space ($\overline{MS3-0}$ pins)
- I/O memory space (IOMS pin)
- Boot memory space (BMS pin)

All of these off-chip memory spaces are accessible through the External Port, which can be configured for data widths of 8 or 16 bits.

External Memory Space

External memory space consists of four memory banks. These banks can contain a configurable number of 64K word pages. At reset, the page boundaries for external memory have Bank0 containing Pages 1–63, Bank1 containing Pages 64–127, Bank2 containing Pages 128–191, and Bank3 that contains Pages 192–254. The MS3–0 memory bank pins select Banks 3–0, respectively. The external memory interface is byte-addressable and decodes the 8 MSBs of the DSP program address to select one of the four banks. Both the ADSP-219x core and DMA-capable peripherals can access the DSP's external memory space.

IIO Memory Space

The ADSP-2191M supports an additional external memory called I/O memory space. This space is designed to support simple connections to peripherals (such as data converters and external registers) or to bus interface ASIC data registers. I/O space supports a total of 256K locations. The first 8K addresses are reserved for on-chip peripherals. The upper 248K addresses are available for external peripheral devices. The DSP's instruction set provides instructions for accessing I/O space. These instructions use an 18-bit address that is assembled from an

8-bit I/O page (IOPG) register and a 10-bit immediate value supplied in the instruction. Both the ADSP-219x core and a Host (through the Host Port Interface) can access I/O memory space.

Boot Memory Space

Boot memory space consists of one off-chip bank with 63 pages. The BMS memory bank pin selects boot memory space. Both the ADSP-219x core and DMA-capable peripherals can access the DSP's off-chip boot memory space. After reset, the DSP always starts executing instructions from the on-chip boot ROM. Depending on the boot configuration, the boot ROM code can start booting the DSP from boot memory. For more information, see "Booting Modes" on Page 11.

Interrupts

The interrupt controller lets the DSP respond to 17 interrupts with minimum overhead. The controller implements an interrupt priority scheme as shown in Table 1. Applications can use the unassigned slots for software and peripheral interrupts.

Table 2 shows the ID and priority at reset of each of the peripheral interrupts. To assign the peripheral interrupts a different priority, applications write the new priority to their corresponding control bits (determined by their ID) in the Interrupt Priority Control register. The peripheral interrupt's position in the IMASK and IRPTL register and its vector address depend on its priority level, as shown in Table 1. Because the IMASK and IRPTL registers are limited to 16 bits, any peripheral interrupts assigned a priority level of 11 are aliased to the lowest priority bit position (15) in these registers and share vector address 0x00 01E0.

Table 1. Interrupt Priorities/Addresses

Interrupt	IMASK/ IRPTL	Vector Address ¹
Emulator (NMI)—	NA	NA
Highest Priority		
Reset (NMI)	0	0x00 0000
Power-Down (NMI)	1	0x00 0020
Loop and PC Stack	2	0x00 0040
Emulation Kernel	3	0x00 0060
User Assigned Interrupt	4	0x00 0080
User Assigned Interrupt	5	0x00 00A0
User Assigned Interrupt	6	0x00 00C0
User Assigned Interrupt	7	0x00 00E0
User Assigned Interrupt	8	0x00 0100
User Assigned Interrupt	9	0x00 0120
User Assigned Interrupt	10	0x00 0140
User Assigned Interrupt	11	0x00 0160
User Assigned Interrupt	12	0x00 0180
User Assigned Interrupt	13	0x00 01A0
User Assigned Interrupt	14	0x00 01C0
User Assigned Interrupt—	15	0x00 01E0
Lowest Priority		

¹These interrupt vectors start at address 0x10000 when the DSP is in "no-boot," run from external memory mode.

Table 6. Select Boot Mode (OPMODE, BMODE1, andBMODE0)

OPMODE	BMODE1	BMODE 0	
Ю	NA	BA	Function
0	0	0	Execute from external memory 16 bits
			(No Boot)
0	0	1	Boot from EPROM
0	1	0	Boot from Host
0	1	1	Reserved
1	0	0	Execute from external memory 8 bits
			(No Boot)
1	0	1	Boot from UART
1	1	0	Boot from SPI, up to 4K bits
1	1	1	Boot from SPI, >4K bits up to
			512K bits

The OPMODE, BMODE1, and BMODE0 pins, sampled during hardware reset, and three bits in the Reset Configuration Register implement these modes:

- Execute from memory external 16 bits—The memory boot routine located in boot ROM memory space executes a boot-stream-formatted program located at address 0x010000 of boot memory space, packing 16-bit external data into 24-bit internal data. The External Port Interface is configured for the default clock multiplier (128) and read waitstates (7).
- Boot from EPROM—The EPROM boot routine located in boot ROM memory space fetches a boot-stream-formatted program located at physical address 0x00 0000 of boot memory space, packing 8- or 16-bit external data into 24-bit internal data. The External Port Interface is configured for the default clock multiplier (32) and read waitstates (7).
- Boot from Host—The (8- or 16-bit) Host downloads a boot-stream-formatted program to internal or external memory. The Host's boot routine is located in internal ROM memory space and uses the top 16 locations of Page 0 program memory and the top 272 locations of Page 0 data memory.

The internal boot ROM sets semaphore A (an IO register within the Host port) and then polls until the semaphore is reset. Once detected, the internal boot ROM will remap the interrupt vector table to Page 0 internal memory and jump to address 0x00 0000 internal memory. From the point of view of the host interface, an external host has full control of the DSP's memory map. The Host has the freedom to directly write internal memory, external memory, and internal I/O memory space. The DSP core execution is held off until the Host clears the semaphore register. This strategy allows the maximum flexibility for the Host to boot in the program and data code, by leaving it up to the programmer.

- Execute from memory external 8 bits (No Boot)— Execution starts from Page 1 of external memory space, packing either 8- or 16-bit external data into 24-bit internal data. The External Port Interface is configured for the default clock multiplier (128) and read waitstates (7).
- Boot from UART—Using an autobaud handshake sequence, a boot-stream-formatted program is downloaded by the Host. The Host agent selects a baud rate within the UART's clocking capabilities. After a hardware reset, the DSP's UART expects a 0xAA character (eight bits data, one start bit, one stop bit, no parity bit) on the RXD pin to determine the bit rate; and then replies with an OK string. Once the host receives this OK it downloads the boot stream without further handshake. The UART boot routine is located in internal ROM memory space and uses the top 16 locations of Page 0 program memory and the top 272 locations of Page 0 data memory.
- Boot from SPI, up to 4K bits—The SPI0 port uses the SPI0SEL1 (reconfigured PF2) output pin to select a single serial EEPROM device, submits a read command at address 0x00, and begins clocking consecutive data into internal or external memory. Use only SPI-compatible EEPROMs of ≤ 4K bit (12-bit address range). The SPI0 boot routine located in internal ROM memory space executes a boot-stream-formatted program, using the top 16 locations of Page 0 program memory and the top 272 locations of Page 0 data memory. The SPI boot configuration is SPIBAUD0=60 (decimal), CPHA=1, CPOL=1, 8-bit data, and MSB first.
- Boot from SPI, from >4K bits to 512K bits—The SPI0 port uses the SPI0SEL1 (re-configured PF2) output pin to select a single serial EEPROM device, submits a read command at address 0x00, and begins clocking consecutive data into internal or external memory. Use only SPI-compatible EEPROMs of ≥ 4K bit (16-bit address range). The SPI0 boot routine, located in internal ROM memory space, executes a boot-stream-formatted program, using the top 16 locations of Page 0 program memory and the top 272 locations of Page 0 data memory.

As indicated in Table 6, the OPMODE pin has a dual role, acting as a boot mode select during reset and determining SPORT or SPI operation at runtime. If the OPMODE pin at reset is the opposite of what is needed in an application during runtime, the application needs to set the OPMODE bit appropriately during runtime prior to using the corresponding peripheral.

Bus Request and Bus Grant

The ADSP-2191M can relinquish control of the data and address buses to an external device. When the external device requires access to the bus, it asserts the bus request (\overline{BR}) signal. The (\overline{BR}) signal is arbitrated with core and peripheral requests. External Bus requests have the lowest priority. If no other internal request is pending, the external bus request will be granted.

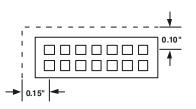


Figure 7. JTAG Pod Connector Keep-Out Area

Design-for-Emulation Circuit Information

For details on target board design issues including: single processor connections, multiprocessor scan chains, signal buffering, signal termination, and emulator pod logic, see the *EE-68: Analog Devices JTAG Emulation Technical Reference* on the Analog Devices website (www.analog.com)—use site search on "EE-68." This document is updated regularly to keep pace with improvements to emulator support.

Additional Information

This data sheet provides a general overview of the ADSP-2191M architecture and functionality. For detailed information on the core architecture of the ADSP-219x family, refer to the *ADSP-219x/ADSP-2191 DSP Hardware Reference*. For details on the instruction set, refer to the *ADSP-219x Instruction Set Reference*.

PIN FUNCTION DESCRIPTIONS

ADSP-2191M pin definitions are listed in Table 7. All ADSP-2191M inputs are asynchronous and can be asserted asynchronously to CLKIN (or to TCK for TRST).

Tie or pull unused inputs to V_{DDEXT} or GND, except for ADDR21–0, DATA15–0, PF7-0, and inputs that have internal pull-up or pull-down resistors (TRST, BMODE0, BMODE1, OPMODE, BYPASS, TCK, TMS, TDI, and RESET)—these pins can be left floating. These pins have a logic-level hold circuit that prevents input from floating internally.

The following symbols appear in the Type column of Table 7: G = Ground, I = Input, O = Output, P = Power Supply, and T = Three-State.

Pin	Туре	Function
A21–0	O/T	External Port Address Bus
D7-0	I/O/T	External Port Data Bus, least significant 8 bits
D15	I/O/T	Data 15 (if 16-bit external bus)/Programmable Flags 15 (if 8-bit external bus)/SPI1 Slave
/PF15	I/O	Select output 7 (if 8-bit external bus, when SPI1 enabled)
/SPI1SEL7	Ι	
D14	I/O/T	Data 14 (if 16-bit external bus)/Programmable Flags 14 (if 8-bit external bus)/SPI0 Slave
/PF14	I/O	Select output 7 (if 8-bit external bus, when SPI0 enabled)
/SPI0SEL7	Ι	
D13	I/O/T	Data 13 (if 16-bit external bus)/Programmable Flags 13 (if 8-bit external bus)/SPI1 Slave
/PF12	I/O	Select output 6 (if 8-bit external bus, when SPI1 enabled)
/SPI1SEL6	Ι	
D12	I/O/T	Data 12 (if 16-bit external bus)/Programmable Flags 12 (if 8-bit external bus)/SPI0 Slave
/PF12	I/O	Select output 6 (if 8-bit external bus, when SPI0 enabled)
/SPI0SEL6	Ι	
D11	I/O/T	Data 11 (if 16-bit external bus)/Programmable Flags 11 (if 8-bit external bus)/SPI1 Slave
/PF11	I/O	Select output 5 (if 8-bit external bus, when SPI1 enabled)
/SPI1SEL5	Ι	
D10	I/O/T	Data 10 (if 16-bit external bus)/Programmable Flags 10 (if 8-bit external bus)/SPI0 Slave
/PF10	I/O	Select output 5 (if 8-bit external bus, when SPI0 enabled)
/SPI0SEL5	Ι	
D9	I/O/T	Data 9 (if 16-bit external bus)/Programmable Flags 9 (if 8-bit external bus)/SPI1 Slave Select
/PF9	I/O	output 4 (if 8-bit external bus, when SPI1 enabled)
/SPI1SEL4	Ι	
D8	I/O/T	Data 8 (if 16-bit external bus)/Programmable Flags 8 (if 8-bit external bus)/SPI0 Slave Select
/PF8	I/O	output 4 (if 8-bit external bus, when SPI0 enabled)
/SPI0SEL4	Ι	
PF7	I/O/T	Programmable Flags 7/SPI1 Slave Select output 3 (when SPI0 enabled)/Divisor Frequency
/SPI1SEL3	Ι	(divisor select for PLL input during boot)
/DF	Ι	
PF6	I/O/T	Programmable Flags 6/SPI0 Slave Select output 3 (when SPI0 enabled)/Multiplier Select 6
/SPI0SEL3	Ι	(during boot)
/MSEL6	Ι	

Table 7. Pin Function Descriptions

ADSP-2191M SPECIFICATIONS

RECOMMENDED OPERATING CONDITIONS

			K Grade	(Commercial)	B Grad	e (Industrial)	
Parameter		Test Conditions	Min	Max	Min	Max	Unit
V _{DDINT}	Internal (Core) Supply Voltage		2.37	2.63	2.37	2.63	V
V _{DDEXT}	External (I/O) Supply Voltage		2.97	3.6	2.97	3.6	V
V_{IH}	High Level Input Voltage	(a) $V_{DDINT} = max$, $V_{DDEXT} = max$	2.0	V_{DDEXT} +0.3	2.0	V_{DDEXT} +0.3	V
V_{IL}	Low Level Input Voltage	(a) $V_{DDINT} = min$, $V_{DDEXT} = min$	-0.3	+0.8	-0.3	+0.8	V
T _{AMB}	Ambient Operating Temperature		0	70	-40	+85	°C

Specifications subject to change without notice.

ELECTRICAL CHARACTERISTICS

			k	K and B G	rades	
Parameter		Test Conditions	Min	Тур	Max	Unit
V _{OH}	High Level Output Voltage ¹		2.4			V
V _{OL}	Low Level Output Voltage ¹				0.4	v
I _{IH}	High Level Input Current ^{2, 3}	$\begin{array}{c} O_{\rm D} = 2.0 \text{ mm} \\ \hline \\ O_{\rm DDEXT} = \text{max}, \\ V_{\rm IN} = V_{\rm DD} \text{ max} \end{array}$			10	μΑ
I _{IL}	Low Level Input Current ^{3, 4}				10	μΑ
I _{IHP}	High Level Input Current ⁵		30		100	μΑ
I_{ILP}	Low Level Input Current ⁴		20		70	μΑ
I _{OZH}	Three-State Leakage Current ⁵				10	μΑ
I _{OZL}	Three-State Leakage Current ⁶	$(a) V_{DDEXT} = max, V_{IN} = 0 V$			10	μΑ
C _{IN}	Input Capacitance ^{6, 7}	$f_{IN} = 1 \text{ MHz},$ $T_{CASE} = 25^{\circ}\text{C},$ $V_{IN} = 2.5 \text{ V}$			8	pF

Specifications subject to change without notice.

¹Applies to output and bidirectional pins: DATA15–0, ADDR21–0, HAD15–0, MS3–0, IOMS, RD, WR, CLKOUT, HACK, PF7–0, TMR2–0, BGH, BG, DT0, DT1, DT2/MISO0, TCLK0, TCLK1, TCLK2/SCK0, RCLK0, RCLK1, RCLK2/SCK1, TFS0, TFS1, TFS2/MOSI0, RFS0, RFS1, RFS2/MOSI1, <u>BMS</u>, TD0, TXD, <u>EMU</u>, DR2/MISO1.

²Applies to input pins: ACK, BR, HCMS, HCIOMS, HA16, HALE, HRD, HWR, CLKIN, DR0, DR1, RXD, HACK_P.

³Applies to input pins with internal pull-ups: BMODE0, BMODE1, OPMODE, BYPASS, TCK, TMS, TDI, RESET.

⁴Applies to input pin with internal pull-down: TRST.

⁵Applies to three-statable pins: DATA15-0, ADDR21-0, MS3-0, RD, WR, PF7-0, BMS, IOMS, TFSx, RFSx, TDO, EMU, TCLKx, RCLKx, DTx, HAD15-0, TMR2-0.

⁶Applies to all signal pins.

⁷Guaranteed, but not tested.

ABSOLUTE MAXIMUM RATINGS

V_{DDINT} Internal (Core) Supply Voltage ¹ 0.3 V to +3.0 V
V _{DDEXT} External (I/O) Supply Voltage0.3 V to +4.6 V
V_{IL} - V_{IH} Input Voltage0.5 V to V_{DDEXT} +0.5 V
V_{OL} - V_{OH} Output Voltage Swing0.5 V to V_{DDEXT} +0.5 V
T_{STORE} Storage Temperature Range65°C to +150°C
T _{LEAD} Lead Temperature of ST-144 (5 seconds) 185°C

¹Stresses greater than those listed above may cause permanent damage to the device. These are stress ratings only; functional operation of the device at these or any other conditions greater than those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ESD SENSITIVITY

CAUTION

ESD (electrostatic discharge) sensitive device. Electrostatic charges as high as 4000 V readily accumulate on the human body and test equipment and can discharge without detection. Although the ADSP-2191M features proprietary ESD protection circuitry, permanent damage may occur on devices subjected to high energy electrostatic discharges. Therefore, proper ESD precautions are recommended to avoid performance degradation or loss of functionality.

Power Dissipation

Using the operation-versus-current information in Table 8, designers can estimate the ADSP-2191M's internal power supply (V_{DDINT}) input current for a specific application, according to the formula for I_{DDINT} calculation beneath Table 8. For calculation of external supply current and total supply current, see Power Dissipation on Page 40.

]	K-Grade I _{DDINT} (mA) CCLK = 160 MHz				B-Grade I _{DDINT} (mA) ¹ CCLK = 140 MHz			
	Core			Peripheral		Core		Peripheral	
Activity	Typ ¹	Max ²	Typ ¹	Max ²	Typ ¹	Max ²	Typ ¹	Max ²	
Power Down ³	100 µA	600 µA	0	50 µA	100 µA	500 µA	0	50 µA	
Idle 1 ⁴	1	2	5	8	1	2	4	7	
Idle 2 ⁵	1	2	60	70	1	2	55	62	
Typical ⁶	184	210	60	70	165	185	55	62	
Peak ⁷	215	240	60	70	195	210	55	62	

Table 8. Operation Types Versus Input Current

¹Test conditions: V_{DDINT}= 2.50 V; HCLK (peripheral clock) frequency = CCLK/2 (core clock/2) frequency; T_{AMB} = 25°C.

²Test conditions: V_{DDINT} = 2.65 V; HCLK (peripheral clock) frequency = CCLK/2 (core clock/2) frequency; T_{AMB} = 25°C.

³PLL, Core, peripheral clocks, and CLKIN are disabled.

⁴PLL is enabled and Core and peripheral clocks are disabled.

⁵Core CLK is disabled and peripheral clock is enabled.

⁶All instructions execute from internal memory. 50% of the instructions are repeat MACs with dual operand addressing, with changing data fetched using a linear address sequence. 50% of the instructions are type 3 instructions.

⁷All instructions execute from internal memory. 100% of the instructions are MACs with dual operand addressing, with changing data fetched using a linear address sequence.

 $I_{DDINT} = (\% Typical \times I_{DDINT-TYPICAL}) + (\% Idle \times I_{DDINT-IDLE}) + (\% Power \ Down \times I_{DDINT-PWRDWN})$

ADSP-2191M TIMING SPECIFICATIONS

This section contains timing information for the DSP's external signals. Use the exact information given. Do not attempt to derive parameters from the addition or subtraction of other information. While addition or subtraction would yield meaningful results for an individual device, the values given in this data sheet reflect statistical variations and worst cases. Consequently, parameters cannot be added meaningfully to derive longer times.

Switching characteristics specify how the processor changes its signals. No control is possible over this timing; circuitry external to the processor must be designed for compatibility with these signal characteristics. Switching characteristics indicate what the processor will do in a given circumstance. Switching characteristics can also be used to ensure that any timing requirement of a device connected to the processor (such as memory) is satisfied.

Timing requirements apply to signals that are controlled by circuitry external to the processor, such as the data input for a read operation. Timing requirements guarantee that the processor operates correctly with other devices.

Clock In and Clock Out Cycle Timing

Table 9 and Figure 8 describe clock and reset operations. Combinations of CLKIN and clock multipliers must not select core/peripheral clocks in excess of 160/80 MHz for commercial grade and 140/70 MHz for industrial grade, when the peripheral clock rate is one-half the core clock rate. If the peripheral clock rate is equal to the core clock rate, the maximum peripheral clock rate is 80 MHz for both commercial and industrial grade parts. The peripheral clock is supplied to the CLKOUT pins.

When changing from bypass mode to PLL mode, allow 512 HCLK cycles for the PLL to stabilize.

Parameter		Min	Max	Unit
Switching Cha	aracteristics			
t _{CKOD}	CLKOUT Delay from CLKIN	0	5.8	ns
t _{CKO}	CLKOUT Period ¹	12.5		ns
Timing Requi	rements			
t _{CK}	CLKIN Period ^{2, 3}	10	200	ns
t _{CKL}	CLKIN Low Pulse	4.5		ns
t _{CKH}	CLKIN High Pulse	4.5		ns
t _{WRST}	RESET Asserted Pulsewidth Low	200t _{CLKOUT}		ns
t _{MSS}	MSELx/BYPASS Stable Before RESET Deasserted Setup	40		μs
t _{MSH}	MSELx/BYPASS Stable After RESET Deasserted Hold	1000		ns
t _{MSD}	MSELx/BYPASS Stable After RESET Asserted		200	ns
t _{PFD}	Flag Output Disable Time After RESET Asserted		10	ns

Table 9. Clock In and Clock Out Cycle Timing

¹CLKOUT jitter can be as great as 8 ns when CLKOUT frequency is less than 20 MHz. For frequencies greater than 20 MHz, jitter is less than 1 ns. ²In clock multiplier mode and MSEL6–0 set for 1:1 (or CLKIN = CCLK), $t_{CK} = t_{CCLK}$.

³In bypass mode, $t_{CK} = t_{CCLK}$.

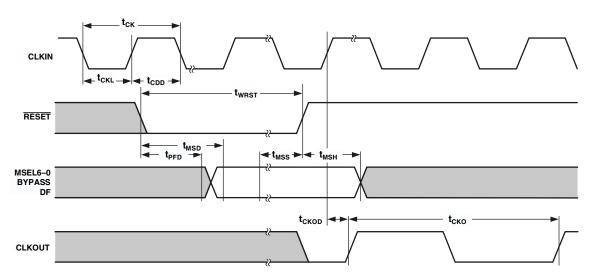


Figure 8. Clock In and Clock Out Cycle Timing

Host Port ALE Mode Write Cycle Timing

Table 15 and Figure 14 describe Host port write operations in Address Latch Enable (ALE) mode. For more information on ACK, Ready, ALE, and ACC mode selection, see the Host port modes description on Page 8.

Table 15.	Host Port	ALE Mode	Write	Cycle	Timing
-----------	-----------	----------	-------	-------	--------

Paramete	r	Min	Max	Unit
Switching	Characteristics			
t _{wHKS1}	HWR Asserted to HACK Asserted (Setup, ACK Mode) First Byte	10	$5t_{\rm HCLK} + t_{\rm NH}^{1}$	ns
t _{WHKS2}	$\frac{1}{10}$ HWR Asserted to HACK Asserted (Setup, ACK Mode) ²		10	ns
t _{wHKH}	HWR Deasserted to HACK Deasserted (Hold, ACK Mode)		10	ns
t _{WHS}	HWR Asserted to HACK Asserted (Setup, Ready Mode)		10	ns
t _{WHH}	HWR Asserted to HACK Deasserted (Hold, Ready Mode)	0	$5t_{HCLK}+t_{NH}^{1}$	ns
	First Byte			
Timing Re	quirements			
t _{CSAL}	HCMS or HCIOMS Asserted to HALE Asserted	0		ns
t _{ALPW}	HALE Asserted Pulsewidth	4		ns
t _{ALCSW}	HALE Deasserted to HCMS or HCIOMS Deasserted	1		ns
t _{wcsw}	HWR Deasserted to HCMS or HCIOMS Deasserted	0		ns
t _{ALW}	HALE Deasserted to HWR Asserted	1		ns
t _{wcs}	HWR Deasserted (After Last Byte) to HCMS or	0		ns
	HCIOMS Deasserted (Ready for Next Write)			
t _{HKWD}	HACK Asserted to HWR Deasserted (Hold, ACK Mode)	1.5		ns
t _{AALS}	Address Valid to HALE Deasserted (Setup)	2		ns
t _{ALAH}	HALE Deasserted to Address Invalid (Hold)	4		ns
t _{DWS}	Data Valid to HWR Deasserted (Setup)	4		ns
t _{WDH}	HWR Deasserted to Data Invalid (Hold)	1		ns

 t_{NH} are peripheral bus latencies (n × t_{HCLK}); these are internal DSP latencies related to the number of peripheral DMAs attempting to access DSP memory at the same time.

 2 Measurement is for the second, third, or fourth byte of a host write transaction. The quantity of bytes to complete a host write transaction is dependent on the data bus size (8 or 16 bits) and the data type (16 or 24 bits).

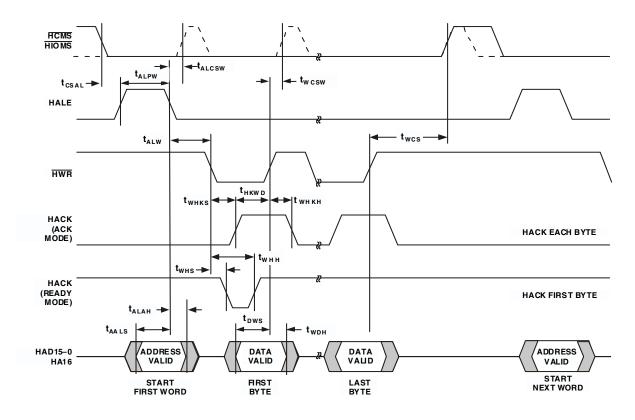


Figure 14. Host Port ALE Mode Write Cycle Timing

Host Port ACC Mode Write Cycle Timing

Table 16 and Figure 15 describe Host port write operations in Address Cycle Control (ACC) mode. For more information on ACK, Ready, ALE, and ACC mode selection, see the Host port modes description on Page 8.

Table 16. Host Port ACC Mode Write Cycle Timing

Parameter	•	Min	Max	Unit
Switching C	Characteristics			
t _{WHKS1}	HWR Asserted to HACK Asserted (ACK Mode) First Byte	10	$5t_{HCLK}+t_{NH}^{1}$	ns
t _{WHKS2}	$\overline{\text{HWR}}$ Asserted to HACK Asserted (Setup, ACK Mode) ²		12	ns
t _{wHKH}	HWR Deasserted to HACK Deasserted (Hold, ACK Mode)		10	ns
t _{wHS}	HWR Asserted to HACK Asserted (Setup, Ready Mode)		10	ns
t _{WHH}	HWR Asserted to HACK Deasserted (Hold, Ready Mode) First Byte	0	$5t_{\rm HCLK} + t_{\rm NH}^{1}$	ns
t _{WSHKS}	HWR Asserted to HACK Asserted (Setup) During Address Latch		10	ns
t _{wHHKH}	HWR Deasserted to HACK Deasserted (Hold) During Address Latch		10	ns
Timing Req	uirements			
t _{WAL}	HWR Asserted to HALE Deasserted (Delay)	1.5		ns
t _{CSAL}	HCMS or HCIOMS Asserted to HALE Asserted (Delay)	0		ns
t _{ALCS}	HALE Deasserted to Optional HCMS or HCIOMS	1		ns
	Deasserted			
t _{wcsw}	HWR Deasserted to HCMS or HCIOMS Deasserted	0		ns
t _{ALW}	HALE Asserted to HWR Asserted	0.5		ns
t _{CSW}	HCMS or HCIOMS Asserted to HWR Asserted	0		ns
t _{WCS}	HWR Deasserted (After Last Byte) to HCMS or	0		ns
	HCIOMS Deasserted (Ready for Next Write)			
t _{ALEW}	HALE Deasserted to HWR Asserted	1		ns
t _{HKWD}	HACK Asserted to HWR Deasserted (Hold, ACK Mode)	1.5		ns
t _{ADW}	Address Valid to HWR Asserted (Setup)	3		ns
t _{WAD}	HWR Deasserted to Address Invalid (Hold)	3		ns
t _{DWS}	Data Valid to HWR Deasserted (Setup)	2		ns
t _{WDH}	HWR Deasserted to Data Invalid (Hold)	2		ns
t _{HKWAL}	HACK Asserted to \overline{HWR} Deasserted (Hold) During Address Latch ²	2		ns

 $^{1}t_{NH}$ are peripheral bus latencies (n × t_{HCLK}); these are internal DSP latencies related to the number of peripheral DMAs attempting to access DSP memory at the same time.

 2 Measurement is for the second, third, or fourth byte of a host write transaction. The quantity of bytes to complete a host write transaction is dependent on the data bus size (8 or 16 bits) and the data type (16 or 24 bits).

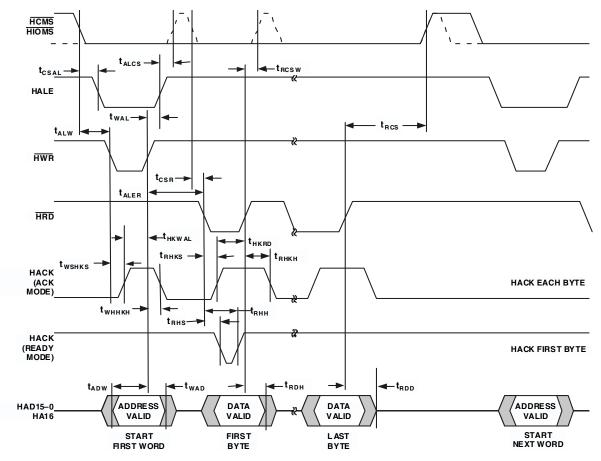


Figure 17. Host Port ACC Mode Read Cycle Timing

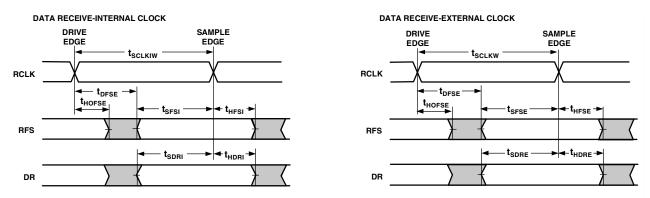
Serial Ports

Table 19 and Figure 18 describe SPORT transmit and receive operations, while Figure 19 and Figure 20 describe SPORT Frame Sync operations.

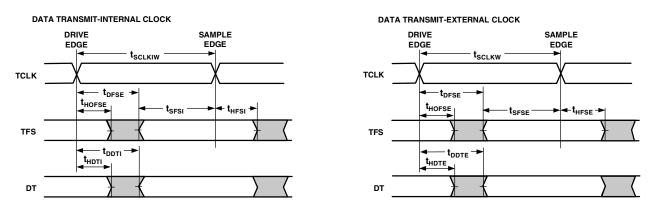
Table 19. Serial Ports^{1, 2}

Parameter		Min	Max	Unit
External Cl	ock Timing Requirements			
t _{SFSE}	TFS/RFS Setup Before TCLK/RCLK ³	4		ns
t _{HFSE}	TFS/RFS Hold After TCLK/RCLK ³	4		ns
t _{SDRE}	Receive Data Setup Before RCLK ³	1.5		ns
t _{HDRE}	Receive Data Hold After RCLK ³	4		ns
t _{SCLKW}	TCLK/RCLK Width	$0.5t_{HCLK} - 1$		ns
t _{SCLK}	TCLK/RCLK Period	2t _{HCLK}		ns
Internal Clo	ock Timing Requirements			
t _{SFSI}	TFS Setup Before TCLK ⁴ ; RFS Setup Before RCLK ³	4		ns
t _{HFSI}	TFS/RFS Hold After TCLK/RCLK ³	3		ns
t _{SDRI}	Receive Data Setup Before RCLK ³	2		ns
t _{HDRI}	Receive Data Hold After RCLK ³	5		ns
External or	Internal Clock Switching Characteristics			
t _{DFSE}	TFS/RFS Delay After TCLK/RCLK (Internally		14	ns
	Generated FS) ⁴			
t _{HOFSE}	TFS/RFS Hold After TCLK/RCLK (Internally Generated FS) ⁴	3		ns
External Cl	ock Switching Characteristics			
	Transmit Data Delay After TCLK ⁴		13.4	ns
t _{DDTE} t	Transmit Data Hold After TCLK ⁴	4	13.4	ns
t _{HDTE}		1		115
Internal Clo	ock Switching Characteristics			
t _{DDTI}	Transmit Data Delay After TCLK ⁴		13.4	ns
t _{HDTI}	Transmit Data Hold After TCLK ⁴	4		ns
t _{SCLKIW}	TCLK/RCLK Width	$0.5t_{HCLK} - 3.5$	$0.5t_{HCLK}+2.5$	ns
Enable and	Three-State ⁵ Switching Characteristics			
t _{DTENE}	Data Enable from External TCLK ⁴	0	12.1	ns
t _{DDTTE}	Data Disable from External TCLK ⁴		13	ns
t _{DTENI}	Data Enable from Internal TCLK ⁴	0	13	ns
t _{DDTTI}	Data Disable from External TCLK ⁴		12	ns
External La	ate Frame Sync Switching Characteristics			
t _{DDTLFSE}	Data Delay from Late External TFS with MCE=1, MFD= 0^{6}	, 7	10.5	ns
t _{DTENLFSE}	Data Enable from Late FS or MCE=1, MFD= $0^{6,7}$	3.5		ns

 1 To determine whether communication is possible between two devices at clock speed n, the following specifications must be confirmed: 1) frame sync delay and frame sync setup-and-hold, 2) data delay and data setup-and-hold, and 3) SCLK width.


 2 Word selected timing for I 2 S mode is the same as TFS/RFS timing (normal framing only).

³Referenced to sample edge.


⁴Referenced to drive edge.

⁵Only applies to SPORT0/1.

⁶MCE=1, TFS enable, and TFS valid follow t_{DDTENFS} and t_{DDTLFSE}. ⁷If external RFSD/TFS setup to RCLK/TCLK>0.5t_{LSCK}, t_{DDTLSCK} and t_{DTENLSCK} apply; otherwise t_{DDTLFSE} and t_{DTENLFS} apply.

NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF RCLK OR TCLK CAN BE USED AS THE ACTIVE SAMPLING EDGE.

NOTE: EITHER THE RISING EDGE OR FALLING EDGE OF RCLK OR TCLK CAN BE USED AS THE ACTIVE SAMPLING EDGE.

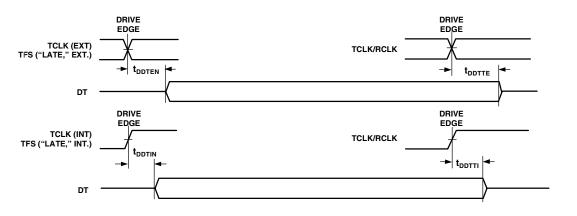
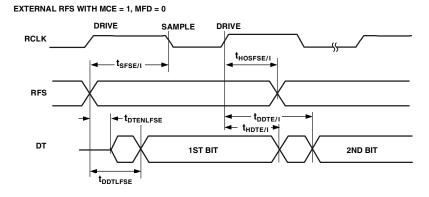



Figure 18. Serial Ports

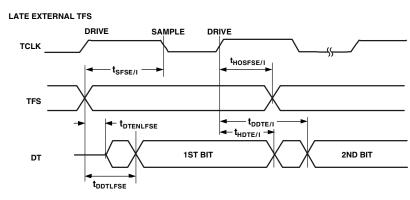


Figure 19. Serial Ports – External Late Frame Sync (Frame Sync Setup > 0.5t_{SCLK})

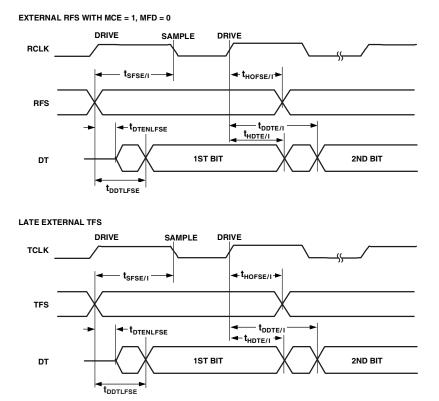


Figure 20. Serial Ports – External Late Frame Sync (Frame Sync Setup < 0.5t_{HCLK})

JTAG Test And Emulation Port Timing Table 22 and Figure 24 describe JTAG port operations.

Table 22. JTAG Port Timing

Paramete	er	Min	Max	Unit
Switching	Characteristics			
t _{DTDO}	TDO Delay from TCK Low		8	ns
t _{DSYS}	System Outputs Delay After TCK Low ¹	0	22	ns
Timing Re	equirements			
t _{TCK}	TCK Period	20		ns
t _{STAP}	TDI, TMS Setup Before TCK High		4	ns
t _{HTAP}	TDI, TMS Hold After TCK High		4	ns
t _{SSYS}	System Inputs Setup Before TCK Low ²		4	ns
t _{HSYS}	System Inputs Hold After TCK Low ²		5	ns
t _{TRSTW}	TRST Pulsewidth ³	4t _{TCK}		ns

¹System Outputs = DATA15-0, ADDR21-0, MS3-0, RD, WR, ACK, CLKOUT, BG, PF7-0, TIMEXP, DT0, DT1, TCLK0, TCLK1, RCLK0, RCLK1, TFS0, TFS1, RFS0, RFS1, BMS.

²System Inputs = DATA15-0, ADDR21-0, RD, WR, ACK, BR, BG, PF7-0, DR0, DR1, TCLK0, TCLK1, RCLK0, RCLK1, TFS0, TFS1, RFS0, RFS1, CLKIN, RESET.

³50 MHz max.

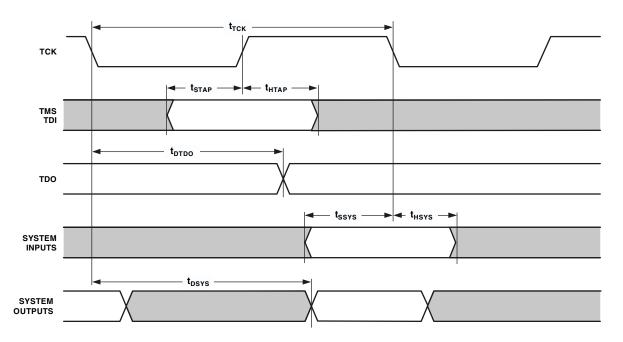


Figure 24. JTAG Port Timing

144-Lead LQFP Pinout

Table 25 lists the LQFP pinout by signal name. Table 26 liststhe LQFP pinout by pin.

Signal	Pin No.	Signal	Pin No.	Signal	Pin No.	Signal	Pin No.	Signal	Pin No.
8		BYPASS		GND		HCMS		TCLK1	
AO	84		72		33		27		65
A1	85	CLKIN	132	GND	54	HCIOMS	28	TCLK2	47
A2	86	CLKOUT	130	GND	55	HRD	31	TDI	75
A3	87	D0	123	GND	77	HWR	32	TDO	74
A4	88	D1	124	GND	80	IOMS	114	TFS0	59
A5	89	D2	125	GND	94	MSO	115	TFS1	66
A6	91	D3	126	GND	105	MS1	116	TFS2	48
A7	92	D4	128	GND	129	MS2	117	TMR0	43
A8	93	D5	135	GND	134	MS3	119	TMR1	44
A9	95	D6	136	HA16	23	OPMODE	83	TMR2	45
A10	96	D7	137	HACK	26	PF0	34	TMS	76
A11	97	D8	138	HACK_P	24	PF1	35	TRST	79
A12	98	D9	139	HAD0	3	PF2	36	TXD	53
A13	99	D10	140	HAD1	4	PF3	37	V _{DDEXT}	13
A14	101	D11	141	HAD2	6	PF4	38	V _{DDEXT}	25
A15	102	D12	142	HAD3	7	PF5	39	V _{DDEXT}	40
A16	103	D13	144	HAD4	8	PF6	41	V _{DDEXT}	63
A17	104	D14	1	HAD5	9	PF7	42	V _{DDEXT}	90
A18	106	D15	2	HAD6	10	RCLK0	61	V _{DDEXT}	100
A19	107	DR0	60	HAD7	11	RCLK1	68	V _{DDEXT}	118
A20	108	DR1	67	HAD8	12	RCLK2	50	V _{DDEXT}	131
A21	109	DR2	49	HAD9	14	RD	122	V _{DDEXT}	143
ACK	120	DT0	56	HAD10	15	RESET	73	V _{DDINT}	19
BG	111	DT1	64	HAD11	17	RFS0	62	V _{DDINT}	58
BGH	110	DT2	46	HAD12	18	RFS1	69	V _{DDINT}	82
BMODE0	70	EMU	81	HAD13	20	RFS2	51	V _{DDINT}	127
BMODE1	71	GND	5	HAD14	21	RXD	52	WR	121
BMS	113	GND	16	HAD15	22	TCK	78	XTAL	133
BR	112	GND	29	HALE	30	TCLK0	57		

Table 25. 144-Lead LQFP Pins (Alphabetically by Signal)

144-Lead Mini-BGA Pinout

Table 27 lists the mini-BGA pinout by signal name.Table 28lists the mini-BGA pinout by ball number.

Signal	Ball No.	Signal	Ball No.	Signal	Ball No.	Signal	Ball No.	Signal	Ball No.
		-				-		-	
A0	J11	BYPASS	M11	GND	F7	HALE	J1	TCLK0	J6
A1	H9	CLKIN	A5	GND	F8	HCIOMS	J3	TCLK1	M9
A2	H10	CLKOUT	C6	GND	F9	HCMS	H1	TCLK2	K5
A3	G12	D0	D7	GND	G4	HRD	J2	TDI	K12
A4	H11	D1	A7	GND	G5	HWR	K2	TDO	L11
A5	G10	D2	C7	GND	G6	IOMS	E8	TFS0	M8
A6	F12	D3	A6	GND	H5	MS0	D9	TFS1	J8
A7	G11	D4	B7	GND	L6	MS1	A9	TFS2	M5
A8	F10	D5	A4	GND	M1	MS2	C9	TMR0	K4
A9	F11	D6	C5	GND	M12	MS3	D8	TMR1	L4
A10	E12	D7	B5	HACK	H3	OPMODE	H12	TMR2	J4
A11	E11	D8	D5	HACK_P	G1	PF0	K1	TMS	K10
A12	E10	D9	A3	HAD0	C1	PF1	L1	TRST	J12
A13	E9	D10	C4	HAD1	B3	PF2	M2	TXD	M7
A14	D11	D11	B4	HAD2	C2	PF3	L2	V _{DDEXT}	E5
A15	D10	D12	C3	HAD3	D1	PF4	M3	V _{DDEXT}	E6
A16	D12	D13	A2	HAD4	D4	PF5	L3	V _{DDEXT}	F5
A17	C11	D14	B1	HAD5	D3	PF6	K3	V _{DDEXT}	F6
A18	C12	D15	B2	HAD6	D2	PF7	M4	V _{DDEXT}	G7
A19	B12	DR0	L7	HAD7	E1	RCLK0	K7	V _{DDEXT}	G8
A20	B11	DR1	K9	HAD8	E4	RCLK1	J9	V _{DDEXT}	H7
A21	A11	DR2	L5	HAD9	E2	RCLK2	J5	V _{DDEXT}	H8
ACK	A8	DT0	H6	HAD10	F1	RD	B8	V _{DDINT}	D6
BG	C10	DT1	L8	HAD11	E3	RESET	L12	V _{DDINT}	F4
BGH	B10	DT2	H4	HAD12	F2	RFS0	K8	V _{DDINT}	G9
BMODE0	L10	EMU	J10	HAD13	G2	RFS1	M10	V _{DDINT}	J7
BMODE1	L9	GND	A1	HAD14	F3	RFS2	M6	WR	C8
BMS	A10	GND	A12	HAD15	G3	RXD	K6	XTAL	B6
BR	B9	GND	E7	HA16	H2	ТСК	K11		

Table 27. 144-Lead Mini-BGA Pins (Alphabetically by Signal)

Ball		Ball		Ball		Ball		Ball	
No.	Signal	No.	Signal	No.	Signal	No.	Signal	No.	Signal
A1	GND	C6	CLKOUT	E11	A11	H4	DT2	K9	DR1
A2	D13	C7	D2	E12	A10	H5	GND	K10	TMS
A3	D9	C8	WR	F1	HAD10	H6	DT0	K11	ТСК
A4	D5	C9	MS2	F2	HAD12	H7	V _{DDEXT}	K12	TDI
A5	CLKIN	C10	BG	F3	HAD14	H8	V _{DDEXT}	L1	PF1
A6	D3	C11	A17	F4	V _{DDINT}	H9	A1	L2	PF3
A7	D1	C12	A18	F5	V _{DDEXT}	H10	A2	L3	PF5
A8	ACK	D1	HAD3	F6	V _{DDEXT}	H11	A4	L4	TMR1
A9	MS1	D2	HAD6	F7	GND	H12	OPMODE	L5	DR2
A10	BMS	D3	HAD5	F8	GND	J1	HALE	L6	GND
A11	A21	D4	HAD4	F9	GND	J2	HRD	L7	DR0
A12	GND	D5	D8	F10	A8	J3	HCIOMS	L8	DT1
B1	D14	D6	V _{DDINT}	F11	A9	J4	TMR2	L9	BMODE1
B2	D15	D7	D0	F12	A6	J5	RCLK2	L10	BMODE0
B3	HAD1	D8	MS3	G1	HACK_P	J6	TCLK0	L11	TDO
B4	D11	D9	MS0	G2	HAD13	J7	V _{DDINT}	L12	RESET
B5	D7	D10	A15	G3	HAD15	J8	TFS1	M1	GND
B6	XTAL	D11	A14	G4	GND	J9	RCLK1	M2	PF2
B7	D4	D12	A16	G5	GND	J10	EMU	M3	PF4
B8	RD	E1	HAD7	G6	GND	J11	A0	M4	PF7
B9	BR	E2	HAD9	G7	V _{DDEXT}	J12	TRST	M5	TFS2
B10	BGH	E3	HAD11	G8	V _{DDEXT}	K1	PF0	M6	RFS2
B11	A20	E4	HAD8	G9	V _{DDINT}	K2	HWR	M7	TXD
B12	A19	E5	V _{DDEXT}	G10	A5	K3	PF6	M8	TFS0
C1	HAD0	E6	V _{DDEXT}	G11	A7	K4	TMR0	M9	TCLK1
C2	HAD2	E7	GND	G12	A3	K5	TCLK2	M10	RFS1
C3	D12	E8	IOMS	H1	HCMS	K6	RXD	M11	BYPASS
C4	D10	E9	A13	H2	HA16	K7	RCLK0	M12	GND
C5	D6	E10	A12	H3	HACK	K8	RFS0		

Table 28. 144-Lead Mini-BGA Pins (Numerically by Ball Number)