

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2014110	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f1507t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

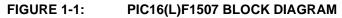
To obtain the most up-to-date version of this data sheet, please register at our Worldwide Website at:

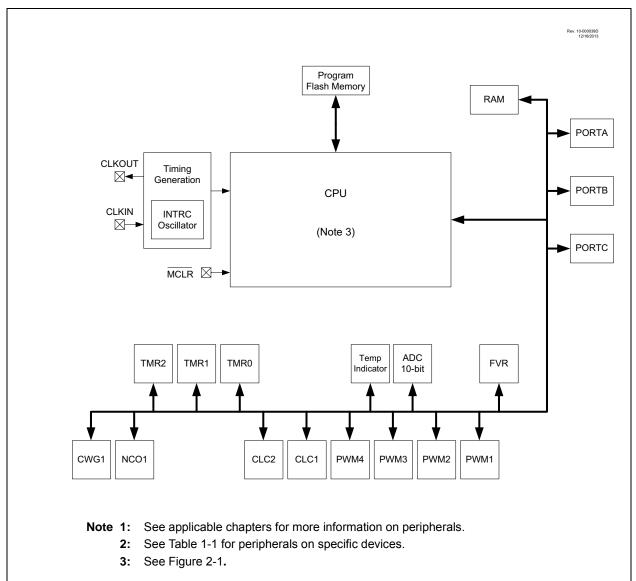
http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

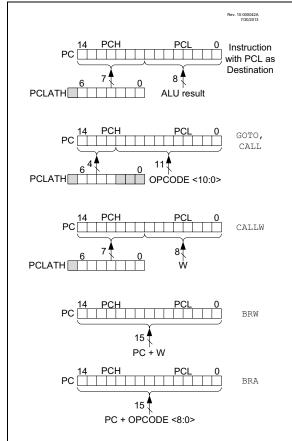

To determine if an errata sheet exists for a particular device, please check with one of the following:


- Microchip's Worldwide Website; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our website at www.microchip.com to receive the most current information on all of our products.



3.4 PCL and PCLATH

The Program Counter (PC) is 15 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<14:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 3-3 shows the five situations for the loading of the PC.

3.4.1 MODIFYING PCL

Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC<14:8> bits (PCH) to be replaced by the contents of the PCLATH register. This allows the entire contents of the program counter to be changed by writing the desired upper seven bits to the PCLATH register. When the lower eight bits are written to the PCL register, all 15 bits of the program counter will change to the values contained in the PCLATH register and those being written to the PCL register.

3.4.2 COMPUTED GOTO

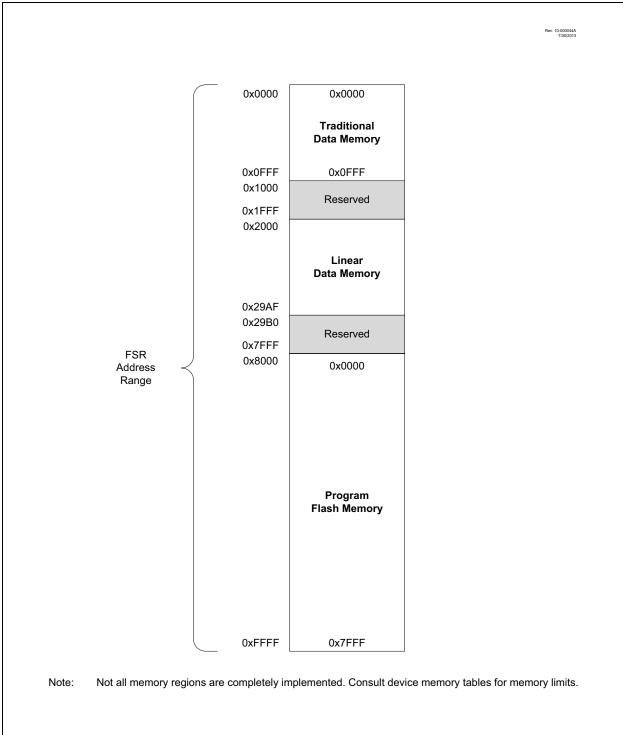
A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When performing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to Application Note AN556, *"Implementing a Table Read"* (DS00556).

3.4.3 COMPUTED FUNCTION CALLS

A computed function CALL allows programs to maintain tables of functions and provide another way to execute state machines or look-up tables. When performing a table read using a computed function CALL, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block).

If using the CALL instruction, the PCH<2:0> and PCL registers are loaded with the operand of the CALL instruction. PCH<6:3> is loaded with PCLATH<6:3>.

The CALLW instruction enables computed calls by combining PCLATH and W to form the destination address. A computed CALLW is accomplished by loading the W register with the desired address and executing CALLW. The PCL register is loaded with the value of W and PCH is loaded with PCLATH.


3.4.4 BRANCHING

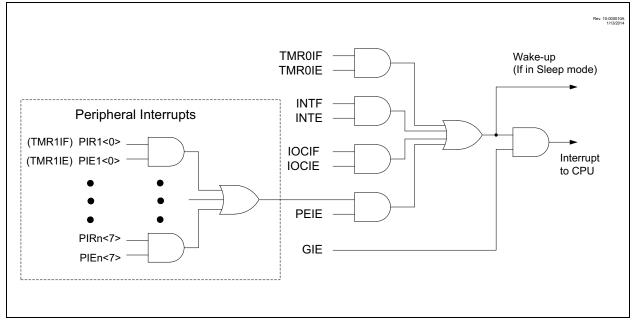
The branching instructions add an offset to the PC. This allows relocatable code and code that crosses page boundaries. There are two forms of branching, BRW and BRA. The PC will have incremented to fetch the next instruction in both cases. When using either branching instruction, a PCL memory boundary may be crossed.

If using BRW, load the W register with the desired unsigned address and execute BRW. The entire PC will be loaded with the address PC + 1 + W.

If using BRA, the entire PC will be loaded with PC + 1 +, the signed value of the operand of the BRA instruction.

7.0 INTERRUPTS

The interrupt feature allows certain events to preempt normal program flow. Firmware is used to determine the source of the interrupt and act accordingly. Some interrupts can be configured to wake the MCU from Sleep mode.


This chapter contains the following information for Interrupts:

- Operation
- Interrupt Latency
- Interrupts During Sleep
- INT Pin
- Automatic Context Saving

Many peripherals produce interrupts. Refer to the corresponding chapters for details.

A block diagram of the interrupt logic is shown in Figure 7-1.

U-1	R/W-0/0	R/W-0/0	R/W/HC-0/0	R/W/HC-x/q ⁽²⁾	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0
(1)	CFGS	LWLO	FREE	WRERR	WREN	WR	RD
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimplemer	nted bit, read as	s 'O'	
S = Bit can on	ly be set	x = Bit is unkno	own	-n/n = Value at F	POR and BOR/	/alue at all other I	Resets
'1' = Bit is set		'0' = Bit is clea	red	HC = Bit is clear	ed by hardware	9	
bit 7	Unimplemen	ted: Read as '1'					
bit 6	CFGS: Config	guration Select bit					
		Configuration, Use Flash program me		ID Registers			
bit 5	LWLO: Load	Write Latches On	ly bit ⁽³⁾				
		addressed progra					
		ressed program m nitiated on the nex		n is loaded/update	ed and a write of	all program memo	ory write latche
bit 4	FREE: Progra	am Flash Erase E	nable bit				
		s an erase operati s a write operatior		•	rdware cleared	upon completion)	
bit 3		gram/Erase Error	•				
		n indicates an imp			e attempt or te	rmination (bit is s	et automaticall
		et attempt (write ' gram or erase ope					
bit 2		ram/Erase Enable	•	, , , , , , , , , , , , , , , , , , ,			
	0	rogram/erase cyc					
	0 = Inhibits	programming/eras	ing of program F	lash			
bit 1	WR: Write Co						
		a program Flash p ration is self-timed			o onco onorativ	on is complete	
	•	bit can only be se		•	e once operatio	on is complete.	
		/erase operation f	` '		ive.		
bit 0	RD: Read Co	ontrol bit					
		a program Flash r	ead. Read takes	s one cycle. RD is	cleared in hard	lware. The RD bit	can only be se
	```	ared) in software. It initiate a prograr	n Flash read				
Note 1: U	nimplemented bit						
	•	automatically set I	by hardware whe	en a program men	nory write or era	ase operation is st	arted (WR = 1
	he LWLO bit is igi	-	-			•	•

## REGISTER 10-5: PMCON1: PROGRAM MEMORY CONTROL 1 REGISTER

# 11.0 I/O PORTS

Each port has three standard registers for its operation. These registers are:

- · TRISx registers (data direction)
- PORTx registers (reads the levels on the pins of the device)
- LATx registers (output latch)

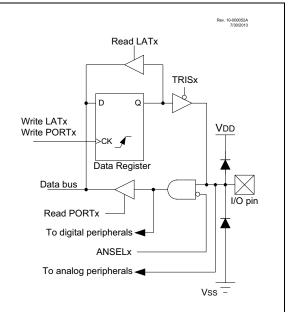
Some ports may have one or more of the following additional registers. These registers are:

- · ANSELx (analog select)
- · WPUx (weak pull-up)

In general, when a peripheral is enabled on a port pin, that pin cannot be used as a general purpose output. However, the pin can still be read.

# TABLE 11-1:PORT AVAILABILITY PER<br/>DEVICE

Device	PORTA	PORTB	PORTC
PIC16(L)F1507	٠	•	•


The Data Latch (LATx registers) is useful for read-modify-write operations on the value that the I/O pins are driving.

A write operation to the LATx register has the same effect as a write to the corresponding PORTx register. A read of the LATx register reads of the values held in the I/O PORT latches, while a read of the PORTx register reads the actual I/O pin value.

Ports that support analog inputs have an associated ANSELx register. When an ANSEL bit is set, the digital input buffer associated with that bit is disabled. Disabling the input buffer prevents analog signal levels on the pin between a logic high and low from causing excessive current in the logic input circuitry. A simplified model of a generic I/O port, without the interfaces to other peripherals, is shown in Figure 11-1.

## FIGURE 11-1: GE

#### GENERIC I/O PORT OPERATION



## 14.0 TEMPERATURE INDICATOR MODULE

This family of devices is equipped with a temperature circuit designed to measure the operating temperature of the silicon die. The circuit's range of operating temperature falls between -40°C and +85°C. The output is a voltage that is proportional to the device temperature. The output of the temperature indicator is internally connected to the device ADC.

The circuit may be used as a temperature threshold detector or a more accurate temperature indicator, depending on the level of calibration performed. A one-point calibration allows the circuit to indicate a temperature closely surrounding that point. A two-point calibration allows the circuit to sense the entire range of temperature more accurately. Reference Application Note AN1333, *"Use and Calibration of the Internal Temperature Indicator"* (DS01333) for more details regarding the calibration process.

## 14.1 Circuit Operation

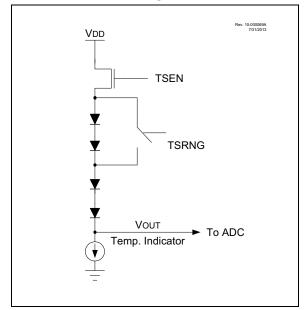
Figure 14-1 shows a simplified block diagram of the temperature circuit. The proportional voltage output is achieved by measuring the forward voltage drop across multiple silicon junctions.

Equation 14-1 describes the output characteristics of the temperature indicator.

## EQUATION 14-1: VOUT RANGES

High Range: VOUT = VDD - 4VT

Low Range: VOUT = VDD - 2VT


The temperature sense circuit is integrated with the Fixed Voltage Reference (FVR) module. See Section **13.0 "Fixed Voltage Reference (FVR)"** for more information.

The circuit is enabled by setting the TSEN bit of the FVRCON register. When disabled, the circuit draws no current.

The circuit operates in either high or low range. The high range, selected by setting the TSRNG bit of the FVRCON register, provides a wider output voltage. This provides more resolution over the temperature range, but may be less consistent from part to part. This range requires a higher bias voltage to operate and thus, a higher VDD is needed.

The low range is selected by clearing the TSRNG bit of the FVRCON register. The low range generates a lower voltage drop and thus, a lower bias voltage is needed to operate the circuit. The low range is provided for low voltage operation.

# FIGURE 14-1: TEMPERATURE CIRCUIT DIAGRAM



## 14.2 Minimum Operating VDD

When the temperature circuit is operated in low range, the device may be operated at any operating voltage that is within specifications.

When the temperature circuit is operated in high range, the device operating voltage, VDD, must be high enough to ensure that the temperature circuit is correctly biased.

Table 14-1 shows the recommended minimum VDD vs. range setting.

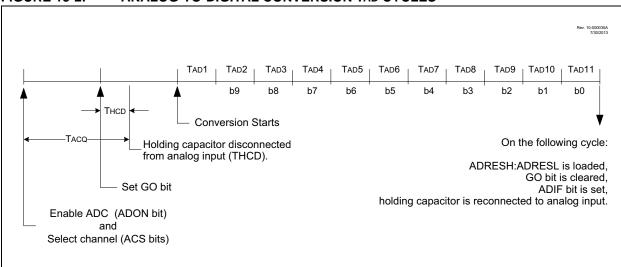
#### TABLE 14-1: RECOMMENDED VDD VS. RANGE

Min. VDD, TSRNG = 1	Min. VDD, TSRNG = 0
3.6V	1.8V

## 14.3 Temperature Output

The output of the circuit is measured using the internal Analog-to-Digital Converter. A channel is reserved for the temperature circuit output. Refer to **Section 15.0 "Analog-to-Digital Converter (ADC) Module**" for detailed information.

## 14.4 ADC Acquisition Time


To ensure accurate temperature measurements, the user must wait at least 200  $\mu$ s after the ADC input multiplexer is connected to the temperature indicator output before the conversion is performed. In addition, the user must wait 200  $\mu$ s between sequential conversions of the temperature indicator output.

ADC Clock	Period (TAD)		Device Frequency (Fosc)								
ADC Clock Source	ADCS<2:0	20 MHz	16 MHz	8 MHz	4 MHz	1 MHz					
Fosc/2	000	100 ns	125 ns	250 ns	500 ns	2.0 μs					
Fosc/4	100	200 ns	250 ns	500 ns	1.0 μs	4.0 μs					
Fosc/8	001	400 ns	500 ns	1.0 μs	2.0 μs	8.0 μs					
Fosc/16	101	800 ns	1.0 μs	2.0 μs	4.0 μs	16.0 μs					
Fosc/32	010	1.6 μs	2.0 μs	4.0 μs	8.0 μs	32.0 μs					
Fosc/64	110	3.2 μs	4.0 μs	8.0 μs	16.0 μs	64.0 μs					
FRC	x11	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs	1.0-6.0 μs					

#### TABLE 15-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES

**Legend:** Shaded cells are outside of recommended range.

**Note:** The TAD period when using the FRC clock source can fall within a specified range, (see TAD parameter). The TAD period when using the FOSC-based clock source can be configured for a more precise TAD period. However, the FRC clock source must be used when conversions are to be performed with the device in Sleep mode.



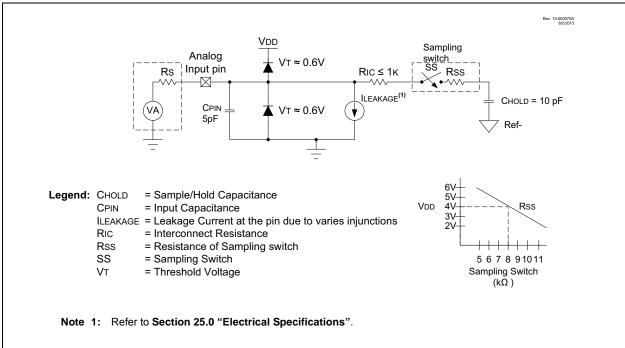
#### FIGURE 15-2: ANALOG-TO-DIGITAL CONVERSION TAD CYCLES

### **REGISTER 15-4:** ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0

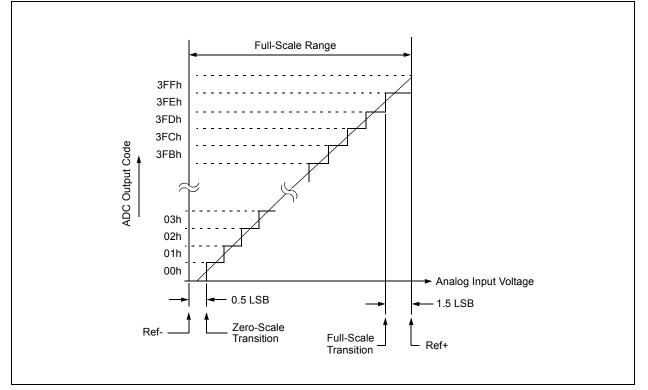
R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			ADRE	S<9:2>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 **ADRES<9:2>**: ADC Result Register bits Upper eight bits of 10-bit conversion result

#### **REGISTER 15-5:** ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0


R/W-x/u	R/W-x/u R/W-x/u		R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
ADRES<1:0>		—	—	—	—	—	—
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	


bit 7-6 **ADRES<1:0>**: ADC Result Register bits Lower two bits of 10-bit conversion result

bit 5-0 **Reserved**: Do not use.









Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0	—			CHS<4:0>			GO/DONE	ADON	123
ADCON1	ADFM		ADCS<2:0>		_	—	ADPRE	:F<1:0>	124
ADCON2		TRIGSE	EL<3:0>		-	—	—	_	125
ADRESH	ADC Result	Register Hig	h						126, 127
ADRESL	ADC Result	Register Lov	v						126, 127
ANSELA	—	_	_	ANSA4	_	ANSA2	ANSA1	ANSA0	99
ANSELB	_	_	ANSB5	ANSB4	-	—	—	_	103
ANSELC	ANSC7	ANSC6	_	_	ANSC3	ANSC2	ANSC1	ANSC0	107
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	64
PIE1	TMR1GIE	ADIE	_	-	-	—	TMR2IE	TMR1IE	65
PIR1	TMR1GIF	ADIF	_	_	_	—	TMR2IF	TMR1IF	68
TRISA	_	_	TRISA5	TRISA4	—(1)	TRISA2	TRISA1	TRISA0	98
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	_	_	_		102
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	106
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	_	_	ADFV	R<1:0>	114

#### TABLE 15-3: SUMMARY OF REGISTERS ASSOCIATED WITH ADC

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends on condition. Shaded cells are not used for ADC module.

Note 1: Unimplemented, read as '1'.

## 16.2 Register Definitions: Option Register

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1				
WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>					
bit 7	·						bit (				
Legend:											
R = Readabl	le bit	W = Writable	bit		mented bit, read						
u = Bit is und	changed	x = Bit is unk	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets				
'1' = Bit is se	et	'0' = Bit is cle	ared								
bit 7		ak Pull-Up Ena									
		pull-ups are dis Il-ups are enab	· · ·	•	,						
bit 6	•	•	•		values						
		INTEDG: Interrupt Edge Select bit 1 = Interrupt on rising edge of INT pin									
		0 = Interrupt on falling edge of INT pin									
bit 5	TMR0CS: Tir	TMR0CS: Timer0 Clock Source Select bit									
		n on T0CKI pin									
		nstruction cycle		4)							
bit 4		ner0 Source E	-								
		<ul> <li>1 = Increment on high-to-low transition on T0CKI pin</li> <li>0 = Increment on low-to-high transition on T0CKI pin</li> </ul>									
bit 3		ler Assignment		TOCKI pili							
DIL D		r is not assigne		0 module							
		r is assigned to									
bit 2-0	<b>PS&lt;2:0&gt;:</b> Pre	escaler Rate Se	elect bits								
	Bit	Value Timer0	Rate								
	(	000 1:2									
		001 1:4									
		010 1:8 011 1:1									
		100 1:3									
	1	101 1:6	4								

## REGISTER 16-1: OPTION_REG: OPTION REGISTER

#### TABLE 16-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0

1:128

1:256

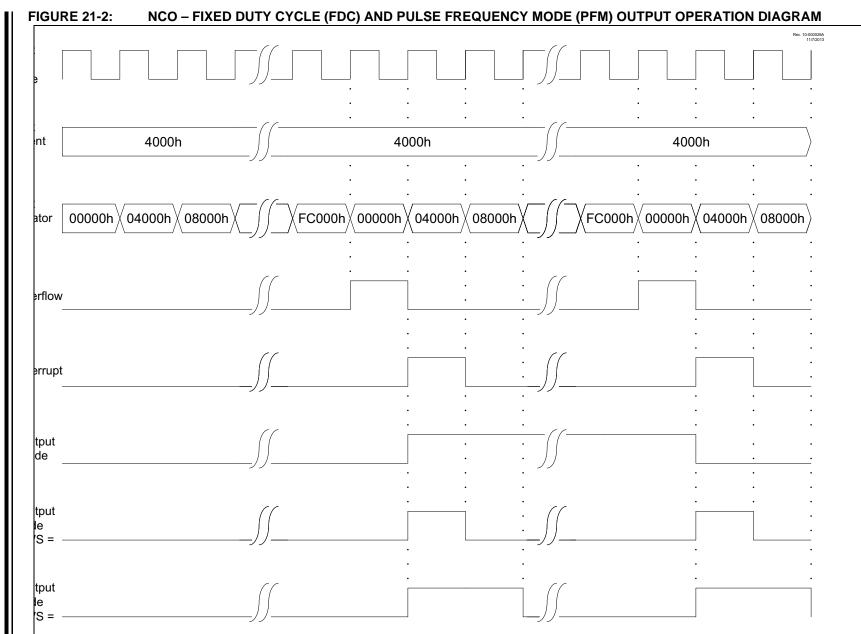
110

111

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON2	DCON2 TRIGSEL<3:0>					_	_	-	125
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	64
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		133
TMR0	Holding Register for the 8-bit Timer0 Count							131*	
TRISA	_	_	TRISA5	TRISA4	_(1)	TRISA2	TRISA1	TRISA0	98

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the Timer0 module. * Page provides register information.

Note 1: Unimplemented, read as '1'.


## 19.2 Register Definitions: PWM Control

## REGISTER 19-1: PWMxCON: PWM CONTROL REGISTER

R/W-0/0	R/W-0/0	R-0/0	R/W-0/0	U-0	U-0	U-0	U-0		
PWMxEN	PWMxOE	PWMxOUT	PWMxPOL	—	_	—			
bit 7							bit C		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'			
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets		
'1' = Bit is set		'0' = Bit is cle	ared						
bit 7	PWMxEN: P	WM Module En	able bit						
	1 = PWM mo	odule is enable	dule is enabled						
	0 = PWM mo	odule is disable	d						
bit 6	PWMxOE: P	WM Module Ou	utput Enable bi	bit					
	•	o PWMx pin is e							
	0 = Output to	PWMx pin is o	disabled						
bit 5	PWMxOUT:	PWM Module C	Output Value bi	t					
bit 4	PWMxPOL:	PWMx Output I	Polarity Select	bit					
		tput is active-lo							
	0 = PWM ou	tput is active-h	igh						
bit 3-0	Unimplemen	ted: Read as '	0'						

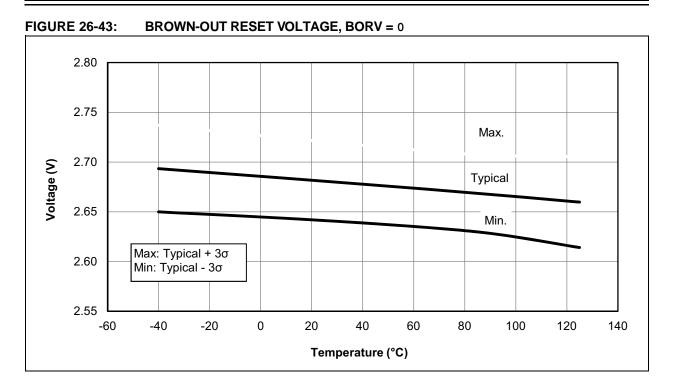
R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u			
LCxG2D4T	LCxG2D4N	LCxG2D3T	LCxG2D3N	LCxG2D2T	LCxG2D2N	LCxG2D1T	LCxG2D1N			
bit 7							bit 0			
Legend:										
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'						
u = Bit is unchanged		x = Bit is unkr		-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set		'0' = Bit is clea	ared							
bit 7		Gate 2 Data 4 1 gated into Icxo	•	rted) bit						
		not gated into								
bit 6	LCxG2D4N: Gate 2 Data 4 Negated (inverted) bit									
		a gated into lcxo not gated into								
bit 5	LCxG2D3T: Gate 2 Data 3 True (non-inverted) bit									
		gated into lcxg not gated into								
bit 4		Gate 2 Data 3 I	•	ted) bit						
		a gated into lcxo not gated into								
bit 3		Gate 2 Data 2 1		rted) bit						
		gated into lcxg not gated into								
bit 2	LCxG2D2N:	Gate 2 Data 2 I	Negated (inver	rted) bit						
		gated into lcx								
bit 1	LCxG2D1T: (	Gate 2 Data 1 1	rue (non-invei	rted) bit						
		gated into lcxg not gated into								
bit 0	LCxG2D1N:	Gate 2 Data 1 I	Negated (inver	ted) bit						
		gated into lcx								

### REGISTER 20-6: CLCxGLS1: GATE 2 LOGIC SELECT REGISTER



DS40001586D-page 173

Status


© 2011-2015 Microchip Technology Inc.

Mnemonic, Operands				14-Bit Opcode				Status	
		Description	Cycles	MSb			LSb	Affected	Notes
		BYTE-ORIENTED FILE I	REGISTER OPE	RATIC	NS				
ADDWF	f, d	Add W and f	1	00	0111	dfff	ffff	C, DC, Z	2
ADDWFC	f, d	Add with Carry W and f	1	11	1101	dfff	ffff	C, DC, Z	2
ANDWF	f, d	AND W with f	1	00	0101	dfff	ffff	Z	2
ASRF	f, d	Arithmetic Right Shift	1	11	0111	dfff	ffff	C, Z	2
LSLF	f, d	Logical Left Shift	1	11	0101	dfff	ffff	C, Z	2
LSRF	f, d	Logical Right Shift	1	11	0110	dfff	ffff	C, Z	2
CLRF	f	Clear f	1	00	0001	lfff	ffff	Z	2
CLRW	_	Clear W	1	00	0001	0000	00xx	Z	
COMF	f, d	Complement f	1	00	1001	dfff	ffff	Z	2
DECF	f, d	Decrement f	1	00	0011	dfff	ffff	Z	2
INCF	f, d	Increment f	1	00	1010	dfff	ffff	Z	2
IORWF	f, d	Inclusive OR W with f	1	00	0100	dfff	ffff	Z	2
MOVF	f, d	Move f	1	00	1000	dfff	ffff	Z	2
MOVWF	f	Move W to f	1	00	0000	1fff	ffff		2
RLF	f, d	Rotate Left f through Carry	1	00	1101	dfff	ffff	С	2
RRF	f, d	Rotate Right f through Carry	1	00	1100	dfff	ffff	С	2
SUBWF	f, d	Subtract W from f	1	00	0010	dfff	ffff	C, DC, Z	2
SUBWFB	f, d	Subtract with Borrow W from f	1	11	1011	dfff	ffff	C, DC, Z	2
SWAPF	f, d	Swap nibbles in f	1	00	1110	dfff	ffff		2
XORWF	f, d	Exclusive OR W with f	1	00	0110	dfff	ffff	Z	2
		BYTE ORIENTED	SKIP OPERATIO	ONS					•
DECFSZ	f, d	Decrement f, Skip if 0	1(2)	00	1011	dfff	ffff		1, 2
INCFSZ	f, d	Increment f, Skip if 0	1(2)	00	1111	dfff	ffff		1, 2
		BIT-ORIENTED FILE R	EGISTER OPER		NS				
BCF	f, b	Bit Clear f	1	01	00bb	bfff	ffff		2
BSF	f, b	Bit Set f	1	01	01bb	bfff	ffff		2
		BIT-ORIENTED S		NS					
BTFSC	f, b	Bit Test f, Skip if Clear	1 (2)	01	10bb	bfff	ffff		1, 2
BTFSS	f, b	Bit Test f, Skip if Set	1 (2)	01	11bb	bfff	ffff		1, 2
		-	PERATIONS						
ADDLW	k	Add literal and W	1	11	1110	kkkk		C, DC, Z	
ANDLW	k	AND literal with W	1	11		kkkk		Z	
IORLW	k	Inclusive OR literal with W	1	11	1000			Z	
MOVLB	k	Move literal to BSR	1	00	0000		kkkk		
MOVLP	k	Move literal to PCLATH	1	11		1kkk			
MOVLW	k	Move literal to W	1	11	0000				
SUBLW	k	Subtract W from literal	1	11		kkkk		C, DC, Z	
XORLW	k	Exclusive OR literal with W	1	11	1010	kkkk	kkkk	Z	1

### TABLE 24-3: ENHANCED MID-RANGE INSTRUCTION SET

Note 1: If the Program Counter (PC) is modified, or a conditional test is true, the instruction requires two cycles. The second cycle is executed as a NOP.

2: If this instruction addresses an INDF register and the MSb of the corresponding FSR is set, this instruction will require one additional instruction cycle.



## 27.2 MPLAB XC Compilers

The MPLAB XC Compilers are complete ANSI C compilers for all of Microchip's 8, 16, and 32-bit MCU and DSC devices. These compilers provide powerful integration capabilities, superior code optimization and ease of use. MPLAB XC Compilers run on Windows, Linux or MAC OS X.

For easy source level debugging, the compilers provide debug information that is optimized to the MPLAB X IDE.

The free MPLAB XC Compiler editions support all devices and commands, with no time or memory restrictions, and offer sufficient code optimization for most applications.

MPLAB XC Compilers include an assembler, linker and utilities. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. MPLAB XC Compiler uses the assembler to produce its object file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- · Command-line interface
- Rich directive set
- Flexible macro language
- MPLAB X IDE compatibility

#### 27.3 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code, and COFF files for debugging.

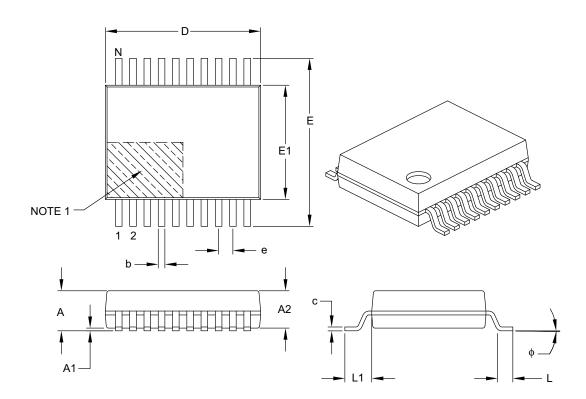
The MPASM Assembler features include:

- Integration into MPLAB X IDE projects
- User-defined macros to streamline
   assembly code
- Conditional assembly for multipurpose source files
- Directives that allow complete control over the assembly process

### 27.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.


The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

### 27.5 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC DSC devices. MPLAB XC Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- · Command-line interface
- · Rich directive set
- · Flexible macro language
- · MPLAB X IDE compatibility



For the most current package drawings, please see the Microchip Packaging Specification located at

#### 20-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

http://www.microchip.com/packaging

	Units		MILLIMETERS	3		
Dimensio	n Limits	MIN	NOM	MAX		
Number of Pins	Ν	20				
Pitch	е	0.65 BSC				
Overall Height	А	-	-	2.00		
Molded Package Thickness	A2	1.65	1.75	1.85		
Standoff	A1	0.05	-	-		
Overall Width	E	7.40	7.80	8.20		
Molded Package Width	E1	5.00	5.30	5.60		
Overall Length	D	6.90	7.20	7.50		
Foot Length	L	0.55	0.75	0.95		
Footprint L1			1.25 REF			
Lead Thickness	с	0.09	-	0.25		
Foot Angle	φ	0°	4°	8°		
Lead Width	b	0.22	-	0.38		

#### Notes:

Note:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-072B