Microchip Technology - PIC16LF1507-E/SO Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	- ·
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	3.5КВ (2К х 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1507-e-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE OF CONTENTS

1.0	Device Overview	7
2.0	Enhanced Mid-Range CPU	11
3.0	Memory Organization	13
4.0	Device Configuration	37
5.0	Oscillator Module	42
6.0	Resets	51
7.0	Interrupts	59
8.0	Power-Down Mode (Sleep)	72
9.0	Watchdog Timer (WDT)	75
10.0	Flash Program Memory Control	79
11.0	I/O Ports	95
12.0	Interrupt-On-Change	108
13.0	Fixed Voltage Reference (FVR)	113
14.0	Temperature Indicator Module	115
15.0	Analog-to-Digital Converter (ADC) Module	117
16.0	Timer0 Module	131
17.0	Timer1 Module with Gate Control	134
18.0	Timer2 Module	145
19.0	Pulse-Width Modulation (PWM) Module	148
20.0	Configurable Logic Cell (CLC)	154
21.0	Numerically Controlled Oscillator (NCO) Module	170
22.0	Complementary Waveform Generator (CWG) Module	177
23.0	In-Circuit Serial Programming™ (ICSP™)	189
24.0	Instruction Set Summary	191
25.0	Electrical Specifications	205
26.0	DC and AC Characteristics Graphs and Charts	227
27.0	Development Support	257
28.0	Packaging Information	261
Appe	ndix A: Data Sheet Revision History	274
The M	Aicrochip Website	275
Custo	omer Change Notification Service	275
Custo	omer Support	275
Produ	uct Identification System	276

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 0											
00Ch	PORTA	—	_	RA5	RA4	RA3	RA2	RA1	RA0	xx xxxx	xx xxxx
00Dh	PORTB	RB7	RB6	RB5	RB4	_	_	_	—	xxxx	xxxx
00Eh	PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	XXXX XXXX	xxxx xxxx
010h	_	Unimplemen	Jnimplemented								—
011h	PIR1	TMR1GIF	ADIF	—	—		—	TMR2IF	TMR1IF	0000	0000
012h	PIR2	—	_	—	—		NCO1IF	—	—	0	0
013h	PIR3	_	_	_	_	_	_	CLC2IF	CLC1IF	00	00
014h	_	Unimplemen	ted							—	—
015h	TMR0	Holding Reg	lolding Register for the 8-bit Timer0 Count							xxxx xxxx	uuuu uuuu
016h	TMR1L	Holding Reg	ister for the L	east Significa	nt Byte of the	e 16-bit TMR	1 Count			XXXX XXXX	uuuu uuuu
017h	TMR1H	Holding Reg	ister for the M	lost Significa	nt Byte of the	16-bit TMR1	Count			xxxx xxxx	uuuu uuuu
018h	T1CON	TMR1C	CS<1:0>	T1CKP	'S<1:0>		T1SYNC	—	TMR10N	0000 -0-0	uuuu -u-u
019h	T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	—	T1GSS0	0000 0x-0	uuuu ux-u
01Ah	TMR2	Timer2 Modu	mer2 Module Register							0000 0000	0000 0000
01Bh	PR2	Timer2 Perio	imer2 Period Register						1111 1111	1111 1111	
01Ch	T2CON	—		T2OUTF	PS<3:0>		TMR2ON	T2CK	PS<1:0>	-000 0000	-000 0000
01Dh to 01Fh	_	Unimplemen	ted							_	_
Bank 1				-	-		-				
08Ch	TRISA	—	—	TRISA5	TRISA4	(2)	TRISA2	TRISA1	TRISA0	11 1111	11 1111
08Dh	TRISB	TRISB7	TRISB6	TRISB5	TRISB4	_	_	—	_	1111	1111
08Eh	TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	1111 1111	1111 1111
08Fh	—	Unimplemen	ted							—	—
090h	—	Unimplemen	ted							—	—
091h	PIE1	TMR1GIE	ADIE	—	—	-	—	TMR2IE	TMR1IE	0000	0000
092h	PIE2	—	—	—	—	-	NCO1IE	—	—	0	0
093h	PIE3	—	—	—	—	-	—	CLC2IE	CLC1IE	00	00
094h	—	Unimplemen	ted							—	—
095h	OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		1111 1111	1111 1111
096h	PCON	STKOVF	STKUNF	—	RWDT	RMCLR	RI	POR	BOR	00-1 11qq	qq-q qquu
097h	WDTCON	—	_			WDTPS<4:0	>		SWDTEN	01 0110	01 0110
098h	—	Unimplemen	ted							—	—
099h	OSCCON	—		IRCF	<3:0>		—	SCS	S<1:0>	-011 1-00	-011 1-00
09Ah	OSCSTAT	—	_	—	HFIOFR		—	LFIOFR	HFIOFS	000	ddd
09Bh	ADRESL	ADC Result	Register Low							xxxx xxxx	uuuu uuuu
09Ch	ADRESH	ADC Result	Register High							xxxx xxxx	uuuu uuuu
09Dh	ADCON0	_			CHS<4:0>			GO/DONE	ADON	-000 0000	-000 0000
09Eh	ADCON1	ADFM		ADCS<2:0>			_	ADPR	EF<1:0>	000000	000000
09Fh	ADCON2		TRIGSE	L<3:0>		_	_	—	—	0000	0000

SPECIAL FUNCTION REGISTER SUMMARY **TABLE 3-5**:

 Legend:
 x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.

 Note
 1:
 PIC16F1507 only.

 2:
 Unimplemented, read as '1'.

							•	,			
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 3	1										
F8Ch — FE3h	—	Unimplemen	ited							-	-
FE4h	STATUS_ SHAD	—	—	-	_	-	Z_SHAD	DC_SHAD	C_SHAD	xxx	uuu
FE5h	WREG_ SHAD	Working Reg	gister Shadow							XXXX XXXX	uuuu uuuu
FE6h	BSR_ SHAD	-	-	-	Bank Selec	x xxxx	u uuuu				
FE7h	PCLATH_ SHAD	-	Program Co	rogram Counter Latch High Register Shadow							uuuu uuuu
FE8h	FSR0L_ SHAD	Indirect Data	a Memory Add	Iress 0 Low F	Pointer Shado	W				XXXX XXXX	uuuu uuuu
FE9h	FSR0H_ SHAD	Indirect Data	a Memory Add	lress 0 High	Pointer Shad	ow				XXXX XXXX	uuuu uuuu
FEAh	FSR1L_ SHAD	Indirect Data	a Memory Add	Iress 1 Low F	Pointer Shado	w				XXXX XXXX	uuuu uuuu
FEBh	FSR1H_ SHAD	Indirect Data	a Memory Add	lress 1 High	Pointer Shad	ow				XXXX XXXX	uuuu uuuu
FECh	_	Unimplemen	ited							_	_
FEDh	STKPTR	_	—	-	Current Sta	ck Pointer				1 1111	1 1111
FEEh	TOSL	Top-of-Stack	Low byte							XXXX XXXX	uuuu uuuu
FEFh	TOSH	_	Top-of-Stack	High byte						-xxx xxxx	-uuu uuuu

TABLE 3-5: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

 x = unknown, u = unchanged, g = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.
 PIC16F1507 only.
 Unimplemented, read as '1'. Legend: : Note 1:

2:

· ›› · ‹› › › › › › › › · · · · · · · ·	BWTOBC (WDT disabled)
HFINTOSC _	
LFINTOSC	
IRCF <3:0>	$\neq 0$ $X = 0$
System Clock _	
	SINYONE (SSEV enabled)
HFINTOSC	
LFINTOSC -	
IRCF <3:0> _	$\neq 0 \qquad \qquad \chi = 0$
System Clock _	
	SINYOSO EBBYONO Nova of uniana WOY is anabisad ^{eo}
	Craciliane Delevier Series Series
SERVICE.	
	6.9) X

TABLE 6-5: SUMMARY OF REGISTERS ASSOCIATED WITH RESETS

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
BORCON	SBOREN	BORFS			_			BORRDY	53
PCON	STKOVF	STKUNF	_	RWDT	RMCLR	RI	POR	BOR	57
STATUS	_	_	_	TO	PD	Z	DC	С	17
WDTCON	—	_		V	VDTPS<4:0	>		SWDTEN	77

Legend: — = unimplemented bit, reads as '0'. Shaded cells are not used by Resets.

TABLE 6-6: SUMMARY OF CONFIGURATION WORD WITH RESETS

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG1	13:8					CLKOUTEN	BORE	N<1:0>		20
	7:0	CP	MCLRE	PWRTE	WD	TE<1:0>	_	FOSC<1:0>		38
CONFIG2	13:8		_	LVP	DEBUG	LPBOR	BORV	STVREN	—	20
	7:0			_		_	_	WRT	<1:0>	39

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Resets.

R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
TMR1GIE	ADIE	_		_	—	TMR2IE	TMR1IE
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	TMR1GIE: Tir	mer1 Gate Inte	rrupt Enable b	bit			
	1 = Enables t	he Timer1 gate	acquisition in	nterrupt			
	0 = Disables t	the Timer1 gate	e acquisition in	nterrupt			
bit 6	ADIE: Analog	-to-Digital Con	verter (ADC)	Interrupt Enabl	le bit		
	1 = Enables t	he ADC interru	pt				
bit 5-2	Unimplemen	ted: Read as ')´				
bit 1	TMR2IE: TMF	R2 to PR2 Mate	ch Interrupt Er	nable bit			
	1 = Enables tl	he Timer2 to Pl	R2 match inte	errupt			
				errupt			
bit 0	IMR11E: Lime	er1 Overflow In		e bit			
	1 = Enables the Timer1 overflow interrupt						
			mow interrupt				
r							
Note: Bit	PEIE of the IN	TCON register	must be				
set	to enable any p	peripheral inter	rupt.				

REGISTER 7-2: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

10.2.1 READING THE FLASH PROGRAM MEMORY

To read a program memory location, the user must:

- 1. Write the desired address to the PMADRH:PMADRL register pair.
- 2. Clear the CFGS bit of the PMCON1 register.
- 3. Then, set control bit RD of the PMCON1 register.

Once the read control bit is set, the program memory Flash controller will use the second instruction cycle to read the data. This causes the second instruction immediately following the "BSF PMCON1, RD" instruction to be ignored. The data is available in the very next cycle, in the PMDATH:PMDATL register pair; therefore, it can be read as two bytes in the following instructions.

PMDATH:PMDATL register pair will hold this value until another read or until it is written to by the user.

Note:	The two instructions following a program
	memory read are required to be NOPS.
	This prevents the user from executing a
	2-cycle instruction on the next instruction
	after the RD bit is set.

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0			
WPUB7	WPUB6	WPUB5	WPUB4	—	—	—	—			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set		'0' = Bit is clea	ared							

REGISTER 11-11: WPUB: WEAK PULL-UP PORTB REGISTER^{(1),(2)}

bit 7-4	WPUB<7:4> : Weak Pull-up Register bits
	1 = Pull-up enabled
	0 = Pull-up disabled

bit 3-0 Unimplemented: Read as '0'

- Note 1: Global WPUEN bit of the OPTION_REG register must be cleared for individual pull-ups to be enabled.
 - 2: The weak pull-up device is automatically disabled if the pin is configured as an output.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELB	-	—	ANSB5	ANSB4		-	—	—	103
APFCON	-	_	—	_	_	_	CLC1SEL	NCO1SEL	96
LATB	LATB7	LATB6	LATB5	LATB4			_	—	103
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		133
PORTB	RB7	RB6	RB5	RB4	_	_	—	—	102
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	_	_	—	—	102
WPUB	WPUB7	WPUB6	WPUB5	WPUB4	_	_	_	_	104

 TABLE 11-6:
 SUMMARY OF REGISTERS ASSOCIATED WITH PORTB

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTB.**Note 1:**Unimplemented, read as '1'.

TABLE 11-7: SUMMARY OF CONFIGURATION WORD WITH PORTB

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
0015104	13:8	_	_	—	_	CLKOUTEN	BOREN<1:0>		—	20
CONFIG1	7:0	CP	MCLRE	PWRTE	WDTE<1:0>			FOSC	<1:0>	38

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by PORTB.

15.1.5 INTERRUPTS

The ADC module allows for the ability to generate an interrupt upon completion of an Analog-to-Digital conversion. The ADC Interrupt Flag is the ADIF bit in the PIR1 register. The ADC Interrupt Enable is the ADIE bit in the PIE1 register. The ADIF bit must be cleared in software.

- **Note 1:** The ADIF bit is set at the completion of every conversion, regardless of whether or not the ADC interrupt is enabled.
 - **2:** The ADC operates during Sleep only when the FRC oscillator is selected.

This interrupt can be generated while the device is operating or while in Sleep. If the device is in Sleep, the interrupt will wake-up the device. Upon waking from Sleep, the next instruction following the SLEEP instruction is always executed. If the user is attempting to wake-up from Sleep and resume in-line code execution, the GIE and PEIE bits of the INTCON register must be disabled. If the GIE and PEIE bits of the INTCON register are enabled, execution will switch to the Interrupt Service Routine.

15.1.6 RESULT FORMATTING

The 10-bit ADC conversion result can be supplied in two formats, left justified or right justified. The ADFM bit of the ADCON1 register controls the output format.

Figure 15-3 shows the two output formats.

Rev. 10-000054A 7/30/2013 ADRESH ADRESL (ADFM = 0) MSB LSB bit 7 bit 0 bit 7 bit 0 10-bit ADC Result Unimplemented: Read as '0' (ADFM = 1) LSB MSB bit 7 bit 0 bit 7 bit 0 Unimplemented: Read as '0' 10-bit ADC Result

FIGURE 15-3: 10-BIT ADC CONVERSION RESULT FORMAT

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0	—			CHS<4:0>			GO/DONE	ADON	123
ADCON1	ADFM		ADCS<2:0>		_	—	ADPRE	F<1:0>	124
ADCON2		TRIGSE	EL<3:0>		—	_	—		125
ADRESH	ADC Result	Register Hig	h						126, 127
ADRESL	ADC Result Register Low							126, 127	
ANSELA	—			ANSA4	—	ANSA2	ANSA1	ANSA0	99
ANSELB	—	-	ANSB5	ANSB4	—	—	—	-	103
ANSELC	ANSC7	ANSC6	_	_	ANSC3	ANSC2	ANSC1	ANSC0	107
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	64
PIE1	TMR1GIE	ADIE	-	-	—	—	TMR2IE	TMR1IE	65
PIR1	TMR1GIF	ADIF	_	_	—	—	TMR2IF	TMR1IF	68
TRISA	_	_	TRISA5	TRISA4	—(1)	TRISA2	TRISA1	TRISA0	98
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	—	—	—	-	102
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	106
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	_	_	ADFV	R<1:0>	114

TABLE 15-3: SUMMARY OF REGISTERS ASSOCIATED WITH ADC

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends on condition. Shaded cells are not used for ADC module.

Note 1: Unimplemented, read as '1'.

16.1.3 SOFTWARE PROGRAMMABLE PRESCALER

A software programmable prescaler is available for exclusive use with Timer0. The prescaler is enabled by clearing the PSA bit of the OPTION_REG register.

Note:	The Watchdog Timer (WDT) uses its own
	independent prescaler.

There are eight prescaler options for the Timer0 module ranging from 1:2 to 1:256. The prescale values are selectable via the PS<2:0> bits of the OPTION_REG register. In order to have a 1:1 prescaler value for the Timer0 module, the prescaler must be disabled by setting the PSA bit of the OPTION_REG register.

The prescaler is not readable or writable. All instructions writing to the TMR0 register will clear the prescaler.

16.1.4 TIMER0 INTERRUPT

Timer0 will generate an interrupt when the TMR0 register overflows from FFh to 00h. The TMR0IF interrupt flag bit of the INTCON register is set every time the TMR0 register overflows, regardless of whether or not the Timer0 interrupt is enabled. The TMR0IF bit can only be cleared in software. The Timer0 interrupt enable is the TMR0IE bit of the INTCON register.

Note:	The Timer0 interrupt cannot wake the
	processor from Sleep since the timer is
	frozen during Sleep.

16.1.5 8-BIT COUNTER MODE SYNCHRONIZATION

When in 8-Bit Counter mode, the incrementing edge on the T0CKI pin must be synchronized to the instruction clock. Synchronization can be accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the instruction clock. The high and low periods of the external clocking source must meet the timing requirements as shown in **Section 25.0 "Electrical Specifications"**.

16.1.6 OPERATION DURING SLEEP

Timer0 cannot operate while the processor is in Sleep mode. The contents of the TMR0 register will remain unchanged while the processor is in Sleep mode.

16.2 Register Definitions: Option Register

R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1					
WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>						
bit 7							bit 0					
Legend:												
R = Readable	bit	W = Writable	e bit	U = Unimpler	mented bit, read	d as '0'						
u = Bit is unch	nanged	x = Bit is unl	known	-n/n = Value a	at POR and BC	R/Value at all c	other Resets					
'1' = Bit is set		ʻ0' = Bit is cl	eared									
bit 7	WPUEN: We	ak Pull-Up En	able bit									
	1 = All weak	pull-ups are di	sabled (excep	t MCLR, if it is	enabled)							
	0 = Weak pu	II-ups are enal	bled by individu	ial WPUx latch	values							
bit 6	INTEDG: Inte	ITEDG: Interrupt Edge Select bit										
	1 = Interrupt	on rising edge	of INI pin									
hit 5		on laining cugo	urco Soloct bit									
bit 5	1 = Transition	n on TOCKI nir										
	0 = Internal ii	nstruction cycl	e clock (Fosc/	4)								
bit 4	TMR0SE: Tir	TMR0SE: Timer0 Source Edge Select bit										
	1 = Incremer	1 = Increment on high-to-low transition on T0CKI pin										
	0 = Increment on low-to-high transition on T0CKI pin											
bit 3	PSA: Presca	ler Assignmer	it bit									
	1 = Prescaler is not assigned to the Timer0 module											
	0 = Prescale	r is assigned to	o the Timer0 m	odule								
bit 2-0	PS<2:0>: Pre	escaler Rate S	elect bits									
	Bit	Value Timer) Rate									
	(000 1:	2									
	(001 1:	4									
	(ช 16									
		100 1:	32									
		101 1 :	64									

REGISTER 16-1: OPTION_REG: OPTION REGISTER

TABLE 16-1: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER0

1:128

1:256

110

111

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON2	TRIGSEL<3:0>				—		—	_	125
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	64
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		133		
TMR0	Holding Register for the 8-bit Timer0 Count								131*
TRISA	—	—	TRISA5	TRISA4	_(1)	TRISA2	TRISA1	TRISA0	98

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by the Timer0 module. * Page provides register information.

Note 1: Unimplemented, read as '1'.

19.1 PWMx Pin Configuration

All PWM outputs are multiplexed with the PORT data latch. The user must configure the pins as outputs by clearing the associated TRIS bits.

Note:	Clearing the PWMxOE bit will relinquish
	control of the PWMx pin.

19.1.1 FUNDAMENTAL OPERATION

The PWM module produces a 10-bit resolution output. Timer2 and PR2 set the period of the PWM. The PWMxDCL and PWMxDCH registers configure the duty cycle. The period is common to all PWM modules, whereas the duty cycle is independently controlled.

Note:	The Timer2 postscaler is not used in the
	determination of the PWM frequency. The
	postscaler could be used to have a servo
	update rate at a different frequency than
	the PWM output.

All PWM outputs associated with Timer2 are set when TMR2 is cleared. Each PWMx is cleared when TMR2 is equal to the value specified in the corresponding PWMxDCH (8 MSb) and PWMxDCL<7:6> (2 LSb) registers. When the value is greater than or equal to PR2, the PWM output is never cleared (100% duty cycle).

Note:	The PWMxDCH and PWMxDCL registers							
	are double buffered. The buffers are							
	updated when Timer2 matches PR2. Care							
	should be taken to update both registers							
	before the timer match occurs.							

19.1.2 PWM OUTPUT POLARITY

The output polarity is inverted by setting the PWMxPOL bit of the PWMxCON register.

19.1.3 PWM PERIOD

The PWM period is specified by the PR2 register of Timer2. The PWM period can be calculated using the formula of Equation 19-1.

EQUATION 19-1: PWM PERIOD

 $PWM Period = [(PR2) + 1] \bullet 4 \bullet Tosc \bullet$ (TMR2 Prescale Value)

Note: Tosc = 1/Fosc

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The PWM output is active. (Exception: When the PWM duty cycle = 0%, the PWM output will remain inactive.)
- The PWMxDCH and PWMxDCL register values are latched into the buffers.

Note:	The Timer2 postscaler has no effect on
	the PWM operation.

19.1.4 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to the PWMxDCH and PWMxDCL register pair. The PWMxDCH register contains the eight MSbs and the PWMxDCL<7:6>, the two LSbs. The PWMxDCH and PWMxDCL registers can be written to at any time.

Equation 19-2 is used to calculate the PWM pulse width.

Equation 19-3 is used to calculate the PWM duty cycle ratio.

EQUATION 19-2: PULSE WIDTH

 $Pulse Width = (PWMxDCH:PWMxDCL<7:6>) \bullet$

TOSC • (TMR2 Prescale Value)

Note: Tosc = 1/Fosc

EQUATION 19-3: DUTY CYCLE RATIO

$$Duty Cycle Ratio = \frac{(PWMxDCH:PWMxDCL<7:6>)}{4(PR2+1)}$$

The 8-bit timer TMR2 register is concatenated with the two Least Significant bits of 1/Fosc, adjusted by the Timer2 prescaler to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1.

Figure 19-2 shows a waveform of the PWM signal when the duty cycle is set for the smallest possible pulse.

FIGURE 19-2: PWM OUTPUT

19.1.5 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 19-4.

EQUATION 19-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PR2 + I)]}{\log(2)}$$
 bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

TABLE 19-1:	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)
-------------	---

PWM Frequency	0.31 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	64	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 19-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	0.31 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	64	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

19.1.6 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the PWMx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

19.1.7 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency (Fosc). Any changes in the system clock frequency will result in changes to the PWM frequency. Refer to for additional details.

19.1.8 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the PWM registers to their Reset states.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u				
LCxG3D4T	LCxG3D4N	LCxG3D3T	LCxG3D3N	LCxG3D2T	LCxG3D2N	LCxG3D1T	LCxG3D1N				
bit 7							bit 0				
[
Legend:											
R = Readable bit		W = Writable	bit	U = Unimplemented bit, read as '0'							
u = Bit is unchanged		x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets							
'1' = Bit is set		'0' = Bit is cleared									
bit 7	LCxG3D4T: (Gate 3 Data 4 1	rue (non-inve	rted) bit							
	1 = ICXd4I is	gated into loxe	j3 Jeva3								
bit 6		Gate 3 Data 4 I	Negated (inve	rted) hit							
bit o	1 = lcxd4N is	ated into Icx	13	icu) bit							
	0 = lcxd4N is	not gated into	lcxg3								
bit 5	LCxG3D3T: (Gate 3 Data 3 1	rue (non-inve	rted) bit							
	1 = Icxd3T is	gated into lcxg	j 3								
	0 = Icxd3T is	not gated into	lcxg3								
bit 4	LCxG3D3N:	Gate 3 Data 3 I	Negated (inver	rted) bit							
1 = lcxd3N is gated into lcxg3											
h # 0	0 = Icxd3N is not gated into Icxg3										
DIT 3	It 3 LCXG3D21: Gate 3 Data 2 True (non-inverted) bit										
$\perp = cxu2 $ is gated into $ cxu3 $ 0 = $ cxu2 $ is not gated into $ cxu3 $											
bit 2	LCxG3D2N:	Gate 3 Data 2	Negated (inve	rted) bit							
	1 = Icxd2N is gated into Icxg3										
0 = lcxd2N is not gated into lcxg3											
bit 1	LCxG3D1T: Gate 3 Data 1 True (non-inverted) bit										
1 = Icxd1T is gated into Icxg3											
	0 = lcxd1T is	not gated into	lcxg3								
bit 0	bit 0 LCxG3D1N: Gate 3 Data 1 Negated (inverted) bit										
	1 = Icxd1N is	gated into lcx	j3 Jeva3								
		The galed Into	10,40								

REGISTER 20-7: CLCxGLS2: GATE 3 LOGIC SELECT REGISTER

TABLE 25-2: SUPPLY CURRENT (IDD)^(1,2)

PIC16LF1507		Standard Operating Conditions (unless otherwise stated)						
PIC16F1								
Param. Device			_ .			Conditions		
No.	Characteristics	win.	Тур†	мах.	Units	VDD	Note	
D013		-	30	65	μA	1.8	Fosc = 1 MHz,	
		—	55	100	μA	3.0	External Clock (ECM), Medium-Power mode	
D013		_	65	110	μA	2.3	Fosc = 1 MHz,	
			85	140	μA	3.0	External Clock (ECM), Modium Rower mode	
		—	115	190	μA	5.0		
D014		_	115	190	μA	1.8	Fosc = 4 MHz,	
		—	210	310	μA	3.0	External Clock (ECM), Medium-Power mode	
D014		_	180	270	μA	2.3	Fosc = 4 MHz,	
		—	240	365	μA	3.0	External Clock (ECM),	
		—	295	460	μA	5.0	Medium-Power mode	
D015		—	3.2	12	μA	1.8	Fosc = 31 kHz,	
		—	5.4	20	μA	3.0	LFINTOSC, -40°C ≤ Ta ≤ +85°C	
D015		_	13	28	μA	2.3	Fosc = 31 kHz,	
			15	30	μA	3.0	LFINTOSC,	
		—	17	36	μA	5.0	-40 C \sec IA \sec +65 C	
D016			215	360	μA	1.8	Fosc = 500 kHz,	
		—	275	480	μA	3.0	HFINTOSC	
D016			270	450	μA	2.3	Fosc = 500 kHz,	
			300	500	μA	3.0	HFINTOSC	
		—	350	620	μA	5.0		
D017*		_	410	660	μA	1.8	Fosc = 8 MHz,	
		—	630	970	μA	3.0	HFINTOSC	
D017*			530	750	μA	2.3	Fosc = 8 MHz,	
			660	1100	μA	3.0	HFINTOSC	
		—	730	1200	μA	5.0		
D018			600	940	μA	1.8	Fosc = 16 MHz,	
		_	970	1400	μA	3.0	HFINTOSC	
D018			780	1200	μA	2.3	Fosc = 16 MHz,	
		_	1000	1550	μA	3.0	HFINTOSC	
		_	1090	1700	μA	5.0		

These parameters are characterized but not tested.

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance t only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

FIGURE 26-7: IDD TYPICAL, EXTERNAL CLOCK (ECM), MEDIUM POWER MODE, PIC16F1507 ONLY

FIGURE 26-8: IDD MAXIMUM, EXTERNAL CLOCK (ECM), MEDIUM POWER MODE, PIC16F1507 ONLY

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	[X] ⁽¹⁾ - X │ │ Tape and Reel Temperat Option Range	/XX 	XXX Pattern	Exa a)	amp Pl(Taj Inc SC	les: C16LF1507T - I/SO pe and Reel, lustrial temperature, DIC package		
Device:	PIC16LF1507, PIC16F150	7		b)	PIC16F1507 - I/P Industrial temperature PDIP package			
Tape and Reel Option:	Blank = Standard packag T = Tape and Reel ⁽¹⁾	ng (tube or tray)		c)	PIC Ex QF QT	C16F1507 - E/ML 298 tended temperature, FN package FP pattern #298		
Temperature Range:	$ \begin{array}{rcl} $	C (Industrial) C (Extended)						
Package: Pattern:	GZ = Micro Lead Frar ML = Micro Lead Frar P = Plastic DIP SO = SOIC SS = SSOP QTP, SQTP, Code or Speci (blank otherwise)	ne (4x4x0.5mm) (UQ ne (4x4x0.9mm) (QFI al Requirements	FN) N)	Not	e 1: 2:	Tape and Reel identifier only appears in the catalog part number description. This identifier is used for ordering purposes and is not printed on the device package. Check with your Microchip Sales Office for package availability with the Tape and Reel option. For other small form-factor package availability and marking information, please visit www.microchip.com/packaging or contact your local sales office.		