

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Active
Туре	Fixed Point
Interface	Host Interface, SPI, SSP, UART
Clock Rate	160MHz
Non-Volatile Memory	External
On-Chip RAM	160kB
Voltage - I/O	3.00V, 3.30V
Voltage - Core	2.50V
Operating Temperature	0°C ~ 70°C (TA)
Mounting Type	Surface Mount
Package / Case	144-LFBGA
Supplier Device Package	144-MiniBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/analog-devices/adsp-2191mkcaz-160

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

ADSP-2191M* PRODUCT PAGE QUICK LINKS

Last Content Update: 02/23/2017

COMPARABLE PARTS

View a parametric search of comparable parts.

EVALUATION KITS

 USB-Based Emulator and High Performance USB-Based Emulator

DOCUMENTATION

Application Notes

- AN-227: Digital Control System Design with the ADSP-2100 Family
- AN-572: Overlay Linking on the ADSP-219x
- EE-06: ADSP-21xx Serial Port Startup Issues
- EE-100: ADSP-218x External Overlay Memory
- EE-102: Mode D and ADSP-218x Pin Compatibility the FAQs
- EE-104: Setting Up Streams with the VisualDSP Debugger
- EE-11: ADSP-2181 Priority Chain & IDMA Holdoffs
- EE-115: ADSP-2189 IDMA Interface to Motorola MC68300 Family of Microprocessors
- EE-12: Interrupts and Programmable Flags on the ADSP-2185/2186
- EE-121: Porting Code from ADSP-21xx to ADSP-219x
- EE-122: Coding for Performance on the ADSP-219x
- EE-123: An Overview of the ADSP-219x Pipeline
- EE-124: Booting up the ADSP-2192
- EE-125: ADSP-218x Embedded System Software Management and In-System-Programming (ISP)
- EE-128: DSP in C++: Calling Assembly Class Member Functions From C++
- EE-129: ADSP-2192 Interprocessor Communication
- EE-130: Making Fast Transition from ADSP-21xx to ADSP-219x
- EE-131: Booting the ADSP-2191/95/96 DSPs
- EE-133: Converting From Legacy Architecture Files To Linker Description Files for the ADSP-218x
- EE-139: Interfacing the ADSP-2191 to an AD7476 via the SPI Port
- EE-142: Autobuffering, C and FFTs on the ADSP-218x
- EE-144: Creating a Master-Slave SPI Interface Between Two ADSP-2191 DSPs
- EE-145: SPI Booting of the ADSP-2191 using the Atmel AD25020N on an EZ-KIT Lite Evaluation Board
- EE-146: Implementing a Boot Manager for ADSP-218x Family DSPs
- EE-152: Using Software Overlays with the ADSP-219x and VisualDSP 2.0++
- EE-153: ADSP-2191 Programmable PLL
- EE-154: ADSP-2191 Host Port Interface

REFERENCE MATERIALS

Product Selection Guide

 ADI Complementary Parts Guide - Supervisory Devices and DSP Processors

DESIGN RESOURCES

- ADSP-2191M Material Declaration
- PCN-PDN Information
- Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all ADSP-2191M EngineerZone Discussions.

SAMPLE AND BUY

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK

Submit feedback for this data sheet.

INTEGRATION FEATURES 160K Bytes On-Chip RAM Configured as 32K Words 24-Bit Memory RAM and 32K Words 16-Bit Memory RAM **Dual-Purpose 24-Bit Memory for Both Instruction and Data Storage** Independent ALU, Multiplier/Accumulator, and Barrel Shifter Computational Units with Dual 40-Bit Accumulators Unified Memory Space Allows Flexible Address Generation, Using Two Independent DAG Units Powerful Program Sequencer Provides Zero-Overhead Looping and Conditional Instruction Execution **Enhanced Interrupt Controller Enables Programming of Interrupt Priorities and Nesting Modes** SYSTEM INTERFACE FEATURES Host Port with DMA Capability for Glueless 8- or 16-Bit **Host Interface** 16-Bit External Memory Interface for up to 16M Words of **Addressable Memory Space** Three Full-Duplex Multichannel Serial Ports, with Support for H.100 and up to 128 TDM Channels with A-Law and µ-Law Companding Optimized for Telecommunications Systems Two SPI-Compatible Ports with DMA Support **UART Port with DMA Support** 16 General-Purpose I/O Pins with Integrated Interrupt Support Three Programmable Interval Timers with PWM Generation, PWM Capture/Pulsewidth Measurement, and External Event Counter Capabilities Up to 11 DMA Channels Can Be Active at Any Given Time for High I/O Throughput **On-Chip Boot ROM for Automatic Booting from External** 8- or 16-Bit Host Device, SPI ROM, or UART with

- Autobaud Detection Programmable PLL Supports 1× to 32× Input Frequency Multiplication and Can Be Altered during Runtime
- IEEE JTAG Standard 1149.1 Test Access Port Supports On-Chip Emulation and System Debugging

2.5 V Internal Operation and 3.3 V I/O

144-Lead LQFP and 144-Ball Mini-BGA Packages

TABLE OF CONTENTS

GENERAL DESCRIPTION
DSP Core Architecture
DSP Peripherals Architecture
Memory Architecture
Interrupts
DMA Controller
Host Port
DSP Serial Ports (SPORTs)
Serial Peripheral Interface (SPI) Ports
UART Port
Programmable Flag (PFx) Pins
Low Power Operation
Clock Signals
Reset
Power Supplies
Booting Modes
Bus Request and Bus Grant
Instruction Set Description
Development Tools
Additional Information15
PIN FUNCTION DESCRIPTIONS15
SPECIFICATIONS18
ABSOLUTE MAXIMUM RATINGS
ESD SENSITIVITY
Power Dissipation
TIMING SPECIFICATIONS
Output Drive Currents
Power Dissipation
Test Conditions
Environmental Conditions
144-Lead LQFP Pinout
144-Lead Mini-BGA Pinout45
OUTLINE DIMENSIONS47
ORDERING GUIDE48
Revision History

The two address buses (PMA and DMA) share a single external address bus, allowing memory to be expanded off-chip, and the two data buses (PMD and DMD) share a single external data bus. Boot memory space and I/O memory space also share the external buses.

Program memory can store both instructions and data, permitting the ADSP-2191M to fetch two operands in a single cycle, one from program memory and one from data memory. The DSP's dual memory buses also let the ADSP-219x core fetch an operand from data memory and the next instruction from program memory in a single cycle.

DSP Peripherals Architecture

The functional block diagram on Page 1 shows the DSP's on-chip peripherals, which include the external memory interface, Host port, serial ports, SPI-compatible ports, UART port, JTAG test and emulation port, timers, flags, and interrupt controller. These on-chip peripherals can connect to off-chip devices as shown in Figure 1.

The ADSP-2191M has a 16-bit Host port with DMA capability that lets external Hosts access on-chip memory. This 24-pin parallel port consists of a 16-pin multiplexed data/address bus and provides a lowservice overhead data move capability. Configurable for 8 or 16 bits, this port provides a glueless interface to a wide variety of 8- and 16-bit microcontrollers. Two chip-selects provide Hosts access to the DSP's entire memory map. The DSP is bootable through this port.

The ADSP-2191M also has an external memory interface that is shared by the DSP's core, the DMA controller, and DMA capable peripherals, which include the UART, SPORT0, SPORT1, SPORT2, SPI0, SPI1, and the Host port. The external port consists of a 16-bit data bus, a 22-bit address bus, and control signals. The data bus is configurable to provide an 8- or 16-bit interface to external memory. Support for word packing lets the DSP access 16- or 24-bit words from external memory regardless of the external data bus width. When configured for an 8-bit interface, the unused eight lines provide eight programmable, bidirectional general-purpose Programmable Flag lines, six of which can be mapped to software condition signals.

The memory DMA controller lets the ADSP-2191M move data and instructions from between memory spaces: internal-to-external, internal-to-internal, and external-to-external. On-chip peripherals can also use this controller for DMA transfers.

The ADSP-2191M can respond to up to seventeen interrupts at any given time: three internal (stack, emulator kernel, and power-down), two external (emulator and reset), and twelve userdefined (peripherals) interrupts. The programmer assigns a peripheral to one of the 12 user-defined interrupts. The priority of each peripheral for interrupt service is determined by these assignments.

There are three serial ports on the ADSP-2191M that provide a complete synchronous, full-duplex serial interface. This interface includes optional companding in hardware as well as a wide variety of framed or frameless data transmit and receive modes

Figure 1. System Diagram

of operation. Each serial port can transmit or receive an internal or external, programmable serial clock and frame syncs. Each serial port supports 128-channel Time Division Multiplexing.

The ADSP-2191M provides up to sixteen general-purpose I/O pins, which are programmable as either inputs or outputs. Eight of these pins are dedicated-general purpose Programmable Flag pins. The other eight of them are multifunctional pins, acting as general-purpose I/O pins when the DSP connects to an 8-bit external data bus and acting as the upper eight data pins when the DSP connects to a 16-bit external data bus. These Programmable Flag pins can implement edge- or level-sensitive interrupts, some of which can be used to base the execution of conditional instructions.

 Table 2. Peripheral Interrupts and Priority at Reset

Interrunt	Ш	Reset Priority
Interrupt	ID	THOTICY
Slave DMA/Host Port Interface	0	0
SPORT0 Receive	1	1
SPORT0 Transmit	2	2
SPORT1 Receive	3	3
SPORT1 Transmit	4	4
SPORT2 Receive/SPI0	5	5
SPORT2 Transmit/SPI1	6	6
UART Receive	7	7
UART Transmit	8	8
Timer 0	9	9
Timer 1	10	10
Timer 2	11	11
Programmable Flag A (any PFx)	12	11
Programmable Flag B (any PFx)	13	11
Memory DMA port	14	11

Interrupt routines can either be nested with higher priority interrupts taking precedence or processed sequentially. Interrupts can be masked or unmasked with the IMASK register. Individual interrupt requests are logically ANDed with the bits in IMASK; the highest priority unmasked interrupt is then selected. The emulation, power-down, and reset interrupts are nonmaskable with the IMASK register, but software can use the DIS INT instruction to mask the power-down interrupt.

The Interrupt Control (ICNTL) register controls interrupt nesting and enables or disables interrupts globally.

The general-purpose Programmable Flag (PFx) pins can be configured as outputs, can implement software interrupts, and (as inputs) can implement hardware interrupts. Programmable Flag pin interrupts can be configured for level-sensitive, single edge-sensitive, or dual edge-sensitive operation.

Table 3. Interrupt Control (ICNTL) Register Bits

Bit	Description
0–3	Reserved
4	Interrupt Nesting Enable
5	Global Interrupt Enable
6	Reserved
7	MAC-Biased Rounding Enable
8–9	Reserved
10	PC Stack Interrupt Enable
11	Loop Stack Interrupt Enable
12–15	Reserved

The IRPTL register is used to force and clear interrupts. Onchip stacks preserve the processor status and are automatically maintained during interrupt handling. To support interrupt, loop, and subroutine nesting, the PC stack is 33 levels deep, the loop stack is eight levels deep, and the status stack is 16 levels deep. To prevent stack overflow, the PC stack can generate a stack-level interrupt if the PC stack falls below three locations full or rises above 28 locations full. The following instructions globally enable or disable interrupt servicing, regardless of the state of IMASK.

ENA INT; DIS INT;

At reset, interrupt servicing is disabled.

For quick servicing of interrupts, a secondary set of DAG and computational registers exist. Switching between the primary and secondary registers lets programs quickly service interrupts, while preserving the DSP's state.

DMA Controller

The ADSP-2191M has a DMA controller that supports automated data transfers with minimal overhead for the DSP core. Cycle stealing DMA transfers can occur between the ADSP-2191M's internal memory and any of its DMA-capable peripherals. Additionally, DMA transfers can be accomplished between any of the DMA-capable peripherals and external devices connected to the external memory interface. DMA-capable peripherals include the Host port, SPORTs, SPI ports, and UART. Each individual DMA-capable peripheral has a dedicated DMA channel. To describe each DMA sequence, the DMA controller uses a set of parameters-called a DMA descriptor. When successive DMA sequences are needed, these DMA descriptors can be linked or chained together, so the completion of one DMA sequence auto-initiates and starts the next sequence. DMA sequences do not contend for bus access with the DSP core; instead DMAs "steal" cycles to access memory.

All DMA transfers use the DMA bus shown in the functional block diagram on Page 1. Because all of the peripherals use the same bus, arbitration for DMA bus access is needed. The arbitration for DMA bus access appears in Table 4.

Table 4. I/O Bus Arbitration Priority

DMA Bus Master	Arbitration Priority
SPORT0 Receive DMA	0—Highest
SPORT1 Receive DMA	1
SPORT2 Receive DMA	2
SPORT0 Transmit DMA	3
SPORT1 Transmit DMA	4
SPORT2 Transmit DMA	5
SPI0 Receive/Transmit DMA	6
SPI1 Receive/Transmit DMA	7
UART Receive DMA	8
UART Transmit DMA	9
Host Port DMA	10
Memory DMA	11—Lowest

Host Port

The ADSP-2191M's Host port functions as a slave on the external bus of an external Host. The Host port interface lets a Host read from or write to the DSP's memory space, boot space, or internal I/O space. Examples of Hosts include external micro-controllers, microprocessors, or ASICs.

The Host port is a multiplexed address and data bus that provides both an 8-bit and a 16-bit data path and operates using an asynchronous transmission protocol. Through this port, an off-chip

Host can directly access the DSP's entire memory space map, boot memory space, and internal I/O space. To access the DSP's internal memory space, a Host steals one cycle per access from the DSP. A Host access to the DSP's external memory uses the external port interface and does not stall (or steal cycles from) the DSP's core. Because a Host can access internal I/O memory space, a Host can control any of the DSP's I/O mapped peripherals.

The Host port is most efficient when using the DSP as a slave and uses DMA to automate the incrementing of addresses for these accesses. In this case, an address does not have to be transferred from the Host for every data transfer.

Host Port Acknowledge (HACK) Modes

The Host port supports a number of modes (or protocols) for generating a HACK output for the host. The host selects ACK or Ready modes using the HACK_P and HACK pins. The Host port also supports two modes for address control: Address Latch Enable (ALE) and Address Cycle Control (ACC) modes. The DSP auto-detects ALE versus ACC mode from the HALE and HWR inputs.

The Host port HACK signal polarity is selected (only at reset) as active high or active low, depending on the value driven on the HACK_P pin. The HACK polarity is stored into the Host port configuration register as a read only bit.

The DSP uses HACK to indicate to the Host when to complete an access. For a read transaction, a Host can proceed and complete an access when valid data is present in the read buffer and the Host port is not busy doing a write. For a write transactions, a Host can complete an access when the write buffer is not full and the Host port is not busy doing a write.

Two mode bits in the Host Port configuration register HPCR [7:6] define the functionality of the HACK line. HPCR6 is initialized at reset based on the values driven on HACK and HACK_P pins (shown in Table 5); HPCR7 is always cleared (0) at reset. HPCR [7:6] can be modified after reset by a write access to the Host port configuration register.

Values Driven At Reset		HPCR [7:6] Initial Values		Acknowledge	
HACK_P	HACK	Bit 7	Bit 6	Mode	
0	0	0	1	Ready Mode	
0	1	0	0	ACK Mode	
1	0	0	0	ACK Mode	
1	1	0	1	Ready Mode	

Table 5. Host Port Acknowledge Mode Selection

The functional modes selected by HPCR [7:6] are as follows (assuming active high signal):

- ACK Mode—Acknowledge is active on strobes; HACK goes high from the leading edge of the strobe to indicate when the access can complete. After the Host samples the HACK active, it can complete the access by removing the strobe. The Host port then removes the HACK.
- **Ready Mode**—Ready active on strobes, goes low to insert waitstate during the access. If the Host port cannot complete the access, it deasserts the HACK/READY line. In this case, the Host has to extend the access by keeping the strobe asserted. When the Host samples the HACK asserted, it can then proceed and complete the access by deasserting the strobe.

While in Address Cycle Control (ACC) mode and the ACK or Ready acknowledge modes, the HACK is returned active for any address cycle.

Host Port Chip Selects

There are two chip-select signals associated with the Host port: $\overline{\text{HCMS}}$ and $\overline{\text{HCIOMS}}$. The Host Chip Memory Select ($\overline{\text{HCMS}}$) lets the Host select the DSP and directly access the DSP's internal/external memory space or boot memory space. The Host Chip I/O Memory Select ($\overline{\text{HCIOMS}}$) lets the Host select the DSP and directly access the DSP's internal I/O memory space.

Before starting a direct access, the Host configures Host port interface registers, specifying the width of external data bus (8- or 16-bit) and the target address page (in the IJPG register). The DSP generates the needed memory select signals during the access, based on the target address. The Host port interface combines the data from one, two, or three consecutive Host accesses (up to one 24-bit value) into a single DMA bus access to prefetch Host direct reads or to post direct writes. During assembly of larger words, the Host port interface asserts ACK for each byte access that does not start a read or complete a write. Otherwise, the Host port interface asserts ACK when it has completed the memory access successfully.

DSP Serial Ports (SPORTs)

The ADSP-2191M incorporates three complete synchronous serial ports (SPORT0, SPORT1, and SPORT2) for serial and multiprocessor communications. The SPORTs support the following features:

- Bidirectional operation—each SPORT has independent transmit and receive pins.
- Double-buffered transmit and receive ports—each port has a data register for transferring data words to and from memory and shift registers for shifting data in and out of the data registers.
- Clocking—each transmit and receive port can either use an external serial clock (40 MHz) or generate its own, in frequencies ranging from 19 Hz to 40 MHz.
- Word length—each SPORT supports serial data words from 3 to 16 bits in length transferred in Big Endian (MSB) or Little Endian (LSB) format.

Table 6. Select Boot Mode (OPMODE, BMODE1, andBMODE0)

PMODE	AODE1	AODE 0	
Ю	BA	BA	Function
0	0	0	Execute from external memory 16 bits
			(No Boot)
0	0	1	Boot from EPROM
0	1	0	Boot from Host
0	1	1	Reserved
1	0	0	Execute from external memory 8 bits
			(No Boot)
1	0	1	Boot from UART
1	1	0	Boot from SPI, up to 4K bits
1	1	1	Boot from SPI, >4K bits up to
			512K bits

The OPMODE, BMODE1, and BMODE0 pins, sampled during hardware reset, and three bits in the Reset Configuration Register implement these modes:

- Execute from memory external 16 bits—The memory boot routine located in boot ROM memory space executes a boot-stream-formatted program located at address 0x010000 of boot memory space, packing 16-bit external data into 24-bit internal data. The External Port Interface is configured for the default clock multiplier (128) and read waitstates (7).
- Boot from EPROM—The EPROM boot routine located in boot ROM memory space fetches a boot-stream-formatted program located at physical address 0x00 0000 of boot memory space, packing 8- or 16-bit external data into 24-bit internal data. The External Port Interface is configured for the default clock multiplier (32) and read waitstates (7).
- Boot from Host—The (8- or 16-bit) Host downloads a boot-stream-formatted program to internal or external memory. The Host's boot routine is located in internal ROM memory space and uses the top 16 locations of Page 0 program memory and the top 272 locations of Page 0 data memory.

The internal boot ROM sets semaphore A (an IO register within the Host port) and then polls until the semaphore is reset. Once detected, the internal boot ROM will remap the interrupt vector table to Page 0 internal memory and jump to address 0x00 0000 internal memory. From the point of view of the host interface, an external host has full control of the DSP's memory map. The Host has the freedom to directly write internal memory, external memory, and internal I/O memory space. The DSP core execution is held off until the Host clears the semaphore register. This strategy allows the maximum flexibility for the Host to boot in the program and data code, by leaving it up to the programmer.

- Execute from memory external 8 bits (No Boot)— Execution starts from Page 1 of external memory space, packing either 8- or 16-bit external data into 24-bit internal data. The External Port Interface is configured for the default clock multiplier (128) and read waitstates (7).
- Boot from UART—Using an autobaud handshake sequence, a boot-stream-formatted program is downloaded by the Host. The Host agent selects a baud rate within the UART's clocking capabilities. After a hardware reset, the DSP's UART expects a 0xAA character (eight bits data, one start bit, one stop bit, no parity bit) on the RXD pin to determine the bit rate; and then replies with an OK string. Once the host receives this OK it downloads the boot stream without further handshake. The UART boot routine is located in internal ROM memory space and uses the top 16 locations of Page 0 program memory and the top 272 locations of Page 0 data memory.
- Boot from SPI, up to 4K bits—The SPI0 port uses the SPI0SEL1 (reconfigured PF2) output pin to select a single serial EEPROM device, submits a read command at address 0x00, and begins clocking consecutive data into internal or external memory. Use only SPI-compatible EEPROMs of ≤ 4K bit (12-bit address range). The SPI0 boot routine located in internal ROM memory space executes a boot-stream-formatted program, using the top 16 locations of Page 0 program memory and the top 272 locations of Page 0 data memory. The SPI boot configuration is SPIBAUD0=60 (decimal), CPHA=1, CPOL=1, 8-bit data, and MSB first.
- Boot from SPI, from >4K bits to 512K bits—The SPI0 port uses the SPI0SEL1 (re-configured PF2) output pin to select a single serial EEPROM device, submits a read command at address 0x00, and begins clocking consecutive data into internal or external memory. Use only SPI-compatible EEPROMs of ≥ 4K bit (16-bit address range). The SPI0 boot routine, located in internal ROM memory space, executes a boot-stream-formatted program, using the top 16 locations of Page 0 program memory and the top 272 locations of Page 0 data memory.

As indicated in Table 6, the OPMODE pin has a dual role, acting as a boot mode select during reset and determining SPORT or SPI operation at runtime. If the OPMODE pin at reset is the opposite of what is needed in an application during runtime, the application needs to set the OPMODE bit appropriately during runtime prior to using the corresponding peripheral.

Bus Request and Bus Grant

The ADSP-2191M can relinquish control of the data and address buses to an external device. When the external device requires access to the bus, it asserts the bus request (\overline{BR}) signal. The (\overline{BR}) signal is arbitrated with core and peripheral requests. External Bus requests have the lowest priority. If no other internal request is pending, the external bus request will be granted.

Table 7.	Pin	Function	Descriptions	(continued)
----------	-----	----------	--------------	-------------

Pin	Туре	Function
PF5 /SPI1SEL2	I/O/T I	Programmable Flags 5/SPI1 Slave Select output 2 (when SPI0 enabled)/Multiplier Select 5 (during boot)
/MSEL5	Ι	
PF4	I/O/T	Programmable Flags 4/SPI0 Slave Select output 2 (when SPI0 enabled)/Multiplier Select 4
/SPI0SEL2	Ι	(during boot)
/MSEL4	Ι	
PF3	I/O/T	Programmable Flags 3/SPI1 Slave Select output 1 (when SPI0 enabled)/Multiplier Select 3
/SPI1SEL1	Ι	(during boot)
/MSEL3	Ι	
PF2	I/O/T	Programmable Flags 2/SPI0 Slave Select output 1 (when SPI0 enabled)/Multiplier Select 2
/SPI0SEL1	Ι	(during boot)
/MSEL2	I	
PF1	I/O/T	Programmable Flags 1/SPI1 Slave Select input (when SPI1 enabled)/Multiplier Select 1
/SPISS1	1	(during boot)
/MSEL1		
PFO	1/0/1	Programmable Flags 0/SP10 Slave Select input (when SP10 enabled)/Multiplier Select 0
/SP1550 /MSEL0	1 T	(during boot)
		Extornal Port Pord Stroba
WR	0/T	External Port Write Strobe
ACK	I I	External Port Access Ready Acknowledge
BMS	0/Т	External Port Boot Space Select
IOMS	O/T	External Port IO Space Select
$\overline{MS3-0}$	O/T	External Port Memory Space Selects
BR	Ι	External Port Bus Request
BG	0	External Port Bus Grant
BGH	0	External Port Bus Grant Hang
HAD15–0	I/O/T	Host Port Multiplexed Address and Data Bus
HA16	Ι	Host Port MSB of Address Bus
HACK_P	Ι	Host Port ACK Polarity
HRD	Ι	Host Port Read Strobe
HWR	Ι	Host Port Write Strobe
HACK	0	Host Port Access Ready Acknowledge
HALE	Ι	Host Port Address Latch Strobe or Address Cycle Control
HCMS	I	Host Port Internal Memory–Internal I/O Memory–Boot Memory Select
HCIOMS	I	Host Port Internal I/O Memory Select
CLKIN	I	Clock Input/Oscillator Input
XIAL	0	Oscillator Output
BMODEI-0		Boot Mode 1–0. The BMODE1 and BMODE0 pins have 85 ks2 internal pull-up resistors.
OPMODE CL KOUT		Clock Output
RVPASS	T	Phase Lock Loop (PLL) Bypass Mode The BVPASS nin has a 85 kO internal null un resistor
BUIA33		SPORT1 0 Receive Clock
RCLK2/SCK1	I/O/T	SPORT2 Receive Clock/SPI1 Serial Clock
RES1-0	I/O/T	SPORT1-0 Receive Frame Sync
RFS2/MOSI1	I/O/T	SPORT2 Receive Frame Sync/SPI1 Master-Output, Slave-Input Data
TCLK1-0	I/O/T	SPORT1–0 Transmit Clock
TCLK2/SCK0	I/O/T	SPORT2 Transmit Clock/SPI0 Serial Clock
TFS1–0	I/O/T	SPORT1–0 Transmit Frame Sync
TFS2/MOSI0	I/O/T	SPORT2 Transmit Frame Sync/SPI0 Master-Output, Slave-Input Data
DR1–0	I/T	SPORT1–0 Serial Data Receive
DR2/MISO1	I/O/T	SPORT2 Serial Data Receive/SPI1 Master-Input, Slave-Output Data
DT1-0	O/T	SPORT1–0 Serial Data Transmit
DT2/MISO0	I/O/T	SPORT2 Serial Data Transmit/SPI0 Master-Input, Slave-Output Data

Pin	Туре	Function
TMR2–0	I/O/T	Timer Output or Capture
RXD	Ι	UART Serial Receive Data
TXD	0	UART Serial Transmit Data
RESET	Ι	Processor Reset. Resets the ADSP-2191M to a known state and begins execution at the
		program memory location specified by the hardware reset vector address. The $\overline{\text{RESET}}$ input must be asserted (low) at powerup. The $\overline{\text{RESET}}$ pin has an 85 k Ω internal pull-up resistor.
ТСК	Ι	Test Clock (JTAG). Provides a clock for JTAG boundary scan. The TCK pin has an 85 k Ω internal pull-up resistor.
TMS	Ι	Test Mode Select (JTAG). Used to control the test state machine. The TMS pin has an 85 k Ω internal pull-up resistor.
TDI	Ι	Test Data Input (JTAG). Provides serial data for the boundary scan logic. The TDI pin has a 85 kΩ internal pull-up resistor.
TDO	0	Test Data Output (JTAG). Serial scan output of the boundary scan path.
TRST	Ι	Test Reset (JTAG). Resets the test state machine. TRST must be asserted (pulsed low) after powerup or held low for proper operation of the ADSP-2191M. The TRST pin has a 65 k Ω internal pull-down resistor.
EMU	0	Emulation Status (JTAG). Must be connected to the ADSP-2191M emulator target board connector only.
V _{DDINT}	Р	Core Power Supply. Nominally 2.5 V dc and supplies the DSP's core processor. (four pins)
V _{DDEXT}	Р	I/O Power Supply. Nominally 3.3 V dc. (nine pins)
GND	G	Power Supply Return. (twelve pins)
NC		Do Not Connect. Reserved pins that must be left open and unconnected.

 Table 7. Pin Function Descriptions (continued)

ADSP-2191M TIMING SPECIFICATIONS

This section contains timing information for the DSP's external signals. Use the exact information given. Do not attempt to derive parameters from the addition or subtraction of other information. While addition or subtraction would yield meaningful results for an individual device, the values given in this data sheet reflect statistical variations and worst cases. Consequently, parameters cannot be added meaningfully to derive longer times.

Switching characteristics specify how the processor changes its signals. No control is possible over this timing; circuitry external to the processor must be designed for compatibility with these signal characteristics. Switching characteristics indicate what the processor will do in a given circumstance. Switching characteristics can also be used to ensure that any timing requirement of a device connected to the processor (such as memory) is satisfied.

Timing requirements apply to signals that are controlled by circuitry external to the processor, such as the data input for a read operation. Timing requirements guarantee that the processor operates correctly with other devices.

Clock In and Clock Out Cycle Timing

Table 9 and Figure 8 describe clock and reset operations. Combinations of CLKIN and clock multipliers must not select core/peripheral clocks in excess of 160/80 MHz for commercial grade and 140/70 MHz for industrial grade, when the peripheral clock rate is one-half the core clock rate. If the peripheral clock rate is equal to the core clock rate, the maximum peripheral clock rate is 80 MHz for both commercial and industrial grade parts. The peripheral clock is supplied to the CLKOUT pins.

When changing from bypass mode to PLL mode, allow 512 HCLK cycles for the PLL to stabilize.

Parameter		Min	Max	Unit
Switching Charac	cteristics			
t _{CKOD}	CLKOUT Delay from CLKIN	0	5.8	ns
t _{CKO}	CLKOUT Period ¹	12.5		ns
Timing Requirem	ents			
t _{CK}	CLKIN Period ^{2, 3}	10	200	ns
t _{CKL}	CLKIN Low Pulse	4.5		ns
t _{CKH}	CLKIN High Pulse	4.5		ns
t _{WRST}	RESET Asserted Pulsewidth Low	200t _{CLKOUT}		ns
t _{MSS}	MSELx/BYPASS Stable Before RESET Deasserted Setup	40		μs
t _{MSH}	MSELx/BYPASS Stable After RESET Deasserted Hold	1000		ns
t _{MSD}	MSELx/BYPASS Stable After RESET Asserted		200	ns
t _{PFD}	Flag Output Disable Time After RESET Asserted		10	ns

Table 9. Clock In and Clock Out Cycle Timing

¹CLKOUT jitter can be as great as 8 ns when CLKOUT frequency is less than 20 MHz. For frequencies greater than 20 MHz, jitter is less than 1 ns. ²In clock multiplier mode and MSEL6–0 set for 1:1 (or CLKIN = CCLK), $t_{CK} = t_{CCLK}$.

³In bypass mode, $t_{CK} = t_{CCLK}$.

Figure 8. Clock In and Clock Out Cycle Timing

Programmable Flags Cycle Timing

Table 10 and Figure 9 describe Programmable Flag operations.

Table 10. Programmable Flags Cycle Timing

Parameter		Min	Max	Unit
Switching Ch	aracteristics			
t _{DFO}	Flag Output Delay with Respect to CLKOUT		7	ns
t _{HFO}	Flag Output Hold After CLKOUT High		6	ns
Timing Requi	rement			
t _{HFI}	FI Flag Input Hold is Asynchronous			ns

Figure 9. Programmable Flags Cycle Timing

Timer PWM_OUT Cycle Timing

Table 11 and Figure 10 describe timer expired operations. The input signal is asynchronous in "width capture mode" and has an absolute maximum input frequency of 40 MHz.

Table 11. Timer PWM_OUT Cycle Timing

Parameter	Min	Max	Unit
Switching Characteristic			
t _{HTO} Timer Pulsewidth Output ¹	12.5	$(2^{32}-1)$ cycles	ns

¹The minimum time for t_{HTO} is one cycle, and the maximum time for t_{HTO} equals $(2^{32}-1)$ cycles.

Figure 10. Timer PWM_OUT Cycle Timing

External Port Read Cycle Timing

Table 13 and Figure 12 describe external port read operations. For additional information on the ACK signal, see the discussion on Page 22.

|--|

Parameter ¹ ,	2	Min	Max	Unit
Switching Ch	aracteristics			
t _{CSRS}	Chip Select Asserted to $\overline{\text{RD}}$ Asserted Delay	$0.5t_{HCLK}-3$		ns
t _{ARS}	Address Valid to RD Setup and Delay	$0.5t_{HCLK}-3$		ns
t _{RSCS}	RD Deasserted to Chip Select Deasserted Setup	$0.5t_{HCLK}-2$		ns
t _{RW}	RD Strobe Pulsewidth	$t_{HCLK} - 2 + W^3$		ns
t _{RSA}	RD Deasserted to Address Invalid Setup	$0.5t_{HCLK}-2$		ns
t _{RWR}	$\overline{\mathrm{RD}}$ Deasserted to $\overline{\mathrm{WR}}$, $\overline{\mathrm{RD}}$ Asserted	t _{HCLK}		
Timing Requi	rements			
t _{AKW}	ACK Strobe Pulsewidth	t _{HCLK}		ns
t _{RDA}	RD Asserted to Data Access Setup		$t_{HCLK} - 4 + W^3$	ns
t _{ADA}	Address Valid to Data Access Setup		$t_{HCLK} + W^3$	ns
t _{SDA}	Chip Select Asserted to Data Access Setup		$t_{HCLK} + W^3$	ns
t _{SD}	Data Valid to RD Deasserted Setup	7		ns
t _{HRD}	RD Deasserted to Data Invalid Hold	0		ns
t _{DRSAK}	ACK Delay from RD Low	0		ns

¹t_{HCLK} is the peripheral clock period. ²These are timing parameters that are based on worst-case operating conditions.

 ^{3}W = (number of waitstates specified in wait register) × t_{HCLK}.

Figure 12. External Port Read Cycle Timing

External Port Bus Request and Grant Cycle Timing

Table 14 and Figure 13 describe external port bus request and bus grant operations.

Table 14. External Port Bus Request and Grant Cycle Timing

Parameter ¹	,2	Min	Max	Unit
Switching Ch	naracteristics			
t _{SD}	CLKOUT High to \overline{xMS} , Address, and $\overline{RD}/\overline{WR}$ Disable		$0.5t_{HCLK}+1$	ns
t _{se}	CLKOUT Low to \overline{xMS} , Address, and $\overline{RD}/\overline{WR}$ Enable	0	4	ns
t _{DBG}	CLKOUT High to \overline{BG} Asserted Setup	0	4	ns
t _{EBG}	CLKOUT High to \overline{BG} Deasserted Hold Time	0	4	ns
t _{DBH}	CLKOUT High to BGH Asserted Setup	0	4	ns
t _{EBH}	CLKOUT High to BGH Deasserted Hold Time	0	4	ns
Timing Requ	irements			
t _{BS}	BR Asserted to CLKOUT High Setup	4.6		ns
t _{BH}	CLKOUT High to BR Deasserted Hold Time	0		ns

¹t_{HCLK} is the peripheral clock period.
 ²These are timing parameters that are based on worst-case operating conditions.

Figure 13. External Port Bus Request and Grant Cycle Timing

Host Port ALE Mode Read Cycle Timing

Table 17 and Figure 16 describe Host port read operations in Address Latch Enable (ALE) mode. For more information on ACK, Ready, ALE, and ACC mode selection, see the Host port modes description on Page 8.

Table 17.	Host Port	ALE Mod	e Read	Cycle	Timing
-----------	-----------	---------	--------	-------	--------

Parameter		Min	Max	Unit
Switching Ch	aracteristics			
t _{RHKS1}	HRD Asserted to HACK Asserted (ACK Mode) First Byte	12t _{HCLK}	$15t_{HCLK}+t_{NH}^{1}$	ns
t _{RHKS2}	$\overline{\text{HRD}}$ Asserted to HACK Asserted (Setup, ACK Mode) ²		12	ns
t _{RHKH}	HRD Deasserted to HACK Deasserted (Hold, ACK Mode)		10	ns
t _{RHS}	HRD Asserted to HACK Asserted (Setup, Ready Mode)		10	ns
t _{RHH}	HRD Asserted to HACK Deasserted (Hold, Ready Mode)	12t _{HCLK}	$15t_{HCLK}+t_{NH}^{1}$	ns
	First Byte			
t _{RDH}	HRD Deasserted to Data Invalid (Hold)	1		ns
t _{RDD}	HRD Deasserted to Data Disable		10	ns
Timing Requi	rements			
t _{CSAL}	HCMS or HCIOMS Asserted to HALE Asserted (Delay)	0		ns
t _{ALCS}	HALE Deasserted to Optional HCMS or HCIOMS	1		ns
	Deasserted			
t _{RCSW}	$\overline{\text{HRD}}$ Deasserted to $\overline{\text{HCMS}}$ or $\overline{\text{HCIOMS}}$ Deasserted	0		ns
t _{ALR}	HALE Deasserted to HRD Asserted	5		ns
t _{RCS}	$\overline{\text{HRD}}$ Deasserted (After Last Byte) to $\overline{\text{HCMS}}$ or	0		ns
	HCIOMS Deasserted (Ready for Next Read)			
t _{ALPW}	HALE Asserted Pulsewidth	4		ns
t _{HKRD}	HACK Asserted to HRD Deasserted (Hold, ACK Mode)	1.5		ns
t _{AALS}	Address Valid to HALE Deasserted (Setup)	2		ns
t _{ALAH}	HALE Deasserted to Address Invalid (Hold)	4		ns

 $^{1}t_{NH}$ are peripheral bus latencies (n × t_{HCLK}); these are internal DSP latencies related to the number of peripherals attempting to access DSP memory at the same time.

 2 Measurement is for the second, third, or fourth byte of a host read transaction. The quantity of bytes to complete a host read transaction is dependent on the data bus size (8 or 16 bits) and the data type (16 or 24 bits).

Figure 16. Host Port ALE Mode Read Cycle Timing

Serial Peripheral Interface (SPI) Port—Master Timing

Table 20 and Figure 21 describe SPI port master operations.

Table 20. Serial Peripheral Interface (SPI) Port-Master Timing

Parameter		Min	Max	Unit
Switching Ch	aracteristics			
t _{SDSCIM}	$\overline{\text{SPIxSEL}}$ Low to First SCLK edge (x=0 or 1)	$2t_{HCLK}-3$		ns
t _{SPICHM}	Serial Clock High Period	$2t_{HCLK} - 3$		ns
t _{SPICLM}	Serial Clock Low Period	$2t_{HCLK} - 3$		ns
t _{SPICLK}	Serial Clock Period	$4t_{HCLK} - 1$		ns
t _{HDSM}	Last SCLK Edge to $\overline{SPIxSEL}$ High (x=0 or 1)	$2t_{HCLK} - 3$		ns
t _{SPITDM}	Sequential Transfer Delay	$2t_{HCLK}-2$		ns
t _{DDSPID}	SCLK Edge to Data Output Valid (Data Out Delay)	0	6	ns
t _{HDSPID}	SCLK Edge to Data Output Invalid (Data Out Hold)	0	5	ns
Timing Requi	rements			
t _{SSPID}	Data Input Valid to SCLK Edge (Data Input Setup)	8		ns
t _{HSPID}	SCLK Sampling Edge to Data Input Invalid (Data In Hold)	1		ns

Figure 21. Serial Peripheral Interface (SPI) Port-Master Timing

Serial Peripheral Interface (SPI) Port—Slave Timing Table 21 and Figure 22 describe SPI port slave operations.

Parameter		Min	Max	Unit
Switching Ch	paracteristics			
t _{DSOE}	SPISS Assertion to Data Out Active	0	8	ns
t _{DSDHI}	SPISS Deassertion to Data High Impedance	0	10	ns
t _{DDSPID}	SCLK Edge to Data Out Valid (Data Out Delay)	0	10	ns
t _{HDSPID}	SCLK Edge to Data Out Invalid (Data Out Hold)	0	10	ns
Timing Requi	irements			
t _{SPICHS}	Serial Clock High Period	2t _{HCLK}		ns
t _{SPICLS}	Serial Clock Low Period	2t _{HCLK}		ns
t _{SPICLK}	Serial Clock Period	4t _{HCLK}		ns
t _{HDS}	Last SPICLK Edge to SPISS Not Asserted	2t _{HCLK}		ns
t _{SPITDS}	Sequential Transfer Delay	$2t_{HCLK} + 4$		ns
t _{SDSCI}	SPISS Assertion to First SPICLK Edge	2t _{HCLK}		ns
t _{SSPID}	Data Input Valid to SCLK Edge (Data Input Setup)	1.6		ns
t _{HSPID}	SCLK Sampling Edge to Data Input Invalid (Data In Hold)	2.4		ns

Figure 22. Serial Peripheral Interface (SPI) Port-Slave Timing

$$t_{DECAY} = \frac{C_L \Delta V}{I_L}$$

The output disable time t_{DIS} is the difference between $t_{MEASURED}$ and t_{DECAY} as shown in Figure 26. The time $t_{MEASURED}$ is the interval from when the reference signal switches to when the output voltage decays –V from the measured output high or output low voltage. The t_{DECAY} is calculated with test loads C_L and I_L , and with –V equal to 0.5 V.

Figure 26. Output Enable/Disable

Figure 27. Equivalent Device Loading for AC Measurements (Includes All Fixtures)

Figure 28. Voltage Reference Levels for AC Measurements (Except Output Enable/Disable)

Output Enable Time

Output pins are considered to be enabled when they have made a transition from a high impedance state to when they start driving. The output enable time t_{ENA} is the interval from when a reference signal reaches a high or low voltage level to when the

output has reached a specified high or low trip point, as shown in the Output Enable/Disable diagram (Figure 26). If multiple pins (such as the data bus) are enabled, the measurement value is that of the first pin to start driving.

Example System Hold Time Calculation

To determine the data output hold time in a particular system, first calculate t_{DECAY} using the equation at Output Disable Time on Page 40. Choose –V to be the difference between the ADSP-2191M's output voltage and the input threshold for the device requiring the hold time. A typical –V will be 0.4 V. C_L is the total bus capacitance (per data line), and I_L is the total leakage or three-state current (per data line). The hold time will be t_{DECAY} plus the minimum disable time (i.e., t_{DATRWH} for the write cycle).

Capacitive Loading

Output delays and holds are based on standard capacitive loads: 50 pF on all pins (see Figure 30). The delay and hold specifications given should be derated by a factor of 1.5 ns/50 pF for loads other than the nominal value of 50 pF. Figure 28 and Figure 29 show how output rise time varies with capacitance. These figures also show graphically how output delays and holds vary with load capacitance. (Note that this graph or derating does not apply to output disable delays; see Output Disable Time on Page 40.) The graphs in these figures may not be linear outside the ranges shown.

Figure 29. Typical Output Rise Time (10%-90%, V_{DDEXT} = Minimum at Maximum Ambient Operating Temperature) vs. Load Capacitance

Environmental Conditions

The thermal characteristics in which the DSP is operating influence performance.

Thermal Characteristics

The ADSP-2191M comes in a 144-lead LQFP or 144-lead Ball Grid Array (mini-BGA) package. The ADSP-2191M is specified for an ambient temperature (T_{AMB}) as calculated using the formula below.

144-Lead LQFP Pinout

Table 25 lists the LQFP pinout by signal name. Table 26 lists the LQFP pinout by pin.

	Pin		Pin		Pin		Pin		Pin
Signal	No.	Signal	No.	Signal	No.	Signal	No.	Signal	No.
A0	84	BYPASS	72	GND	33	HCMS	27	TCLK1	65
A1	85	CLKIN	132	GND	54	HCIOMS	28	TCLK2	47
A2	86	CLKOUT	130	GND	55	HRD	31	TDI	75
A3	87	D0	123	GND	77	HWR	32	TDO	74
A4	88	D1	124	GND	80	IOMS	114	TFS0	59
A5	89	D2	125	GND	94	MS0	115	TFS1	66
A6	91	D3	126	GND	105	MS1	116	TFS2	48
A7	92	D4	128	GND	129	MS2	117	TMR0	43
A8	93	D5	135	GND	134	MS3	119	TMR1	44
A9	95	D6	136	HA16	23	OPMODE	83	TMR2	45
A10	96	D7	137	HACK	26	PF0	34	TMS	76
A11	97	D8	138	HACK_P	24	PF1	35	TRST	79
A12	98	D9	139	HAD0	3	PF2	36	TXD	53
A13	99	D10	140	HAD1	4	PF3	37	V _{DDEXT}	13
A14	101	D11	141	HAD2	6	PF4	38	V _{DDEXT}	25
A15	102	D12	142	HAD3	7	PF5	39	V _{DDEXT}	40
A16	103	D13	144	HAD4	8	PF6	41	V _{DDEXT}	63
A17	104	D14	1	HAD5	9	PF7	42	V _{DDEXT}	90
A18	106	D15	2	HAD6	10	RCLK0	61	V _{DDEXT}	100
A19	107	DR0	60	HAD7	11	RCLK1	68	V _{DDEXT}	118
A20	108	DR1	67	HAD8	12	RCLK2	50	V _{DDEXT}	131
A21	109	DR2	49	HAD9	14	RD	122	V _{DDEXT}	143
ACK	120	DT0	56	HAD10	15	RESET	73	V _{DDINT}	19
BG	111	DT1	64	HAD11	17	RFS0	62	V _{DDINT}	58
BGH	110	DT2	46	HAD12	18	RFS1	69	V _{DDINT}	82
BMODE0	70	EMU	81	HAD13	20	RFS2	51	V _{DDINT}	127
BMODE1	71	GND	5	HAD14	21	RXD	52	WR	121
BMS	113	GND	16	HAD15	22	ТСК	78	XTAL	133
BR	112	GND	29	HALE	30	TCLK0	57		

Table 25. 144-Lead LQFP Pins (Alphabetically by Signal)

Pin									
No.	Signal								
1	D14	30	HALE	59	TFS0	88	A4	117	MS2
2	D15	31	HRD	60	DR0	89	A5	118	V _{DDEXT}
3	HAD0	32	HWR	61	RCLK0	90	V _{DDEXT}	119	MS3
4	HAD1	33	GND	62	RFS0	91	A6	120	ACK
5	GND	34	PF0	63	V _{DDEXT}	92	A7	121	WR
6	HAD2	35	PF1	64	DT1	93	A8	122	RD
7	HAD3	36	PF2	65	TCLK1	94	GND	123	D0
8	HAD4	37	PF3	66	TFS1	95	A9	124	D1
9	HAD5	38	PF4	67	DR1	96	A10	125	D2
10	HAD6	39	PF5	68	RCLK1	97	A11	126	D3
11	HAD7	40	V _{DDEXT}	69	RFS1	98	A12	127	V _{DDINT}
12	HAD8	41	PF6	70	BMODE0	99	A13	128	D4
13	V _{DDEXT}	42	PF7	71	BMODE1	100	V _{DDEXT}	129	GND
14	HAD9	43	TMR0	72	BYPASS	101	A14	130	CLKOUT
15	HAD10	44	TMR1	73	RESET	102	A15	131	V _{DDEXT}
16	GND	45	TMR2	74	TDO	103	A16	132	CLKIN
17	HAD11	46	DT2	75	TDI	104	A17	133	XTAL
18	HAD12	47	TCLK2	76	TMS	105	GND	134	GND
19	V _{DDINT}	48	TFS2	77	GND	106	A18	135	D5
20	HAD13	49	DR2	78	TCK	107	A19	136	D6
21	HAD14	50	RCLK2	79	TRST	108	A20	137	D7
22	HAD15	51	RFS2	80	GND	109	A21	138	D8
23	HA16	52	RXD	81	EMU	110	BGH	139	D9
24	HACK_P	53	TXD	82	V _{DDINT}	111	BG	140	D10
25	V _{DDEXT}	54	GND	83	OPMODE	112	BR	141	D11
26	HACK	55	GND	84	A0	113	BMS	142	D12
27	HCMS	56	DT0	85	A1	114	IOMS	143	V _{DDEXT}
28	HCIOMS	57	TCLK0	86	A2	115	MS0	144	D13
29	GND	58	V _{DDINT}	87	A3	116	MS1		

Table 26.	144-Lead LO	FP Pins	(Numerically	by Pin	Number)
14010 201	THE DUGGEDY		(1 (annot really	• J J J	i (annovi)