

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1507-e-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-2: PIC16(L)F1507 PINOUT DESCRIPTION (CONTINUED)

Name	Function	Input Type	Output Type	Description		
RC3/AN7/PWM2/CLC2IN0	RC3	TTL	CMOS	General purpose I/O.		
	AN7	AN	_	A/D Channel input.		
	PWM2	—	CMOS	Pulse Width Module source output.		
	CLC2IN0	ST	_	Configurable Logic Cell source input.		
RC4/CLC2IN1/CWG1B	RC4	TTL	CMOS	General purpose I/O.		
	CLC2IN1	ST	—	Configurable Logic Cell source input.		
	CWG1B	—	CMOS	CWG complementary output.		
RC5/PWM1/CLC1 ⁽¹⁾ /	RC5	TTL	CMOS	General purpose I/O.		
CWG1A	PWM1	—	CMOS	PWM output.		
	CLC1	—	CMOS	Configurable Logic Cell source output.		
	CWG1A	—	CMOS	CWG primary output.		
RC6/AN8/NCO1 ⁽¹⁾	RC6	TTL	CMOS	General purpose I/O.		
	AN8	AN	—	A/D Channel input.		
	NCO1	_	CMOS	Numerically Controlled Oscillator source output.		
RC7/AN9/CLC1IN1	RC7	TTL	CMOS	General purpose I/O.		
	AN8	AN	_	A/D Channel input.		
	CLC1IN1	ST	—	Configurable Logic Cell source input.		
Vdd	Vdd	Power	_	Positive supply.		
Vss	Vss	Power		Ground reference.		

TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I^2C^{TM} = Schmitt Trigger input with I^2C HV = High Voltage levels

XTAL = Crystal

Note 1: Alternate pin function selected with the APFCON (Register 11-1) register.

TABLE	3-5: S	PECIAL F	UNCTIO	N REGIS	TER SUN	MMARY (CONTIN	UED)					
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets		
Bank 1	0												
50Ch to 51Fh		Unimplemen	ted							_	—		
Bank 1	1	-											
58Ch to 59Fh	_	Unimplemen	nimplemented —										
Bank 1	2	-											
60Ch to 610h	_	Unimplemen	ted							_	_		
611h	PWM1DCL	PWM1D	CL<7:6>	_	—	_	_	—	_	00	00		
612h	PWM1DCH				PWM1	DCH<7:0>				xxxx xxxx	uuuu uuuu		
613h	PWM1CON0	PWM1EN	PWM10E	PWM1OUT	PWM1POL	_	_	_	_	0000	0000		
614h	PWM2DCL	PWM2D	CL<7:6>	_	—	_	_	—	_	00	00		
615h	PWM2DCH				PWM2I	DCH<7:0>				xxxx xxxx	uuuu uuuu		
616h	PWM2CON0	PWM2EN	PWM2OE	PWM2OUT	PWM2POL	_	_	_	_	0000	0000		
617h	PWM3DCL	PWM3D	CL<7:6>	_	—	_	_	—	_	00	00		
618h	PWM3DCH				PWM3I	DCH<7:0>				xxxx xxxx	uuuu uuuu		
619h	PWM3CON0	PWM3EN	PWM3OE	PWM3OUT	PWM3POL	_	_	_	_	0000	0000		
61Ah	PWM4DCL	PWM4D	CL<7:6>	_	—	_	_	—	_	00	00		
61Bh	PWM4DCH				PWM4	DCH<7:0>				xxxx xxxx	uuuu uuuu		
61Ch	PWM4CON0	PWM4EN	PWM4OE	PWM4OUT	PWM4POL	_	_	—	_	0000	0000		
61Dh to 61Fh	_	Unimplemen	ted							_	_		
Bank 1	3												
68Ch to 690h	_	Unimplemen	ted							—	_		
691h	CWG1DBR	_				CWG1	DBR<5:0>			00 0000	00 0000		
692h	CWG1DBF	_	_			CWG1	DBF<5:0>			xx xxxx	xx xxxx		
693h	CWG1CON0	G1EN	G10EB	G10EA	G1POLB	G1POLA	_	—	G1CS0	0000 00	0000 00		
694h	CWG1CON1	G1ASDI	LB<1:0>	G1ASD	LA<1:0>	_		G1IS<2:0>		0000 -000	0000 -000		
695h	CWG1CON2	G1ASE	G1ARSEN	_	_	_	—	G1ASDSFLT	G1ASDSCLC2	0000	0000		
696h to 69Fh	_	Unimplemen	ted							_	_		

TABLE 3-5 SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

 Legend:
 x = unknown, u = unchanged, g = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 PIC16F1507 only.

 2:
 Unimplemented, read as '1'.

5.2 Clock Source Types

Clock sources can be classified as external, internal or peripheral.

External clock sources rely on external circuitry for the clock source to function. Examples are: oscillator modules (ECH, ECM, ECL modes).

Internal clock sources are contained within the oscillator module. The internal oscillator block has two internal oscillators that are used to generate the internal system clock sources: the 16 MHz High-Frequency Internal Oscillator (HFINTOSC) and the 31 kHz Low-Frequency Internal Oscillator (LFINTOSC).

The peripheral clock source is a nominal 600 kHz internal RC oscillator, FRC. The FRC is traditionally used with the ADC module, but is sometimes available to other peripherals. See **Section 5.2.2.4** "**Peripheral Clock Sources**".

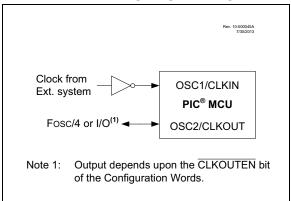
The system clock can be selected between external or internal clock sources via the System Clock Select (SCS) bits in the OSCCON register. See **Section 5.3 "Clock Switching"** for additional information.

5.2.1 EXTERNAL CLOCK SOURCES

An external clock source can be used as the device system clock by performing one of the following actions:

- Program the FOSC<1:0> bits in the Configuration Words to select an external clock source that will be used as the default system clock upon a device Reset.
- Write the SCS<1:0> bits in the OSCCON register to switch the system clock source to:
 - Secondary oscillator during run-time, or
 - An external clock source determined by the value of the FOSC bits.

See **Section 5.3 "Clock Switching**" for more information.


5.2.1.1 EC Mode

The External Clock (EC) mode allows an externally generated logic level signal to be the system clock source. When operating in this mode, an external clock source is connected to the OSC1 input. OSC2/CLKOUT is available for general purpose I/O or CLKOUT. Figure 5-2 shows the pin connections for EC mode.

EC mode has three power modes to select from through the Fosc bits in the Configuration Words:

- ECH High power, 4-20 MHz
- ECM Medium power, 0.5-4 MHz
- ECL Low power, 0-0.5 MHz

FIGURE 5-2: EXTERNAL CLOCK (EC) MODE OPERATION

U-1	R/W-0/0	R/W-0/0	R/W/HC-0/0	R/W/HC-x/q ⁽²⁾	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0
(1)	CFGS	LWLO	FREE	WRERR	WREN	WR	RD
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimplemer	nted bit, read as	s 'O'	
S = Bit can on	ly be set	x = Bit is unkno	own	-n/n = Value at F	POR and BOR/	/alue at all other I	Resets
'1' = Bit is set		'0' = Bit is clea	red	HC = Bit is clear	ed by hardware	9	
bit 7	Unimplemen	ted: Read as '1'					
bit 6	CFGS: Config	guration Select bit					
		Configuration, Use Flash program me		ID Registers			
bit 5	LWLO: Load	Write Latches On	ly bit ⁽³⁾				
		addressed progra					
		ressed program m nitiated on the nex		n is loaded/update	ed and a write of	all program memo	ory write latche
bit 4	FREE: Progra	am Flash Erase E	nable bit				
		s an erase operati s a write operatior		•	rdware cleared	upon completion)	
bit 3		gram/Erase Error	•				
		n indicates an imp			e attempt or te	rmination (bit is s	et automaticall
		et attempt (write ' gram or erase ope					
bit 2		ram/Erase Enable	•	, , , , , , , , , , , , , , , , , , ,			
	0	rogram/erase cyc					
	0 = Inhibits	programming/eras	ing of program F	lash			
bit 1	WR: Write Co						
		a program Flash p ration is self-timed			o onco onorativ	on is complete	
	•	bit can only be se		•	e once operatio	on is complete.	
		/erase operation f	` '		ive.		
bit 0	RD: Read Co	ontrol bit					
		a program Flash r	ead. Read takes	s one cycle. RD is	cleared in hard	lware. The RD bit	can only be se
	· ·	ared) in software. It initiate a prograr	n Flash read				
Note 1: U	nimplemented bit						
	•	automatically set I	by hardware whe	en a program men	nory write or era	ase operation is st	arted (WR = 1
	he LWLO bit is igi	-	-			•	•

REGISTER 10-5: PMCON1: PROGRAM MEMORY CONTROL 1 REGISTER

11.0 I/O PORTS

Each port has three standard registers for its operation. These registers are:

- · TRISx registers (data direction)
- PORTx registers (reads the levels on the pins of the device)
- LATx registers (output latch)

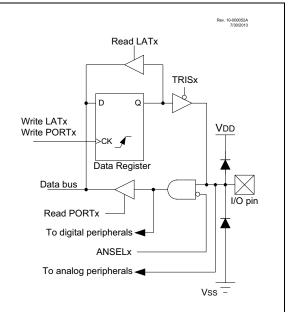
Some ports may have one or more of the following additional registers. These registers are:

- · ANSELx (analog select)
- · WPUx (weak pull-up)

In general, when a peripheral is enabled on a port pin, that pin cannot be used as a general purpose output. However, the pin can still be read.

TABLE 11-1:PORT AVAILABILITY PER
DEVICE

Device	PORTA	PORTB	PORTC
PIC16(L)F1507	٠	•	•


The Data Latch (LATx registers) is useful for read-modify-write operations on the value that the I/O pins are driving.

A write operation to the LATx register has the same effect as a write to the corresponding PORTx register. A read of the LATx register reads of the values held in the I/O PORT latches, while a read of the PORTx register reads the actual I/O pin value.

Ports that support analog inputs have an associated ANSELx register. When an ANSEL bit is set, the digital input buffer associated with that bit is disabled. Disabling the input buffer prevents analog signal levels on the pin between a logic high and low from causing excessive current in the logic input circuitry. A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 11-1.

FIGURE 11-1: GE

GENERIC I/O PORT OPERATION

REGISTER 11-15: ANSELC: PORTC ANALOG SELECT REGISTER

R/W-1/1	R/W-1/1	U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
ANSC7	ANSC6	—	—	ANSC3	ANSC2	ANSC1	ANSC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	 ANSC<7:6>: Analog Select between Analog or Digital Function on pins RC<7:6>, respectively 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled. 0 = Digital I/O. Pin is assigned to port or digital special function.
bit 5-4	Unimplemented: Read as '0'
bit 3-0	 ANSC<3:0>: Analog Select between Analog or Digital Function on pins RC<3:0>, respectively 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled. 0 = Digital I/O. Pin is assigned to port or digital special function.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELC	ANSC7	ANSC6		_	ANSC3	ANSC2	ANSC1	ANSC0	107
LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	106
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	106
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	106

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTC.

12.6 Register Definitions: Interrupt-on-Change Control

REGISTER 12-1: IOCAP: INTERRUPT-ON-CHANGE PORTA POSITIVE EDGE REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
_	_	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0		
bit 7							bit 0		
Legend:									
R = Readable bit		W = Writable bi	t	U = Unimplemented bit, read as '0'					
u = Bit is unchan	u = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is set		'0' = Bit is clear	ed						

bit 7-6 Unimplemented: Read as '0'

bit 5-0

bit 5-0

bit 5-0

IOCAP<5:0>: Interrupt-on-Change PORTA Positive Edge Enable bits

1 = Interrupt-on-Change enabled on the pin for a positive going edge. IOCAFx bit and IOCIF flag will be set upon detecting an edge.

0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 12-2: IOCAN: INTERRUPT-ON-CHANGE PORTA NEGATIVE EDGE REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	_	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

IOCAN<5:0>: Interrupt-on-Change PORTA Negative Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCAFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 12-3: IOCAF: INTERRUPT-ON-CHANGE PORTA FLAG REGISTER

U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
_	_	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-6 Unimplemented: Read as '0'

IOCAF<5:0>: Interrupt-on-Change PORTA Flag bits

1 = An enabled change was detected on the associated pin.

Set when IOCAPx = 1 and a rising edge was detected on RAx, or when IOCANx = 1 and a falling edge was detected on RAx.

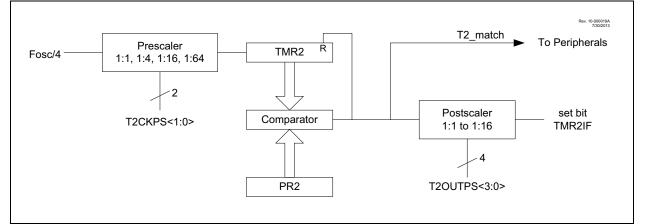
0 = No change was detected, or the user cleared the detected change.

R/W-0/0	R/W-0/	0 R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0
TRIGSEL<3:0> ⁽¹⁾						_	_
bit 7							bit
Legend:							
R = Readable	hit	W = Writable	hit	U = Unimplei	mented bit, rea	d as '0'	
		x = Bit is unkr				DR/Value at all o	thar Dooota
u = Bit is uncl	•			-n/n = value	al POR and BC	JR/ value at all C	liner Resels
'1' = Bit is set		'0' = Bit is cle	ared				
					•		
bit 7-4	TRIGSEL	-<3:0>: Auto-Conv	ersion Trigger	Selection bits ⁽	1)		
	0000 =	No auto-conversio	n trigger selec	ted			
	0001 =	Reserved					
		Reserved	(0)				
		Timer0 - T0_overf					
		Timer1 – T1_overf					
	0101 =	Timer2 – T2_matc	h				
	0110 =	Reserved					
	0111 =	Reserved					
	1000 =	CLC1 – LC1_out					
	1001 =	CLC2 – LC2_out					
	1010 =	Reserved					
	1011 =	Reserved					
	1100 =	Reserved					
	1101 =	Reserved					
	1110 =	Reserved					
	1111 =	Reserved					
bit 3-0		mented: Read as '					

REGISTER 15-3: ADCON2: ADC CONTROL REGISTER 2

Note 1: This is a rising edge sensitive input for all sources.

2: Signal also sets its corresponding interrupt flag.


18.0 TIMER2 MODULE

The Timer2 module incorporates the following features:

- 8-bit Timer and Period registers (TMR2 and PR2, respectively)
- Readable and writable (both registers)
- Software programmable prescaler (1:1, 1:4, 1:16, and 1:64)
- Software programmable postscaler (1:1 to 1:16)
- · Interrupt on TMR2 match with PR2

See Figure 18-1 for a block diagram of Timer2.

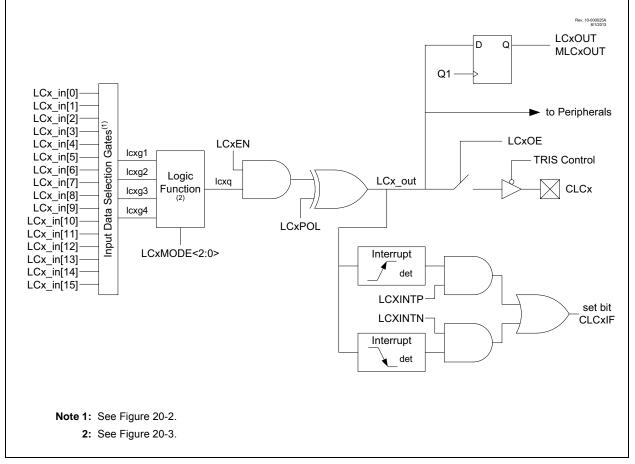
		Rev 10-00020A 7/90/2013
Fosc/4		
Prescale	1:4	
	0.00	
PR2 \	0x03	
TMR2 0x00 0x01 0x02	0x03	0x00 0x01 0x02
T2_match	Pulse Width ⁽¹⁾ ◀ ►	
Note 1: The Pulse Width of T2_match is equal to	the scaled inpu	t of TMR2.

20.0 CONFIGURABLE LOGIC CELL (CLC)

The Configurable Logic Cell (CLCx) provides programmable logic that operates outside the speed limitations of software execution. The logic cell takes up to 16 input signals, and through the use of configurable gates, reduces the 16 inputs to four logic lines that drive one of eight selectable single-output logic functions.

Input sources are a combination of the following:

- · I/O pins
- Internal clocks
- · Peripherals
- · Register bits


The output can be directed internally to peripherals and to an output pin.

Refer to Figure 20-1 for a simplified diagram showing signal flow through the CLCx.

Possible configurations include:

- Combinatorial Logic
 - AND
 - NAND
 - AND-OR
 - AND-OR-INVERT
 - OR-XOR
 - OR-XNOR
- Latches
 - S-R
 - Clocked D with Set and Reset
 - Transparent D with Set and Reset
 - Clocked J-K with Reset

20.1.2 DATA GATING

Outputs from the input multiplexers are directed to the desired logic function input through the data gating stage. Each data gate can direct any combination of the four selected inputs.

Note: Data gating is undefined at power-up.

The gate stage is more than just signal direction. The gate can be configured to direct each input signal as inverted or non-inverted data. Directed signals are ANDed together in each gate. The output of each gate can be inverted before going on to the logic function stage.

The gating is in essence a 1-to-4 input AND/NAND/OR/NOR gate. When every input is inverted and the output is inverted, the gate is an OR of all enabled data inputs. When the inputs and output are not inverted, the gate is an AND or all enabled inputs.

Table 20-2 summarizes the basic logic that can be obtained in gate 1 by using the gate logic select bits. The table shows the logic of four input variables, but each gate can be configured to use less than four. If no inputs are selected, the output will be zero or one, depending on the gate output polarity bit.

TABLE 20-2:	DATA GATING	LOGIC
-------------	--------------------	-------

CLCxGLS0	LCxG1POL	Gate Logic
0x55	1	AND
0x55	0	NAND
0xAA	1	NOR
0xAA	0	OR
0x00	0	Logic 0
0x00	1	Logic 1

It is possible (but not recommended) to select both the true and negated values of an input. When this is done, the gate output is zero, regardless of the other inputs, but may emit logic glitches (transient-induced pulses). If the output of the channel must be zero or one, the recommended method is to set all gate bits to zero and use the gate polarity bit to set the desired level.

Data gating is configured with the logic gate select registers as follows:

- Gate 1: CLCxGLS0 (Register 20-5)
- Gate 2: CLCxGLS1 (Register 20-6)
- Gate 3: CLCxGLS2 (Register 20-7)
- Gate 4: CLCxGLS3 (Register 20-8)

Register number suffixes are different than the gate numbers because other variations of this module have multiple gate selections in the same register. Data gating is indicated in the right side of Figure 20-2. Only one gate is shown in detail. The remaining three gates are configured identically with the exception that the data enables correspond to the enables for that gate.

20.1.3 LOGIC FUNCTION

There are eight available logic functions including:

- AND-OR
- OR-XOR
- AND
- S-R Latch
- D Flip-Flop with Set and Reset
- D Flip-Flop with Reset
- J-K Flip-Flop with Reset
- · Transparent Latch with Set and Reset

Logic functions are shown in Figure 20-3. Each logic function has four inputs and one output. The four inputs are the four data gate outputs of the previous stage. The output is fed to the inversion stage and from there to other peripherals, an output pin, and back to the CLCx itself.

20.1.4 OUTPUT POLARITY

The last stage in the configurable logic cell is the output polarity. Setting the LCxPOL bit of the CLCxCON register inverts the output signal from the logic stage. Changing the polarity while the interrupts are enabled will cause an interrupt for the resulting output transition.

20.6 Register Definitions: CLC Control

REGISTER 20-1: CLCxCON: CONFIGURABLE LOGIC CELL CONTROL REGISTER

R/W-0/0	R/W-0/0	R-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
LCxEN	LCxOE LCxOUT LCxINTP LCxINTN LCxMODE<2:0>						>	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'		
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets	
'1' = Bit is set		'0' = Bit is cle	ared					
bit 7	LCxEN: Cont	figurable Logic	Cell Enable bi	it				
	1 = Configura	able logic cell i able logic cell i	s enabled and	mixing input s				
bit 6	LCxOE: Cont	figurable Logic	Cell Output E	nable bit				
		able logic cell p						
	-	able logic cell p						
bit 5		nfigurable Logi		•				
	•	•		· ·	d from lcx_out w			
bit 4		• •		• •	Interrupt Enable	e bit		
		will be set wher will not be set	n a rising edge	e occurs on Icx	_out			
bit 3	LCxINTN: Co	onfigurable Log	ic Cell Negativ	ve Edge Going	Interrupt Enabl	le bit		
		will be set wher	n a falling edge	e occurs on Ic>	c_out			
		will not be set						
bit 2-0		2:0>: Configura			ode bits			
		1-input transpo		h S and R				
		110 = Cell is J-K flip-flop with R 101 = Cell is 2-input D flip-flop with R						
		1-input D flip-f		R				
	011 = Cell is	• •						
	010 = Cell is	•						
	001 = Cell is 000 = Cell is							
		AND-UK						

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxG3D4T	LCxG3D4N	LCxG3D3T	LCxG3D3N	LCxG3D2T	LCxG3D2N	LCxG3D1T	LCxG3D1N
bit 7			•				bit
• • • •							
Legend: R = Readable I	ait	W = Writable	hit	II – Unimplor	nented bit, read	L ac. 'O'	
				•			thar Depata
u = Bit is uncha	angeo	x = Bit is unkr		-n/n = value a	at POR and BO	R/value at all c	iner Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7	LCxG3D4T:	Gate 3 Data 4 1	Frue (non-invei	rted) bit			
		gated into lcxo		,			
	0 = Icxd4T is	not gated into	lcxg3				
bit 6	LCxG3D4N:	Gate 3 Data 4	Negated (inver	rted) bit			
	1 = Icxd4N is	gated into Icx	g3				
	0 = Icxd4N is	not gated into	lcxg3				
bit 5	LCxG3D3T: G	Gate 3 Data 3 1	Frue (non-invei	rted) bit			
		gated into lcxg					
	0 = Icxd3T is	not gated into	lcxg3				
bit 4		Gate 3 Data 3	•	rted) bit			
		gated into Icx					
		not gated into	•				
bit 3		Gate 3 Data 2 1		rted) bit			
		gated into lcxg					
1.11.0		not gated into	•				
bit 2		Gate 3 Data 2	•	rted) bit			
		gated into lcxg not gated into					
bit 1		Gate 3 Data 1 1	•	rtad) bit			
		gated into lcxc		neu) bii			
		not gated into					
bit 0		Gate 3 Data 1	•	rted) hit			
Situ		gated into lcx	•				
	0 = lcxd1N is						

REGISTER 20-7: CLCxGLS2: GATE 3 LOGIC SELECT REGISTER

REGISTER 21-3: NCOxACCL: NCOx ACCUMULATOR REGISTER – LOW BYTE

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
NCOxACC<7:0>							
bit 7							

Legend:

_ogona.		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 NCOxACC<7:0>: NCOx Accumulator, Low Byte

REGISTER 21-4: NCOxACCH: NCOx ACCUMULATOR REGISTER – HIGH BYTE

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
NCOxACC<15:8>								
bit 7							bit 0	
Legend:								

Legena:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0 NCOxACC<15:8>: NCOx Accumulator, High Byte

REGISTER 21-5: NCOxACCU: NCOx ACCUMULATOR REGISTER – UPPER BYTE

U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	
—	—	—	—	NCOxACC<19:16>				
bit 7 bit 0								

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

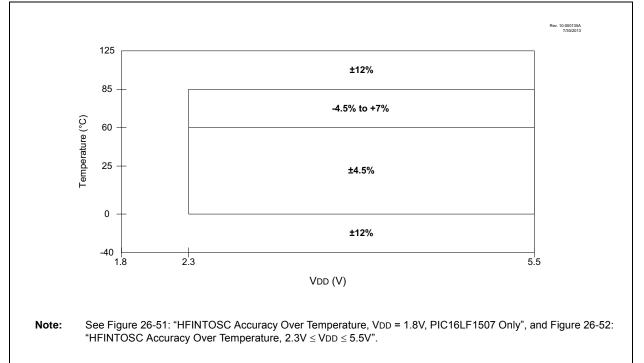
bit 7-4 Unimplemented: Read as '0'

bit 3-0 NCOxACC<19:16>: NCOx Accumulator, Upper Byte

TABLE 25-8: OSCILLATOR PARAMETERS

Standard Operating Conditions (unless otherwise stated)								
Param. No.	Sym.	Characteristic	Freq. Tolerance	Min.	Тур†	Max.	Units	Conditions
OS08	HFosc	Internal Calibrated HFINTOSC Frequency ⁽¹⁾	±2%		16.0		MHz	VDD = 3.0V, TA = 25°C, (Note 2)
OS09	LFosc	Internal LFINTOSC Frequency	—	_	31	_	kHz	(Note 3)
OS10*	TIOSC ST	HFINTOSC Wake-up from Sleep Start-up Time	-	_	5	15	μS	
OS10A*	TLFOSC ST	LFINTOSC Wake-up from Sleep Start-up Time	—		0.5	_	ms	$-40^\circ C \le T A \le +125^\circ C$

These parameters are characterized but not tested.


† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: To ensure these oscillator frequency tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μF and 0.01 μF values in parallel are recommended.

2: See Figure 25-6: "HFINTOSC Frequency Accuracy over Device VDD and Temperature", Figure 26-51: "HFINTOSC Accuracy Over Temperature, VDD = 1.8V, PIC16LF1507 Only", and Figure 26-52: "HFINTOSC Accuracy Over Temperature, 2.3V ≤ VDD ≤ 5.5V".

3: See Figure 26-49: "LFINTOSC Frequency over VDD and Temperature, PIC16LF1507 Only", and Figure 26-50: "LFINTOSC Frequency over VDD and Temperature, PIC16F1507".

FIGURE 25-6: HFINTOSC FREQUENCY ACCURACY OVER VDD AND TEMPERATURE

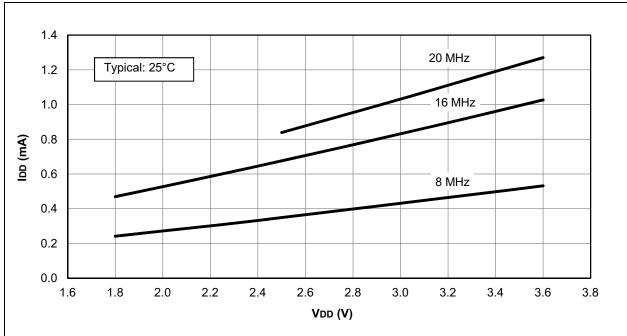


FIGURE 26-10: IDD MAXIMUM, EXTERNAL CLOCK (ECH), HIGH-POWER MODE, PIC16LF1507 ONLY

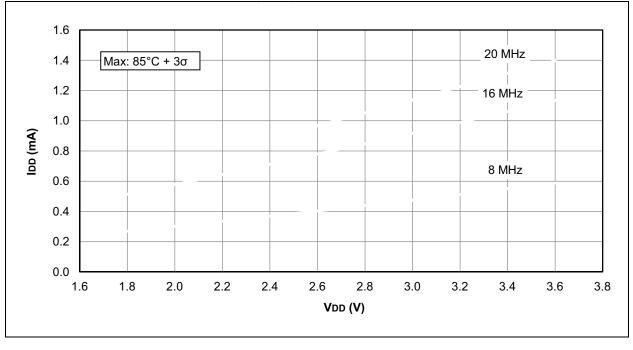


FIGURE 26-11: IDD TYPICAL, EXTERNAL CLOCK (ECH), HIGH-POWER MODE, PIC16F1507 ONLY

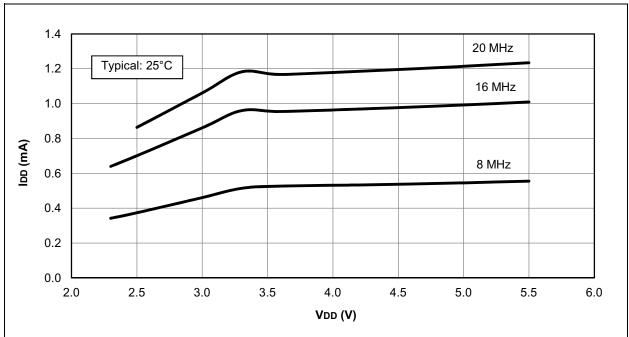
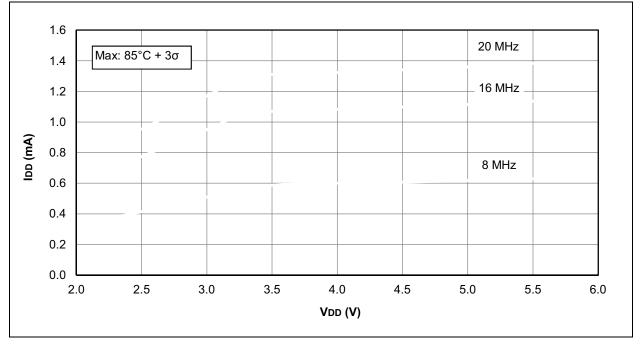
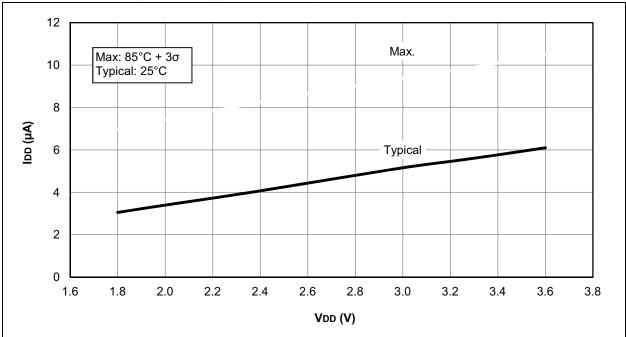
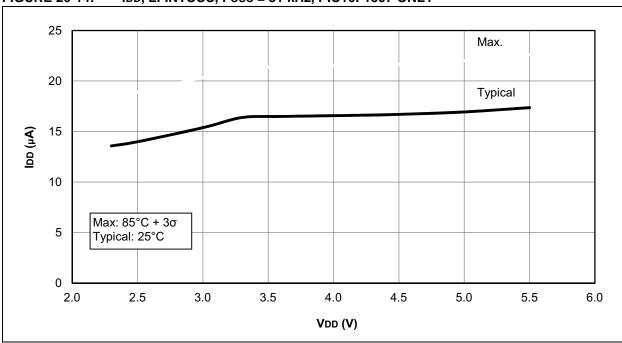





FIGURE 26-12: IDD MAXIMUM, EXTERNAL CLOCK (ECH), HIGH-POWER MODE, PIC16F1507 ONLY

