E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

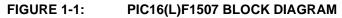
"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

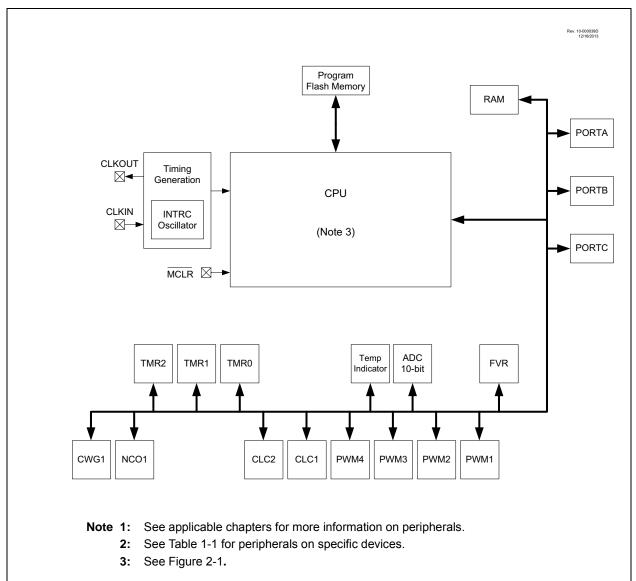
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1507-i-p

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

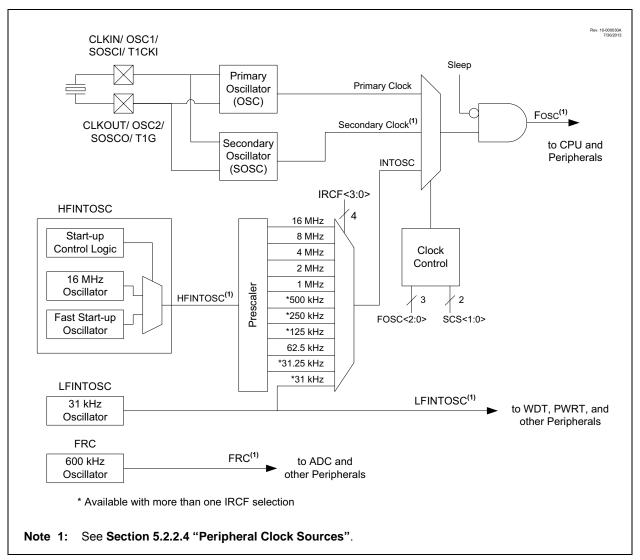

1.0 DEVICE OVERVIEW

The block diagram of these devices are shown in Figure 1-1, the available peripherals are shown in Table 1-1, and the pinout descriptions are shown in Table 1-2.

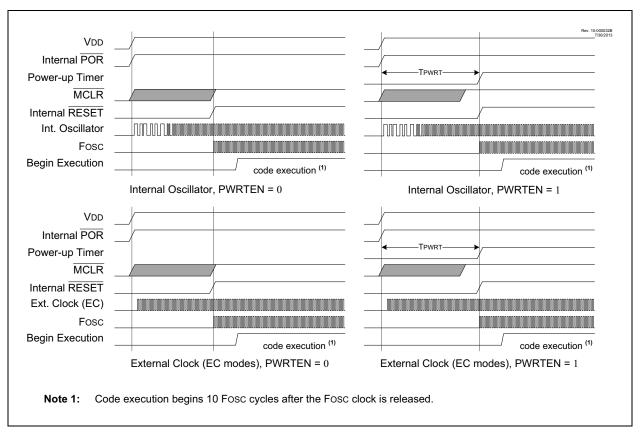
TABLE 1-1: DEVICE PERIPHERAL SUMMARY

Peripheral		PIC12(L)F1501	PIC16(L)F1503	PIC16(L)F1507	PIC16(L)F1508	PIC16(L)F1509
Analog-to-Digital Converter (A	-	•	•	•	•	•
Complementary Wave Genera		•	•	•	•	•
Digital-to-Analog Converter (I	DAC)	•	•		•	•
Enhanced Universal Synchronous/Asynchronous Transmitter (EUSART)	Receiver/				•	•
Fixed Voltage Reference (FV	R)	•	•	•	•	•
Numerically Controlled Oscill	ator (NCO)	•	•	•	•	•
Temperature Indicator	•	٠	•	٠	•	
Comparators						
	C1	•	٠		•	•
	C2		•		•	•
Configurable Logic Cell (CLC	-					
	CLC1	•	•	•	•	•
	CLC2	•	•	•	•	•
	CLC3				•	•
	CLC4				•	•
Master Synchronous Serial P	orts			1		
	MSSP1		•		•	•
PWM Modules	n			1		
	PWM1	•	•	•	•	•
	PWM2	•	•	•	•	•
	PWM3 PWM4	•	•	•	•	•
	•	•	•	•	•	
Timers	I			1		
	Timer0	•	•	•	•	•
	Timer1	•	•	•	•	•
	Timer2	•	•	•	•	•

TABLE 1-2: PIC16(L)F1507 PINOUT DESCRIPTION (CONTINUED)


Name	Function	Input Type	Output Type	Description
RC3/AN7/PWM2/CLC2IN0	RC3	TTL	CMOS	General purpose I/O.
	AN7	AN	—	A/D Channel input.
	PWM2	—	CMOS	Pulse Width Module source output.
	CLC2IN0	ST	_	Configurable Logic Cell source input.
RC4/CLC2IN1/CWG1B	RC4	TTL	CMOS	General purpose I/O.
	CLC2IN1	ST	—	Configurable Logic Cell source input.
	CWG1B	—	CMOS	CWG complementary output.
RC5/PWM1/CLC1 ⁽¹⁾ /	RC5	TTL	CMOS	General purpose I/O.
CWG1A	PWM1	—	CMOS	PWM output.
	CLC1	—	CMOS	Configurable Logic Cell source output.
	CWG1A	—	CMOS	CWG primary output.
RC6/AN8/NCO1 ⁽¹⁾	RC6	TTL	CMOS	General purpose I/O.
	AN8	AN	—	A/D Channel input.
	NCO1	_	CMOS	Numerically Controlled Oscillator source output.
RC7/AN9/CLC1IN1	RC7	TTL	CMOS	General purpose I/O.
	AN8	AN	_	A/D Channel input.
	CLC1IN1	ST	_	Configurable Logic Cell source input.
Vdd	Vdd	Power	_	Positive supply.
Vss	Vss	Power		Ground reference.

TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I^2C^{TM} = Schmitt Trigger input with I^2C HV = High Voltage levels


XTAL = Crystal

Note 1: Alternate pin function selected with the APFCON (Register 11-1) register.

TABLE 6-5: SUMMARY OF REGISTERS ASSOCIATED WITH RESETS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BORCON	SBOREN	BORFS				_	_	BORRDY	53
PCON	STKOVF	STKUNF	_	RWDT	RMCLR	RI	POR	BOR	57
STATUS	_		_	TO	PD	Z	DC	С	17
WDTCON		—	WDTPS<4:0>					SWDTEN	77

Legend: — = unimplemented bit, reads as '0'. Shaded cells are not used by Resets.

TABLE 6-6: SUMMARY OF CONFIGURATION WORD WITH RESETS

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG1	13:8					CLKOUTEN	BOREI	N<1:0>	_	20
CONFIGI	7:0	CP	MCLRE	PWRTE	WD	TE<1:0>	_	FOSC	<1:0>	38
	13:8	_	_	LVP	DEBUG	LPBOR	BORV	STVREN	_	20
CONFIG2	7:0		_		_		_	WRT	<1:0>	39

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Resets.

8.0 POWER-DOWN MODE (SLEEP)

The Power-down mode is entered by executing a **SLEEP** instruction.

Upon entering Sleep mode, the following conditions exist:

- 1. WDT will be cleared but keeps running, if enabled for operation during Sleep.
- 2. PD bit of the STATUS register is cleared.
- 3. $\overline{\text{TO}}$ bit of the STATUS register is set.
- 4. CPU clock is disabled.
- 5. 31 kHz LFINTOSC is unaffected and peripherals that operate from it may continue operation in Sleep.
- 6. Timer1 and peripherals that operate from Timer1 continue operation in Sleep when the Timer1 clock source selected is:
 - LFINTOSC
 - T1CKI
- 7. ADC is unaffected, if the dedicated FRC oscillator is selected.
- 8. I/O ports maintain the status they had before SLEEP was executed (driving high, low or highimpedance).
- 9. Resets other than WDT are not affected by Sleep mode.

Refer to individual chapters for more details on peripheral operation during Sleep.

To minimize current consumption, the following conditions should be considered:

- · I/O pins should not be floating
- External circuitry sinking current from I/O pins
- Internal circuitry sourcing current from I/O pins
- Current draw from pins with internal weak pull-ups
- Modules using 31 kHz LFINTOSC
- CWG, NCO and CLC modules using HFINTOSC

I/O pins that are high-impedance inputs should be pulled to VDD or Vss externally to avoid switching currents caused by floating inputs.

Examples of internal circuitry that might be sourcing current include the FVR module. See **Section 13.0 "Fixed Voltage Reference (FVR)"** for more information on this module.

8.1 Wake-up from Sleep

The device can wake-up from Sleep through one of the following events:

- 1. External Reset input on MCLR pin, if enabled
- 2. BOR Reset, if enabled
- 3. POR Reset
- 4. Watchdog Timer, if enabled
- 5. Any external interrupt
- 6. Interrupts by peripherals capable of running during Sleep (see individual peripheral for more information)

The first three events will cause a device Reset. The last three events are considered a continuation of program execution. To determine whether a device Reset or wake-up event occurred, refer to Section 6.12 "Determining the Cause of a Reset".

When the SLEEP instruction is being executed, the next instruction (PC + 1) is prefetched. For the device to wake-up through an interrupt event, the corresponding interrupt enable bit must be enabled. Wake-up will occur regardless of the state of the GIE bit. If the GIE bit is disabled, the device continues execution at the instruction after the SLEEP instruction. If the GIE bit is enabled, the device executes the instruction after the SLEEP instruction, the device will then call the Interrupt Service Routine. In cases where the execution of the instruction following SLEEP is not desirable, the user should have a NOP after the SLEEP instruction.

The WDT is cleared when the device wakes up from Sleep, regardless of the source of wake-up.

8.1.1 WAKE-UP USING INTERRUPTS

When global interrupts are disabled (GIE cleared) and any interrupt source has both its interrupt enable bit and interrupt flag bit set, one of the following will occur:

- If the interrupt occurs **before** the execution of a SLEEP instruction
 - SLEEP instruction will execute as a NOP.
 - WDT and WDT prescaler will not be cleared
 - TO bit of the STATUS register will not be set
 - PD bit of the STATUS register will not be cleared.
- If the interrupt occurs **during or after** the execution of a SLEEP instruction
 - SLEEP instruction will be completely executed
 - Device will immediately wake-up from Sleep
 - WDT and WDT prescaler will be cleared
 - TO bit of the STATUS register will be set
 - PD bit of the STATUS register will be cleared

Even if the flag bits were checked before executing a SLEEP instruction, it may be possible for flag bits to become set before the SLEEP instruction completes. To determine whether a SLEEP instruction executed, test the PD bit. If the PD bit is set, the SLEEP instruction was executed as a NOP.

TABLE 9-3:	SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER
IADLE 3-3.	SUMMART OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
OSCCON	—		IRCF<3:0>				SCS<1:0>		49
PCON	STKOVF	STKUNF	—	RWDT	RMCLR	RI	POR	BOR	57
STATUS	—	—	_	TO	PD	Z	DC	С	17
WDTCON	_	— WDTPS<4:0> S				SWDTEN	77		

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by Watchdog Timer.

TABLE 9-4: SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
	13:8	_	—		—	CLKOUTEN	BORE	N<1:0>	—	20
CONFIG1	7:0	CP	MCLRE	PWRTE	WDT	E<1:0>	_	FOSC	<1:0>	38

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Watchdog Timer.

11.6 Register Definitions: PORTB

REGISTER 11-7: PORTB: PORTB REGISTER

R/W-x/x	R/W-x/x	R/W-x/x	R/W-x/x	U-0	U-0	U-0	U-0	
RB7	RB6	RB5	RB4		—	—	—	
bit 7							bit 0	
Legend:								
R = Readable I	bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
u = Bit is unchanged x = Bit is unknown			nown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set '0' = Bit is cleared			ared					

bit 7-4	RB<7:4>: PORTB I/O Value bits ⁽¹⁾
	1 = Port pin is <u>></u> Vін
	0 = Port pin is <u><</u> VIL

bit 3-0 Unimplemented: Read as '0'

Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is return of actual I/O pin values.

REGISTER 11-8: TRISB: PORTB TRI-STATE REGISTER

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0
TRISB7	TRISB6	TRISB5	TRISB4	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-4	RB<7:4>: PORTB Tri-State Control bits
	1 = PORTB pin configured as an input (tri-stated)
	0 = PORTB pin configured as an output

bit 3-0 Unimplemented: Read as '0'

12.6 Register Definitions: Interrupt-on-Change Control

REGISTER 12-1: IOCAP: INTERRUPT-ON-CHANGE PORTA POSITIVE EDGE REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
_	_	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0
bit 7							
Legend:							
R = Readable bit		W = Writable bi	t	U = Unimpleme	ented bit, read as	'0'	
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other Resets							Resets
'1' = Bit is set		'0' = Bit is clear	ed				

bit 7-6 Unimplemented: Read as '0'

bit 5-0

bit 5-0

bit 5-0

IOCAP<5:0>: Interrupt-on-Change PORTA Positive Edge Enable bits

1 = Interrupt-on-Change enabled on the pin for a positive going edge. IOCAFx bit and IOCIF flag will be set upon detecting an edge.

0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 12-2: IOCAN: INTERRUPT-ON-CHANGE PORTA NEGATIVE EDGE REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	_	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

IOCAN<5:0>: Interrupt-on-Change PORTA Negative Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCAFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 12-3: IOCAF: INTERRUPT-ON-CHANGE PORTA FLAG REGISTER

U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
—	_	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-6 Unimplemented: Read as '0'

IOCAF<5:0>: Interrupt-on-Change PORTA Flag bits

1 = An enabled change was detected on the associated pin.

Set when IOCAPx = 1 and a rising edge was detected on RAx, or when IOCANx = 1 and a falling edge was detected on RAx.

0 = No change was detected, or the user cleared the detected change.

13.0 FIXED VOLTAGE REFERENCE (FVR)

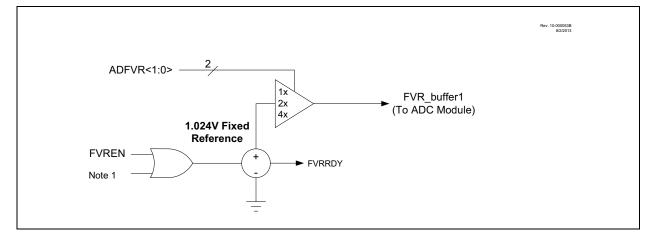
The Fixed Voltage Reference (FVR) is a stable voltage reference, independent of VDD, with a nominal output level (VFVR) of 1.024V. The output of the FVR can be configured to supply a reference voltage to the following:

ADC input channel

The FVR can be enabled by setting the FVREN bit of the FVRCON register.

13.1 Independent Gain Amplifier

The output of the FVR supplied to the peripherals, (listed above), is routed through a programmable gain amplifier. Each amplifier can be programmed for a gain of 1x, 2x or 4x, to produce the three possible voltage levels.


The ADFVR<1:0> bits of the FVRCON register are used to enable and configure the gain amplifier settings for the reference supplied to the ADC module. Reference **Section 15.0 "Analog-to-Digital Converter (ADC) Module**" for additional information.

To minimize current consumption when the FVR is disabled, the FVR buffers should be turned off by clearing the Buffer Gain Selection bits.

13.2 FVR Stabilization Period

When the Fixed Voltage Reference module is enabled, it requires time for the reference and amplifier circuits to stabilize. Once the circuits stabilize and are ready for use, the FVRRDY bit of the FVRCON register will be set. See the FVR Stabilization Period characterization graph, Figure 26-48.

TABLE 13-1: PERIPHERALS REQUIRING THE FIXED VOLTAGE REFERENCE (FVR)

Peripheral	Conditions	Description
HFINTOSC	FOSC<2:0> = 010 and IRCF<3:0> = 000x	INTOSC is active and device is not in Sleep.
	BOREN<1:0> = 11	BOR always enabled.
BOR	BOREN<1:0> = 10 and BORFS = 1	BOR disabled in Sleep mode, BOR Fast Start enabled.
	BOREN<1:0> = 01 and BORFS = 1	BOR under software control, BOR Fast Start enabled.
LDO	All PIC16F1507 devices, when VREGPM = 1 and not in Sleep	The device runs off of the Low-Power Regulator when in Sleep mode.

13.3 Register Definitions: FVR Control

REGISTER 13-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

R/W-0/0) R-q/q	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
FVREN ⁽	¹⁾ FVRRDY ⁽²⁾	TSEN ⁽³⁾	TSRNG ⁽³⁾	_	—	ADFVR	<1:0> ⁽¹⁾
bit 7							bit 0
Legend:							
R = Reada	ıble bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is u	nchanged	x = Bit is unki	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is s	set	'0' = Bit is cle	ared	q = Value de	pends on conditi	on	
bit 7	1 = Fixed Vo	d Voltage Refe Itage Referenc Itage Referenc	e is enabled	bit ⁽¹⁾			
bit 6	1 = Fixed Vo	ed Voltage Re Itage Referenc Itage Referenc	e output is rea	ady for use	enabled		
bit 5	1 = Tempera	erature Indicato ture Indicator is ture Indicator is	s enabled)			
bit 4	1 = VOUT = V	perature Indica ′DD - 4V⊤ (High ′DD - 2V⊤ (Low	Range)	lection bit ⁽³⁾			
bit 3-2	Unimplemen	ted: Read as '	0'				
bit 1-0	11 = ADC FV 10 = ADC FV 01 = ADC FV	R Buffer Gain	is 4x, with out is 2x, with out	put voltage = 4 put voltage = 2	x Vfvr (4.096V x Vfvr (2.048V x Vfvr (1.024V	nominal) ⁽⁴⁾	
	To minimize curren	•		R is disabled, tl	ne FVR buffers s	should be turne	ed off by clear-

- 2: FVRRDY is always '1' for the PIC16F1507 devices.
- 3: See Section 14.0 "Temperature Indicator Module" for additional information.
- 4: Fixed Voltage Reference output cannot exceed VDD.

TABLE 13-2: SUMMARY OF REGISTERS ASSOCIATED WITH THE FIXED VOLTAGE REFERENCE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	-		ADFV	R<1:0>	114

Legend: Shaded cells are unused by the Fixed Voltage Reference module.

16.2 Register Definitions: Option Register

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1		
WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>			
bit 7	·						bit (
Legend:									
R = Readabl	le bit	W = Writable	bit		mented bit, read				
u = Bit is und	changed	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets		
'1' = Bit is se	et	'0' = Bit is cle	ared						
bit 7		ak Pull-Up Ena							
		pull-ups are dis Il-ups are enab	· · ·	•	,				
bit 6	•	errupt Edge Se	•		values				
		on rising edge							
		on falling edge							
bit 5	TMR0CS: Tir	mer0 Clock Sou	urce Select bit						
		n on T0CKI pin							
		nstruction cycle		4)					
bit 4		TMR0SE: Timer0 Source Edge Select bit							
		nt on high-to-lov nt on low-to-hig							
bit 3		ler Assignment		TOCKI pili					
DIL D		r is not assigne		0 module					
		r is assigned to							
bit 2-0	PS<2:0>: Pre	escaler Rate Se	elect bits						
	Bit	Value Timer0	Rate						
	(000 1:2							
		001 1:4							
		010 1:8 011 1:1							
		100 1:3							
	1	101 1:6	4						

REGISTER 16-1: OPTION_REG: OPTION REGISTER

TABLE 16-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0

1:128

1:256

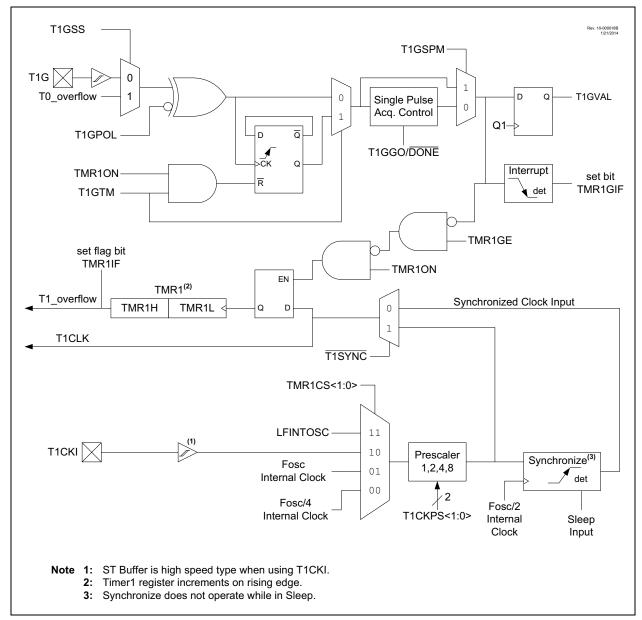
110

111

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
ADCON2		TRIGS	EL<3:0>		_	_	_	-	125	
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	64	
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		133	
TMR0	Holding Reg	gister for the	8-bit Timer0) Count						
TRISA	_	_	TRISA5	TRISA4	_(1)	TRISA2	TRISA1	TRISA0	98	

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the Timer0 module. * Page provides register information.

Note 1: Unimplemented, read as '1'.


17.0 TIMER1 MODULE WITH GATE CONTROL

The Timer1 module is a 16-bit timer/counter with the following features:

- 16-bit timer/counter register pair (TMR1H:TMR1L)
- · Programmable internal or external clock source
- · 2-bit prescaler
- · Optionally synchronized comparator out
- Multiple Timer1 gate (count enable) sources

- Interrupt on overflow
- Wake-up on overflow (external clock, Asynchronous mode only)
- ADC Auto-Conversion Trigger(s)
- · Selectable Gate Source Polarity
- · Gate Toggle mode
- · Gate Single-Pulse mode
- Gate Value Status
 - · Gate Event Interrupt

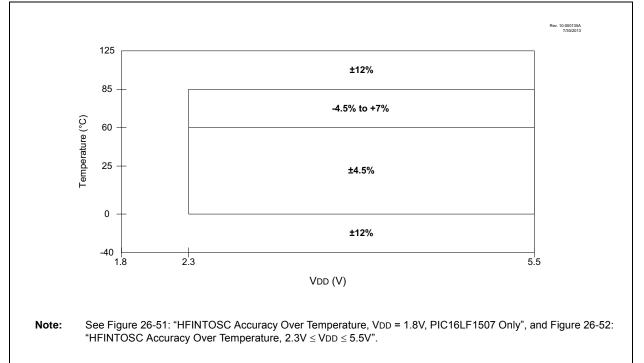
Figure 17-1 is a block diagram of the Timer1 module.

FIGURE 17-1: TIMER1 BLOCK DIAGRAM

TABLE 25-8: OSCILLATOR PARAMETERS

Standar	Standard Operating Conditions (unless otherwise stated)										
Param. No.	Sym.	Characteristic	Freq. Tolerance	Min.	Тур†	Max.	Units	Conditions			
OS08	HFosc	Internal Calibrated HFINTOSC Frequency ⁽¹⁾	±2%		16.0		MHz	VDD = 3.0V, TA = 25°C, (Note 2)			
OS09	LFosc	Internal LFINTOSC Frequency	—	_	31	_	kHz	(Note 3)			
OS10*	TIOSC ST	HFINTOSC Wake-up from Sleep Start-up Time	-	_	5	15	μS				
OS10A*	TLFOSC ST	LFINTOSC Wake-up from Sleep Start-up Time	—		0.5		ms	$-40^{\circ}C \leq TA \leq +125^{\circ}C$			

These parameters are characterized but not tested.

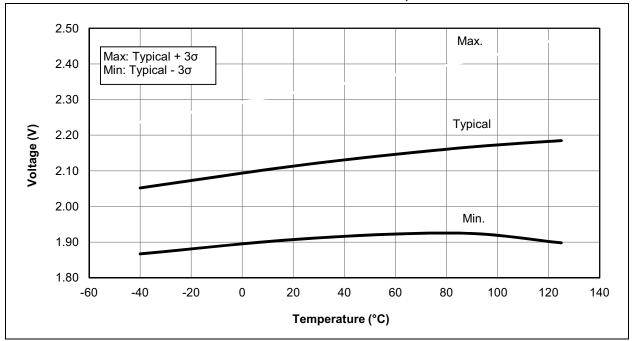

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: To ensure these oscillator frequency tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μF and 0.01 μF values in parallel are recommended.

2: See Figure 25-6: "HFINTOSC Frequency Accuracy over Device VDD and Temperature", Figure 26-51: "HFINTOSC Accuracy Over Temperature, VDD = 1.8V, PIC16LF1507 Only", and Figure 26-52: "HFINTOSC Accuracy Over Temperature, 2.3V ≤ VDD ≤ 5.5V".

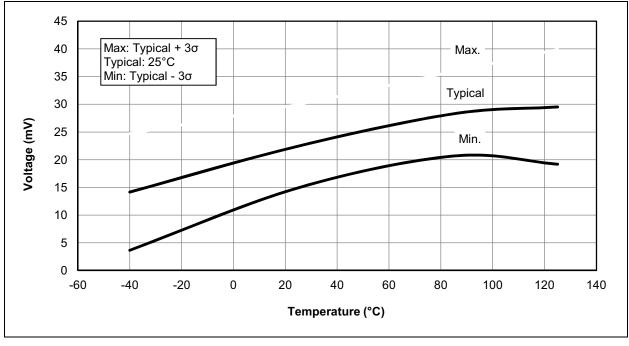
3: See Figure 26-49: "LFINTOSC Frequency over VDD and Temperature, PIC16LF1507 Only", and Figure 26-50: "LFINTOSC Frequency over VDD and Temperature, PIC16F1507".

FIGURE 25-6: HFINTOSC FREQUENCY ACCURACY OVER VDD AND TEMPERATURE

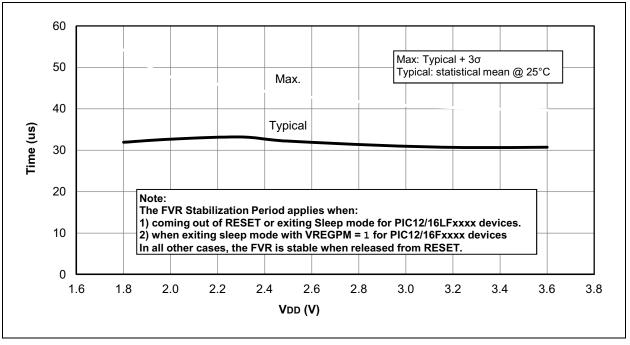

26.0 DC AND AC CHARACTERISTICS GRAPHS AND CHARTS

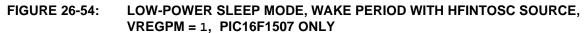
The graphs and tables provided in this section are for design guidance and are not tested.

In some graphs or tables, the data presented are **outside specified operating range** (i.e., outside specified VDD range). This is for **information only** and devices are ensured to operate properly only within the specified range.


Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

"Typical" represents the mean of the distribution at 25°C. "MAXIMUM", "Max.", "MINIMUM" or "Min." represents (mean + 3σ) or (mean - 3σ) respectively, where σ is a standard deviation, over each temperature range.





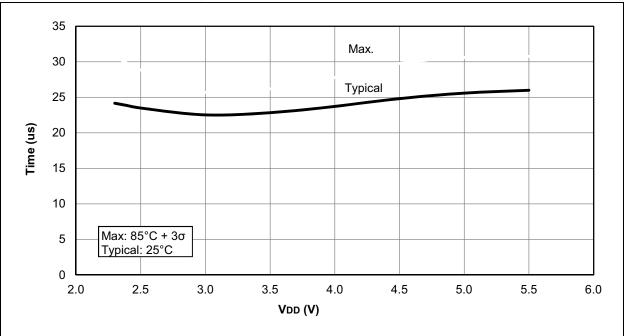
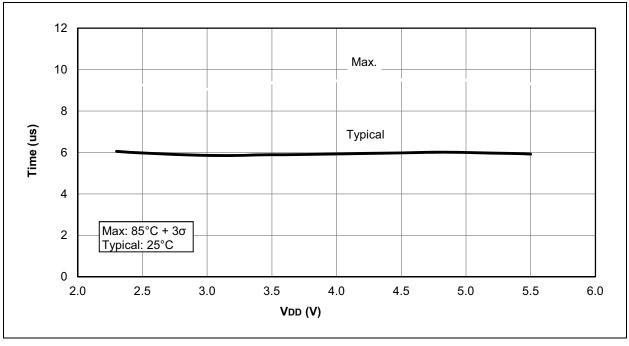
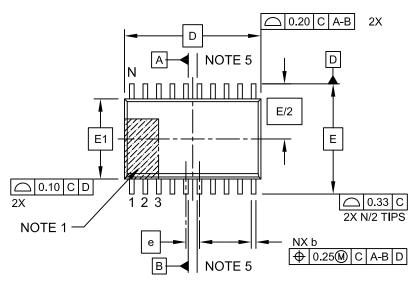
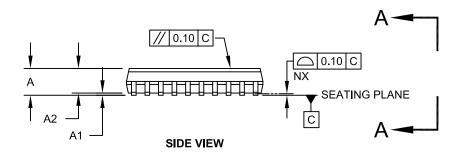
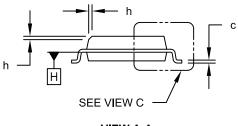




FIGURE 26-55: SLEEP MODE, WAKE PERIOD WITH HFINTOSC SOURCE, VREGPM = 0, PIC16F1507 ONLY




20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing C04-094C Sheet 1 of 2