E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1507-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

The block diagram of these devices are shown in Figure 1-1, the available peripherals are shown in Table 1-1, and the pinout descriptions are shown in Table 1-2.

TABLE 1-1: DEVICE PERIPHERAL SUMMARY

Peripheral	PIC12(L)F1501	PIC16(L)F1503	PIC16(L)F1507	PIC16(L)F1508	PIC16(L)F1509	
Analog-to-Digital Converter (A	-	•	•	•	•	•
Complementary Wave Genera		•	•	•	•	•
Digital-to-Analog Converter (I	DAC)	•	•		•	•
Enhanced Universal Synchronous/Asynchronous Transmitter (EUSART)	Receiver/				•	•
Fixed Voltage Reference (FV	R)	•	•	•	•	•
Numerically Controlled Oscill	ator (NCO)	•	•	•	•	•
Temperature Indicator		•	٠	•	٠	•
Comparators						
	C1	•	٠		•	•
	C2		•		•	•
Configurable Logic Cell (CLC	-					
	CLC1	•	•	•	•	•
	CLC2	•	•	•	•	•
	CLC3				•	•
	CLC4				•	•
Master Synchronous Serial P	orts			1		
	MSSP1		•		•	•
PWM Modules	n			1		
	PWM1	•	•	•	•	•
	PWM2	•	•	•	•	•
	PWM3 PWM4	•	•	•	•	•
	•	•	•	•	•	
Timers	1			1		
	Timer0	•	•	•	•	•
	Timer1	•	•	•	•	•
	Timer2	•	•	•	•	•

3.3.6 CORE FUNCTION REGISTERS SUMMARY

The Core Function registers listed in Table 3-4 can be addressed from any Bank.

Addr	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank	Bank 0-31										
x00h or x80h	INDF0		this location		nts of FSR0H	/FSR0L to a	ddress data i	memory		xxxx xxxx	uuuu uuuu
x01h or x81h	INDF1		this location		nts of FSR1H	/FSR1L to a	ddress data i	memory		XXXX XXXX	uuuu uuuu
x02h or x82h	PCL	Program C	ounter (PC)	Least Signifi	cant Byte					0000 0000	0000 0000
x03h or x83h	STATUS	-	—		TO	PD	Z	DC	С	1 1000	q quuu
x04h or x84h	FSR0L	Indirect Da	ta Memory A	ddress 0 Lo	w Pointer					0000 0000	uuuu uuuu
x05h or x85h	FSR0H	Indirect Da	Indirect Data Memory Address 0 High Pointer								0000 0000
x06h or x86h	FSR1L	Indirect Da	Indirect Data Memory Address 1 Low Pointer							0000 0000	uuuu uuuu
x07h or x87h	FSR1H	Indirect Da	ta Memory A	ddress 1 Hig	gh Pointer					0000 0000	0000 0000
x08h or x88h	BSR	_	BSR<4:0>							0 0000	0 0000
x09h or x89h	WREG	Working Register								0000 0000	uuuu uuuu
x0Ahor x8Ah	PCLATH	Write Buffer for the upper 7 bits of the Program Counter								-000 0000	-000 0000
x0Bhor x8Bh	INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	0000 0000	0000 0000

TABLE 3-4: CORE FUNCTION REGISTERS SUMMARY

Legend: x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations are unimplemented, read as '0'.

TABLE 3-5:	SPECIAL FUNCTION REGISTER SUMMARY ((CONTINUED)	

TABLE	ABLE 3-5: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)										
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 4											
20Ch	WPUA	_	_	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	11 1111	11 1111
20Dh	WPUB	WPUB7	WPUB6	WPUB5	WPUB4	_	_	_	_	1111	1111
20Eh to 21Fh	_	Unimplemen	ted							_	_
Bank 5											
28Ch											
to 29Fh	_	Unimplemen	ted							—	—
Bank 6											
30Ch to 31Fh	_	Unimplemen	ted							-	-
Bank 7		•									
38Ch to 390h	_	Unimplemen	ted							_	_
391h	IOCAP	_	—	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	00 0000	00 0000
392h	IOCAN	_	_	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	00 0000	00 0000
393h	IOCAF	_	_	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	00 0000	00 0000
394h	IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	_	_	—	_	0000	0000
395h	IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4		—	—	_	0000	0000
396h	IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	-	—	—	—	0000	0000
397h to 39Fh	_	Unimplemen	Unimplemented								—
Bank 8		_									
40Ch to 41Fh	_	Unimplemen	ted							-	_
Bank 9											
48Ch to 497h	_	Unimplemen	Unimplemented								_
498h	NCO1ACCL				NCO1/	ACC<7:0>				0000 0000	0000 0000
499h	NCO1ACCH				NCO1A	CC<15:8>				0000 0000	0000 0000
49Ah	NCO1ACCU				NCO1A	CC<19:16>				0000 0000	0000 0000
49Bh	NCO1INCL				NCO1	INC<7:0>				0000 0001	0000 0001
49Ch	NCO1INCH				NCO1I	NC<15:8>				0000 0000	0000 0000
49Dh	_	Unimplemen	ted							_	_
49Eh	NCO1CON	N1EN	N10E	N1OUT	N1POL	_	_	_	N1PFM	00000	00000
49Fh	NCO1CLK		N1PWS<2:0>		—	_	_	N1Ck	(S<1:0>	000000	000000

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'. PIC16F1507 only. Unimplemented, read as '1'. Legend: Note 1: 2:

TABLE 3-5: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)											
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 1	0										
50Ch to 51Fh		Unimplemen	ted							_	—
Bank 1	1	-									
58Ch to 59Fh	_	Unimplemen	ted							_	—
Bank 1	2	-									
60Ch to 610h	_	Unimplemen	ted							_	_
611h	PWM1DCL	PWM1D	CL<7:6>	_	—	_	_	—	_	00	00
612h	PWM1DCH				PWM1	DCH<7:0>				xxxx xxxx	uuuu uuuu
613h	PWM1CON0	PWM1EN	PWM10E	PWM1OUT	PWM1POL	_	_	—	_	0000	0000
614h	PWM2DCL	PWM2D	CL<7:6>	_	—	_	_	—	_	00	00
615h	PWM2DCH				PWM2I	DCH<7:0>				xxxx xxxx	uuuu uuuu
616h	PWM2CON0	PWM2EN	PWM2OE	PWM2OUT	PWM2POL	_	_	—	_	0000	0000
617h	PWM3DCL	PWM3D	CL<7:6>	_	—	_	_	—	_	00	00
618h	PWM3DCH				PWM3I	DCH<7:0>				xxxx xxxx	uuuu uuuu
619h	PWM3CON0	PWM3EN	PWM3OE	PWM3OUT	PWM3POL	_	_	—	_	0000	0000
61Ah	PWM4DCL	PWM4D	CL<7:6>	_	—	_	_	—	_	00	00
61Bh	PWM4DCH				PWM4	DCH<7:0>				xxxx xxxx	uuuu uuuu
61Ch	PWM4CON0	PWM4EN	PWM4OE	PWM4OUT	PWM4POL	_	_	—	_	0000	0000
61Dh to 61Fh	_	Unimplemen	ted							_	_
Bank 1	3										
68Ch to 690h	_	Unimplemen	Inimplemented								_
691h	CWG1DBR	_				CWG1	DBR<5:0>			00 0000	00 0000
692h	CWG1DBF	_	_			CWG1	DBF<5:0>			xx xxxx	xx xxxx
693h	CWG1CON0	G1EN	G10EB	G10EA	G1POLB	G1POLA	_	—	G1CS0	0000 00	0000 00
694h	CWG1CON1	G1ASDI	LB<1:0>	G1ASD	LA<1:0>	_		G1IS<2:0>		0000 -000	0000 -000
695h	CWG1CON2	G1ASE	G1ARSEN	_	_	_	—	G1ASDSFLT	G1ASDSCLC2	0000	0000
696h to 69Fh	_	Unimplemen	ted							_	_

TABLE 3-5 SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

 Legend:
 x = unknown, u = unchanged, g = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 PIC16F1507 only.

 2:
 Unimplemented, read as '1'.

7.1 Operation

Interrupts are disabled upon any device Reset. They are enabled by setting the following bits:

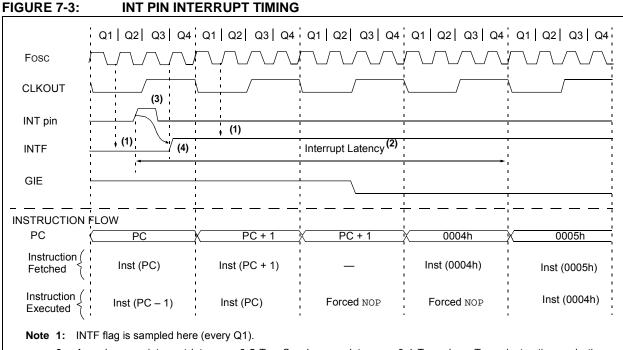
- GIE bit of the INTCON register
- Interrupt Enable bit(s) for the specific interrupt event(s)
- PEIE bit of the INTCON register (if the Interrupt Enable bit of the interrupt event is contained in the PIE1, PIE2 and PIE3 registers)

The INTCON, PIR1, PIR2 and PIR3 registers record individual interrupts via interrupt flag bits. Interrupt flag bits will be set, regardless of the status of the GIE, PEIE and individual interrupt enable bits.

The following events happen when an interrupt event occurs while the GIE bit is set:

- Current prefetched instruction is flushed
- · GIE bit is cleared
- Current Program Counter (PC) is pushed onto the stack
- Critical registers are automatically saved to the shadow registers (See "Section 7.5 "Automatic Context Saving".")
- · PC is loaded with the interrupt vector 0004h

The firmware within the Interrupt Service Routine (ISR) should determine the source of the interrupt by polling the interrupt flag bits. The interrupt flag bits must be cleared before exiting the ISR to avoid repeated interrupts. Because the GIE bit is cleared, any interrupt that occurs while executing the ISR will be recorded through its interrupt flag, but will not cause the processor to redirect to the interrupt vector.


The RETFIE instruction exits the ISR by popping the previous address from the stack, restoring the saved context from the shadow registers and setting the GIE bit.

For additional information on a specific interrupt's operation, refer to its peripheral chapter.

- Note 1: Individual interrupt flag bits are set, regardless of the state of any other enable bits.
 - 2: All interrupts will be ignored while the GIE bit is cleared. Any interrupt occurring while the GIE bit is clear will be serviced when the GIE bit is set again.

7.2 Interrupt Latency

Interrupt latency is defined as the time from when the interrupt event occurs to the time code execution at the interrupt vector begins. The latency for synchronous interrupts is three or four instruction cycles. For asynchronous interrupts, the latency is three to five instruction cycles, depending on when the interrupt occurs. See Figure 7-2 and Figure 7-3 for more details.

2: Asynchronous interrupt latency = 3-5 TCY. Synchronous latency = 3-4 TCY, where TCY = instruction cycle time. Latency is the same whether Inst (PC) is a single cycle or a 2-cycle instruction.

3: For minimum width of INT pulse, refer to AC specifications in Section 25.0 "Electrical Specifications".

4: INTF is enabled to be set any time during the Q4-Q1 cycles.

10.4 User ID, Device ID and Configuration Word Access

Instead of accessing program memory, the User ID's, Device ID/Revision ID and Configuration Words can be accessed when CFGS = 1 in the PMCON1 register. This is the region that would be pointed to by PC<15> = 1, but not all addresses are accessible. Different access may exist for reads and writes. Refer to Table 10-2.

When read access is initiated on an address outside the parameters listed in Table 10-2, the PMDATH:PMDATL register pair is cleared, reading back '0's.

Address	Function	Read Access	Write Access
8000h-8003h	User IDs	Yes	Yes
8006h	Device ID/Revision ID	Yes	No
8007h-8008h	Configuration Words 1 and 2	Yes	No

EXAMPLE 10-4: CONFIGURATION WORD AND DEVICE ID ACCESS

* This code block will read 1 word of program memory at the memory address:

* PROG_ADDR_LO (must be 00h-08h) data will be returned in the variables;

* PROG_DATA_HI, PROG_DATA_LO

BANKSEL	PMADRL	; Select correct Bank
MOVLW	PROG_ADDR_LO	;
MOVWF	PMADRL	; Store LSB of address
CLRF	PMADRH	; Clear MSB of address
BSF	PMCON1,CFGS	; Select Configuration Space
BCF	INTCON,GIE	; Disable interrupts
BSF	PMCON1,RD	; Initiate read
NOP		; Executed (See Figure 10-2)
NOP		; Ignored (See Figure 10-2)
BSF	INTCON,GIE	; Restore interrupts
MOVF	PMDATL,W	; Get LSB of word
MOVWF	PROG_DATA_LO	; Store in user location
MOVF	PMDATH,W	; Get MSB of word
MOVWF	PROG_DATA_HI	; Store in user location

11.5 PORTB Registers

11.5.1 DATA REGISTER

PORTB is a 4-bit wide, bidirectional port. The corresponding data direction register is TRISB (Register 11-8). Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., disable the output driver). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). Example 11-1 shows how to initialize an I/O port.

Reading the PORTB register (Register 11-7) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATB).

11.5.2 DIRECTION CONTROL

The TRISB register (Register 11-8) controls the PORTB pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISB register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

11.5.3 ANALOG CONTROL

The ANSELB register (Register 11-10) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELB bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELB bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELB bits default to the Analog						
	mode after Reset. To use any pins as						
	digital general purpose or peripheral						
	inputs, the corresponding ANSEL bits						
	must be initialized to '0' by user software.						

11.5.4 PORTB FUNCTIONS AND OUTPUT PRIORITIES

Each PORTB pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 11-5.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority.

Analog input functions, such as ADC and comparator inputs, are not shown in the priority lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELx registers. Digital output functions may control the pin when it is in Analog mode with the priority shown below in Table 11-5.

TABLE 11-5: PORTB OUTPUT PRIORITY

Pin Name	Function Priority ⁽¹⁾
RB4	RB4
RB5	RB5
RB6	RB6
RB7	RB7

Note 1: Priority listed from highest to lowest.2: Default pin (see APFCON register).

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	U-0	U-0	U-0	U-0		
LATB7	LATB6	LATB5	LATB4	—	—	—	—		
bit 7	·	•				•	bit 0		
Legend:									
R = Readable bit W = Writable bit				U = Unimplemented bit, read as '0'					
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets					

REGISTER 11-9: LATB: PORTB DATA LATCH REGISTER

bit 7-4	LATB<7:4>: RB<7:4> Output Latch Value bits ⁽¹⁾
---------	---

bit 3-0 Unimplemented: Read as '0'

1' = Bit is set

Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is return of actual I/O pin values.

REGISTER 11-10: ANSELB: PORTB ANALOG SELECT REGISTER

'0' = Bit is cleared

U-0	U-0	R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0
—	_	ANSB5	ANSB4	—	—	—	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-4 ANSB<5:4>: Analog Select between Analog or Digital Function on pins RB<5:4>, respectively

- 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.
- 0 = Digital I/O. Pin is assigned to port or digital special function.

bit 3-0 Unimplemented: Read as '0'

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

15.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC Interrupt Flag is the ADIF bit in the PIR1 register. The ADC Interrupt Enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.

- **Note 1:** The ADIF bit is set at the completion of every conversion, regardless of whether or not the ADC interrupt is enabled.
 - **2:** The ADC operates during Sleep only when the FRC oscillator is selected.

This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the GIE and PEIE bits of the INTCON register must be disabled. If the GIE and PEIE bits of the INTCON register are enabled, execution will switch to the Interrupt Service Routine.

15.1.6 RESULT FORMATTING

The 10-bit ADC conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON1 register controls the output format.

Figure 15-3 shows the two output formats.

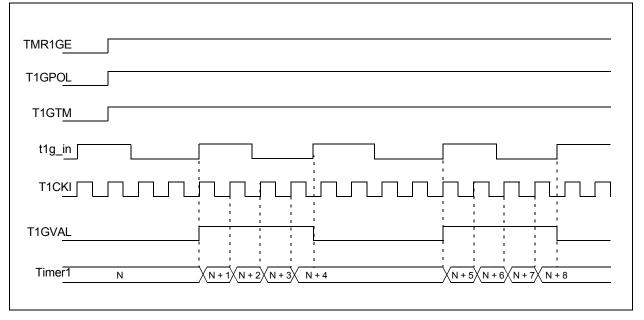

Rev. 10-000054A 7/30/2013 ADRESH ADRESL (ADFM = 0) MSB LSB bit 7 bit 0 bit 7 bit 0 10-bit ADC Result Unimplemented: Read as '0' (ADFM = 1) LSB MSB bit 7 bit 0 bit 7 bit 0 Unimplemented: Read as '0' 10-bit ADC Result

FIGURE 15-3: 10-BIT ADC CONVERSION RESULT FORMAT

FIGURE 17-4: TIMER1 GATE TOGGLE MODE

TMR1GE	
T1GPOL	
T1GSPM	
T1GGO/ Set by software DONE Counting enabled on rising edge of T1C	Cleared by hardware on falling edge of T1GVAL
rising edge of T1G	
T1GVAL	
Timer1 N N +	N + 2
TMR1GIF Cleared by software	Cleared by Set by hardware on falling edge of T1GVAL

19.1.5 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 19-4.

EQUATION 19-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PR2 + I)]}{\log(2)}$$
 bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

TABLE 19-1:	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)
-------------	---

PWM Frequency	0.31 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	64	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 19-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	0.31 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	64	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

19.1.6 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the PWMx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

19.1.7 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency (Fosc). Any changes in the system clock frequency will result in changes to the PWM frequency. Refer to for additional details.

19.1.8 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the PWM registers to their Reset states.

20.1.2 DATA GATING

Outputs from the input multiplexers are directed to the desired logic function input through the data gating stage. Each data gate can direct any combination of the four selected inputs.

Note: Data gating is undefined at power-up.

The gate stage is more than just signal direction. The gate can be configured to direct each input signal as inverted or non-inverted data. Directed signals are ANDed together in each gate. The output of each gate can be inverted before going on to the logic function stage.

The gating is in essence a 1-to-4 input AND/NAND/OR/NOR gate. When every input is inverted and the output is inverted, the gate is an OR of all enabled data inputs. When the inputs and output are not inverted, the gate is an AND or all enabled inputs.

Table 20-2 summarizes the basic logic that can be obtained in gate 1 by using the gate logic select bits. The table shows the logic of four input variables, but each gate can be configured to use less than four. If no inputs are selected, the output will be zero or one, depending on the gate output polarity bit.

TABLE 20-2:	DATA GATING	LOGIC
-------------	--------------------	-------

CLCxGLS0	LCxG1POL	Gate Logic
0x55	1	AND
0x55	0	NAND
0xAA	1	NOR
0xAA	0	OR
0x00	0	Logic 0
0x00	1	Logic 1

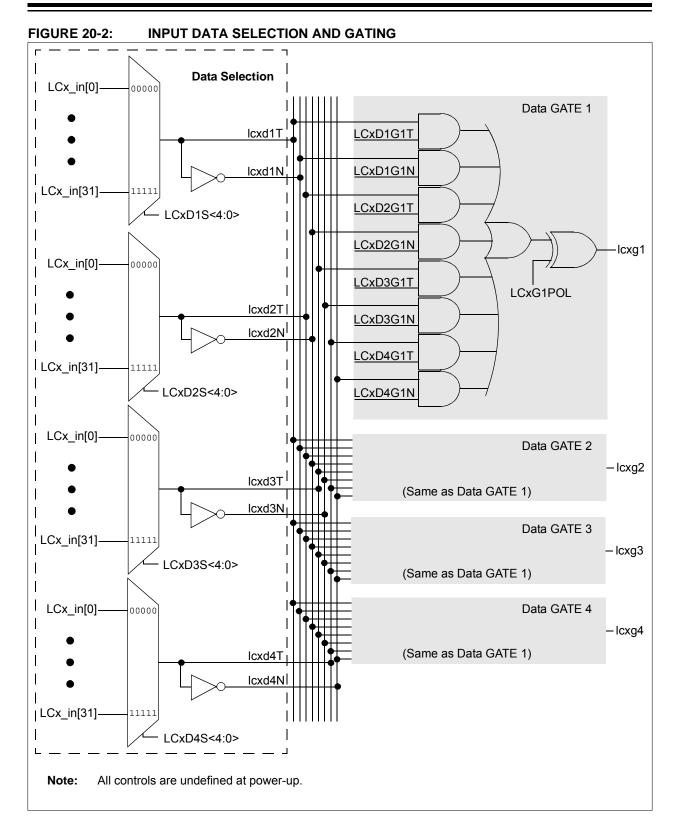
It is possible (but not recommended) to select both the true and negated values of an input. When this is done, the gate output is zero, regardless of the other inputs, but may emit logic glitches (transient-induced pulses). If the output of the channel must be zero or one, the recommended method is to set all gate bits to zero and use the gate polarity bit to set the desired level.

Data gating is configured with the logic gate select registers as follows:

- Gate 1: CLCxGLS0 (Register 20-5)
- Gate 2: CLCxGLS1 (Register 20-6)
- Gate 3: CLCxGLS2 (Register 20-7)
- Gate 4: CLCxGLS3 (Register 20-8)

Register number suffixes are different than the gate numbers because other variations of this module have multiple gate selections in the same register. Data gating is indicated in the right side of Figure 20-2. Only one gate is shown in detail. The remaining three gates are configured identically with the exception that the data enables correspond to the enables for that gate.

20.1.3 LOGIC FUNCTION


There are eight available logic functions including:

- AND-OR
- OR-XOR
- AND
- S-R Latch
- D Flip-Flop with Set and Reset
- D Flip-Flop with Reset
- J-K Flip-Flop with Reset
- · Transparent Latch with Set and Reset

Logic functions are shown in Figure 20-3. Each logic function has four inputs and one output. The four inputs are the four data gate outputs of the previous stage. The output is fed to the inversion stage and from there to other peripherals, an output pin, and back to the CLCx itself.

20.1.4 OUTPUT POLARITY

The last stage in the configurable logic cell is the output polarity. Setting the LCxPOL bit of the CLCxCON register inverts the output signal from the logic stage. Changing the polarity while the interrupts are enabled will cause an interrupt for the resulting output transition.

24.2 Instruction Descriptions

ADDFSR	Add Literal to FSRn
Syntax:	[label] ADDFSR FSRn, k
Operands:	-32 ≤ k ≤ 31 n ∈ [0, 1]
Operation:	$FSR(n) + k \rightarrow FSR(n)$
Status Affected:	None
Description:	The signed 6-bit literal 'k' is added to the contents of the FSRnH:FSRnL register pair.
	FSRn is limited to the range 0000h -

FFFFh. Moving beyond these bounds will cause the FSR to wrap-around.

ANDLW	AND literal with W
Syntax:	[<i>label</i>] ANDLW k
Operands:	$0 \leq k \leq 255$
Operation:	(W) .AND. (k) \rightarrow (W)
Status Affected:	Z
Description:	The contents of W register are AND'ed with the 8-bit literal 'k'. The result is placed in the W register.

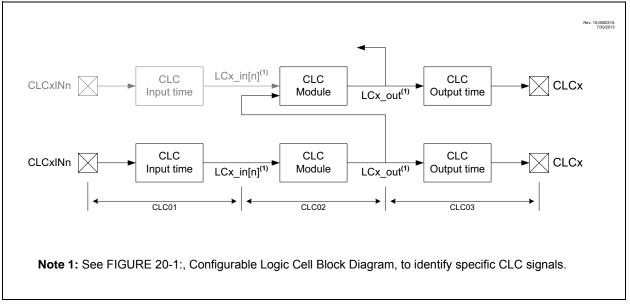
ADDLW	Add literal and W
Syntax:	[<i>label</i>] ADDLW k
Operands:	$0 \leq k \leq 255$
Operation:	$(W) + k \to (W)$
Status Affected:	C, DC, Z
Description:	The contents of the W register are added to the 8-bit literal 'k' and the result is placed in the W register.

ANDWF	AND W with f				
Syntax:	[<i>label</i>] ANDWF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	(W) .AND. (f) \rightarrow (destination)				
Status Affected:	Z				
Description:	AND the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.				

ADDWF	Add W and f					
Syntax:	[label] ADDWF f,d					
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(W) + (f) \rightarrow (destination)					
Status Affected:	C, DC, Z					
Description:	Add the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.					

ASRF	Arithmetic Right Shift
Syntax:	[label] ASRF f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f<7>)→ dest<7> (f<7:1>) → dest<6:0>, (f<0>) → C,
Status Affected:	C, Z
Description:	The contents of register 'f' are shifted one bit to the right through the Carry flag. The MSb remains unchanged. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is stored back in

register 'f'.


►	register f	->	С	

ADDWFC	
ADDWFC	

ADD W and CARRY bit to f

Syntax:	[label] ADDWFC f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(W) + (f) + (C) \rightarrow dest$
Status Affected:	C, DC, Z
Description:	Add W, the Carry flag and data mem- ory location 'f'. If 'd' is '0', the result is placed in W. If 'd' is '1', the result is placed in data memory location 'f'.

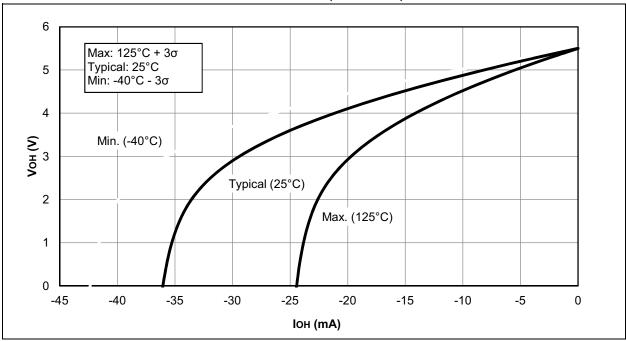
TABLE 25-12:	CONFIGURATION LOGIC CELL (CLC) CHARACTERISTICS

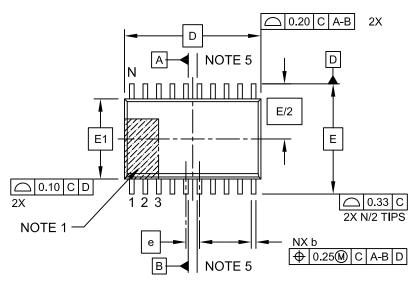
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
CLC01*	TCLCIN	CLC input time	_	7	_	ns	
CLC02*	TCLC	CLC module input to output propagation time		24 12		ns ns	VDD = 1.8V VDD > 3.6V
CLC03*	TCLCOUT	CLC output time Rise Time		OS18		—	(Note 1)
		Fall Time	_	OS19	_		(Note 1)
CLC04*	FCLCMAX	CLC maximum switching frequency		45	_	MHz	

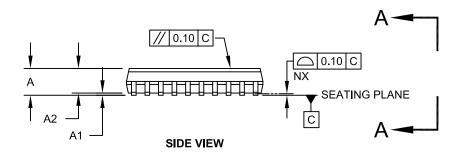
These parameters are characterized but not tested.

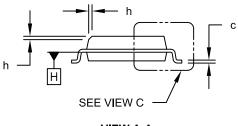
Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance t only and are not tested.

Note 1:See Table 25-9 for OS18 and OS19 rise and fall times.

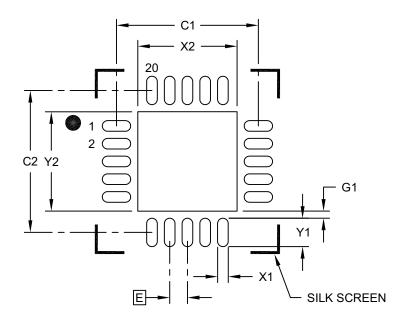



FIGURE 26-31: VOH vs. IOH OVER TEMPERATURE, VDD = 5.5V, PIC16F1507 ONLY




20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-094C Sheet 1 of 2

20-Lead Ultra Thin Plastic Quad Flat, No Lead Package (GZ) - 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension Limits		MIN	NOM	MAX	
Contact Pitch E		0.50 BSC			
Optional Center Pad Width	X2	2.80			
Optional Center Pad Length				2.80	
Contact Pad Spacing C1			4.00		
Contact Pad Spacing	C2		4.00		
Contact Pad Width (X20)	X1			0.30	
Contact Pad Length (X20) Y1				0.80	
Contact Pad to Center Pad (X20)	G1	0.20			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2255A