E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

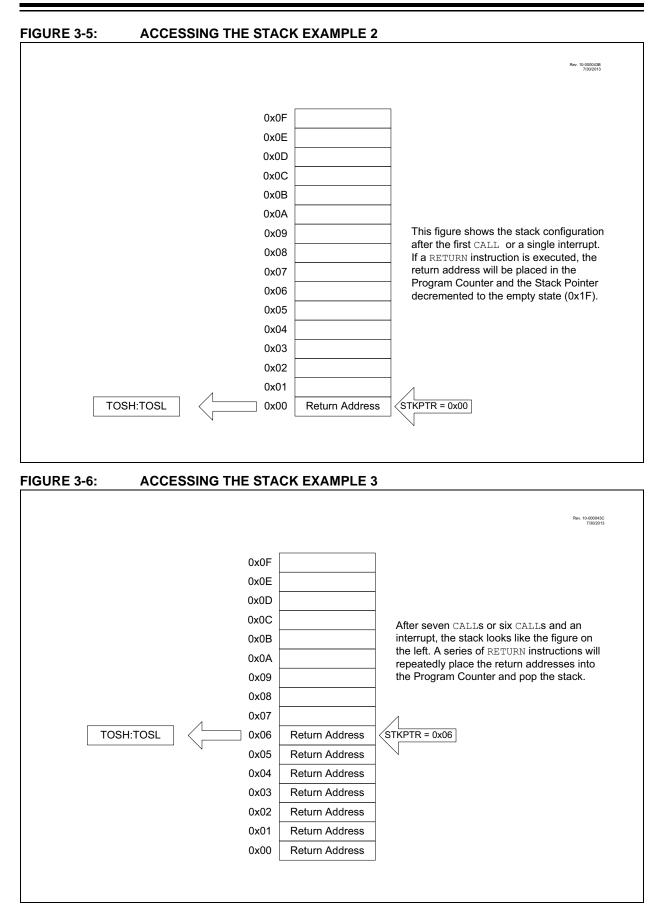
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 × 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	20-DIP (0.300", 7.62mm)
Supplier Device Package	20-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1507-i-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type		Description
RA0/AN0/ICSPDAT	RA0	TTL	CMOS	General purpose I/O.
	AN0	AN	_	A/D Channel input.
	ICSPDAT	ST	CMOS	ICSP™ Data I/O.
RA1/AN1/VREF+/ICSPCLK	RA1			General purpose I/O.
	AN1	AN		A/D Channel input.
	VREF+	AN		A/D Positive Voltage Reference input.
	ICSPCLK	ST		Serial Programming Clock.
RA2/AN2/T0CKI/INT/PWM3/	RA2	ST	CMOS	General purpose I/O.
CLC1 ⁽¹⁾ /CWG1FLT	AN2	AN		A/D Channel input.
	TOCKI	ST		Timer0 clock input.
	INT	ST		External interrupt.
	PWM3		CMOS	Pulse Width Module source output.
	CLC1	—	CMOS	Configurable Logic Cell source output.
	CWG1FLT	ST	—	Complementary Waveform Generator Fault input.
RA3/CLC1IN0/VPP/MCLR	RA3	TTL		General purpose input.
	CLC1IN0	ST		Configurable Logic Cell source input.
	Vpp	HV		Programming voltage.
	MCLR	ST		Master Clear with internal pull-up.
RA4/AN3/CLKOUT/T1G	RA4	TTL	CMOS	General purpose I/O.
	AN3	AN		A/D Channel input.
	CLKOUT	_	CMOS	Fosc/4 output.
	T1G	ST		Timer1 Gate input.
RA5/CLKIN/T1CKI/NCO1CLK	RA5	TTL	CMOS	General purpose I/O.
	CLKIN	CMOS		External clock input (EC mode).
	T1CKI	ST	—	Timer1 clock input.
	NCO1CLK	ST		Numerically Controlled Oscillator Clock source input.
RB4/AN10	RB4	TTL	CMOS	General purpose I/O.
	AN10	AN	—	A/D Channel input.
RB5/AN11	RB5	TTL	CMOS	General purpose I/O.
	AN11	AN		A/D Channel input.
RB6	RB6	TTL	CMOS	General purpose I/O.
RB7	RB7	TTL	CMOS	General purpose I/O.
RC0/AN4/CLC2	RC0	TTL	CMOS	General purpose I/O.
	AN4	AN		A/D Channel input.
	CLC2		CMOS	Configurable Logic Cell source output.
RC1/AN5/PWM4/NCO1 ⁽¹⁾	RC1	TTL	CMOS	General purpose I/O.
	AN5	AN	—	A/D Channel input.
	PWM4	—	CMOS	Pulse Width Module source output.
	NCO1	—	CMOS	Numerically Controlled Oscillator is source output.
RC2/AN6	RC2	TTL	CMOS	General purpose I/O.
	AN6	AN	_	A/D Channel input.

TABLE 1-2. PIC16(L)F1507 PINOUT DESCRIPTION


TTL = TTL compatible input ST = Schmitt Trigger input with CMOS levels I^2C^{TM} = Schmitt Trigger input with I^2C HV = High Voltage XTAL = Crystal levels

Note 1: Alternate pin function selected with the APFCON (Register 11-1) register.

TABLE 3-5:	SPECIAL FUNCTION REGISTER SUMMARY ((CONTINUED)	

TABLE	3-5: S	PECIAL F	UNCTIO	N REGIS	TER SUI	MMARY (UED)			
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 4											
20Ch	WPUA	_	_	WPUA5	WPUA4	WPUA3	WPUA2	WPUA1	WPUA0	11 1111	11 1111
20Dh	WPUB	WPUB7	WPUB6	WPUB5	WPUB4	_	_	_	_	1111	1111
20Eh to 21Fh	_	Unimplemen	ted							_	_
Bank 5											
28Ch											
to 29Fh	_	Unimplemen	ted							—	—
Bank 6											
30Ch to 31Fh	_	Unimplemen	ted							-	-
Bank 7		•									
38Ch to 390h	_	Unimplemen	Unimplemented						_	_	
391h	IOCAP	_	—	IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0	00 0000	00 0000
392h	IOCAN	_	_	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0	00 0000	00 0000
393h	IOCAF	_	_	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0	00 0000	00 0000
394h	IOCBP	IOCBP7	IOCBP6	IOCBP5	IOCBP4	_	_	—	_	0000	0000
395h	IOCBN	IOCBN7	IOCBN6	IOCBN5	IOCBN4		—	—	_	0000	0000
396h	IOCBF	IOCBF7	IOCBF6	IOCBF5	IOCBF4	-	—	—	—	0000	0000
397h to 39Fh	_	Unimplemen	Unimplemented							_	_
Bank 8		_									
40Ch to 41Fh	_	Unimplemen	ted							-	_
Bank 9											
48Ch to 497h	_	Unimplemen	Unimplemented						_	_	
498h	NCO1ACCL		NCO1ACC<7:0>							0000 0000	0000 0000
499h	NCO1ACCH		NCO1ACC<15:8>							0000 0000	0000 0000
49Ah	NCO1ACCU		NCO1ACC<19:16>							0000 0000	0000 0000
49Bh	NCO1INCL				NCO1	INC<7:0>				0000 0001	0000 0001
49Ch	NCO1INCH				NCO1I	NC<15:8>				0000 0000	0000 0000
49Dh	_	Unimplemen	ted							_	_
49Eh	NCO1CON	N1EN	N10E	N1OUT	N1POL	_	_	_	N1PFM	00000	00000
49Fh	NCO1CLK		N1PWS<2:0>		—	_	_	N1Ck	(S<1:0>	000000	000000

x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'. PIC16F1507 only. Unimplemented, read as '1'. Legend: Note 1: 2:

5.0 OSCILLATOR MODULE

5.1 Overview

The oscillator module has a wide variety of clock sources and selection features that allow it to be used in a wide range of applications while maximizing performance and minimizing power consumption. Figure 5-1 illustrates a block diagram of the oscillator module.

Clock sources can be supplied from an external clock or from one of two internal oscillators, with a choice of speeds selectable via software. Additional clock features include:

- Selectable system clock source between external or internal sources via software.
- Fast start-up oscillator allows internal circuits to power-up and stabilize before switching to the 16 MHz HFINTOSC

The oscillator module can be configured in one of the following clock modes.

- 1. ECL External Clock Low-Power mode (0 MHz to 0.5 MHz)
- 2. ECM External Clock Medium Power mode (0.5 MHz to 4 MHz)
- 3. ECH External Clock High-Power mode (4 MHz to 20 MHz)
- 4. INTOSC Internal oscillator (31 kHz to 16 MHz)

Clock Source modes are selected by the FOSC<1:0> bits in the Configuration Words. The FOSC bits determine the type of oscillator that will be used when the device is first powered.

The ECH, ECM, and ECL clock modes rely on an external logic level signal as the device clock source.

The INTOSC internal oscillator block produces a low and high-frequency clock source, designated LFINTOSC and HFINTOSC. (See Internal Oscillator Block, Figure 5-1). A wide selection of device clock frequencies may be derived from these two clock sources.

		///// q1 q2 q3 q4				///// 4 q1 q2 q3 q4	∩ Q1 Q2 Q3 Q4	∩ Q1 Q2 Q3 Q4
			I I I Interru during	l l l pt Sampled Q1				
Interrupt								
GIE								
PC	PC-1	РС	PC	+1	0004h	0005h		
Execute	1-Cycle Inst	ruction at PC	Inst(PC)	NOP	NOP	Inst(0004h)		
Interrupt								
GIE								
PC	PC-1	PC	PC+1/FSR ADDR	New PC/ PC+1	0004h	0005h		
Execute	2-Cycle Inst	ruction at PC	Inst(PC)	NOP	NOP	Inst(0004h)		
Interrupt								
GIE								
PC	PC-1	PC	FSR ADDR	PC+1	PC+2	0004h	0005h	
Execute	3-Cycle Inst	ruction at PC	INST(PC)	NOP	NOP	NOP	Inst(0004h)	Inst(0005h)
Interrupt								
GIE								
PC	PC-1	PC	FSR ADDR	PC+1	P	Q+2	0004h	0005h
Execute	3-Cycle Inst	ruction at PC	INST(PC)	NOP	NOP	NOP	NOP	Inst(0004h)

7.3 Interrupts During Sleep

Some interrupts can be used to wake from Sleep. To wake from Sleep, the peripheral must be able to operate without the system clock. The interrupt source must have the appropriate Interrupt Enable bit(s) set prior to entering Sleep.

On waking from Sleep, if the GIE bit is also set, the processor will branch to the interrupt vector. Otherwise, the processor will continue executing instructions after the SLEEP instruction. The instruction directly after the SLEEP instruction will always be executed before branching to the ISR. Refer to **Section 8.0 "Power-Down Mode (Sleep)"** for more details.

7.4 INT Pin

The INT pin can be used to generate an asynchronous edge-triggered interrupt. This interrupt is enabled by setting the INTE bit of the INTCON register. The INTEDG bit of the OPTION_REG register determines on which edge the interrupt will occur. When the INTEDG bit is set, the rising edge will cause the interrupt. When the INTEDG bit is clear, the falling edge will cause the interrupt. The INTF bit of the INTCON register will be set when a valid edge appears on the INT pin. If the GIE and INTE bits are also set, the processor will redirect program execution to the interrupt vector.

7.5 Automatic Context Saving

Upon entering an interrupt, the return PC address is saved on the stack. Additionally, the following registers are automatically saved in the shadow registers:

- W register
- STATUS register (except for TO and PD)
- BSR register
- FSR registers
- PCLATH register

Upon exiting the Interrupt Service Routine, these registers are automatically restored. Any modifications to these registers during the ISR will be lost. If modifications to any of these registers are desired, the corresponding shadow register should be modified and the value will be restored when exiting the ISR. The shadow registers are available in Bank 31 and are readable and writable. Depending on the user's application, other registers may also need to be saved.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	64
OPTION_REG	WPUEN	INTEDG	TMR0CS	TMR0SE	PSA		PS<2:0>		133
PIE1	TMR1GIE	ADIE	_	_		—	TMR2IE	TMR1IE	65
PIE2		_	_	_	—	NCO1IE	_	_	66
PIE3		_	_	_	—	—	CLC2IE	CLC1IE	67
PIR1	TMR1GIF	ADIF	_	_		—	TMR2IF	TMR1IF	68
PIR2	_			_		NCO1IF			69
PIR3	_	_	_	_	_	_	CLC2IF	CLC1IF	70

TABLE 7-1: SUMMARY OF REGISTERS ASSOCIATED WITH INTERRUPTS

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by interrupts.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	U-0	U-0	U-0	U-0
LATB7	LATB6	LATB5	LATB4	—	—	—	—
bit 7						•	bit 0
Legend:							
R = Readable	bit	W = Writable	U = Unimplemented bit, read as '0'				
u = Bit is unch	anged x = Bit is unknown -n/n = Value at POR and BOR/Value at all other F				ther Resets		

REGISTER 11-9: LATB: PORTB DATA LATCH REGISTER

bit 7-4	LATB<7:4>: RB<7:4> Output Latch Value bits ⁽¹⁾
---------	---

bit 3-0 Unimplemented: Read as '0'

1' = Bit is set

Note 1: Writes to PORTB are actually written to corresponding LATB register. Reads from PORTB register is return of actual I/O pin values.

REGISTER 11-10: ANSELB: PORTB ANALOG SELECT REGISTER

'0' = Bit is cleared

U-0	U-0	R/W-1/1	R/W-1/1	U-0	U-0	U-0	U-0
—	_	ANSB5	ANSB4	—	—	—	
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-4 ANSB<5:4>: Analog Select between Analog or Digital Function on pins RB<5:4>, respectively

- 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled.
- 0 = Digital I/O. Pin is assigned to port or digital special function.

bit 3-0 Unimplemented: Read as '0'

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

REGISTER 11-15: ANSELC: PORTC ANALOG SELECT REGISTER

R/W-1/1	R/W-1/1	U-0	U-0	R/W-1/1	R/W-1/1	R/W-1/1	R/W-1/1
ANSC7	ANSC6	—	—	ANSC3	ANSC2	ANSC1	ANSC0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6	 ANSC<7:6>: Analog Select between Analog or Digital Function on pins RC<7:6>, respectively 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled. 0 = Digital I/O. Pin is assigned to port or digital special function.
bit 5-4	Unimplemented: Read as '0'
bit 3-0	 ANSC<3:0>: Analog Select between Analog or Digital Function on pins RC<3:0>, respectively 1 = Analog input. Pin is assigned as analog input⁽¹⁾. Digital input buffer disabled. 0 = Digital I/O. Pin is assigned to port or digital special function.

Note 1: When setting a pin to an analog input, the corresponding TRIS bit must be set to Input mode in order to allow external control of the voltage on the pin.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELC	ANSC7	ANSC6		_	ANSC3	ANSC2	ANSC1	ANSC0	107
LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	106
PORTC	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	106
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	106

Legend: x = unknown, u = unchanged, - = unimplemented locations read as '0'. Shaded cells are not used by PORTC.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ADCON0	—			CHS<4:0>			GO/DONE	ADON	123
ADCON1	ADFM		ADCS<2:0>		_	—	ADPRE	:F<1:0>	124
ADCON2		TRIGSE	EL<3:0>		-	—	—	_	125
ADRESH	ADC Result	Register Hig	h						126, 127
ADRESL	ADC Result	Register Lov	v						126, 127
ANSELA	—	_	_	ANSA4	_	ANSA2	ANSA1	ANSA0	99
ANSELB	_	_	ANSB5	ANSB4	-	—	—	_	103
ANSELC	ANSC7	ANSC6	_	_	ANSC3	ANSC2	ANSC1	ANSC0	107
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	64
PIE1	TMR1GIE	ADIE	_	-	-	—	TMR2IE	TMR1IE	65
PIR1	TMR1GIF	ADIF	_	_	_	—	TMR2IF	TMR1IF	68
TRISA	_	_	TRISA5	TRISA4	—(1)	TRISA2	TRISA1	TRISA0	98
TRISB	TRISB7	TRISB6	TRISB5	TRISB4	_	_	_		102
TRISC	TRISC7	TRISC6	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	106
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	_	_	ADFV	R<1:0>	114

TABLE 15-3: SUMMARY OF REGISTERS ASSOCIATED WITH ADC

Legend: x = unknown, u = unchanged, - = unimplemented read as '0', q = value depends on condition. Shaded cells are not used for ADC module.

Note 1: Unimplemented, read as '1'.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	—	—		ANSA4	_	ANSA2	ANSA1	ANSA0	99
INTCON	GIE	PEIE	TMR0IE	INTE	IOCIE	TMR0IF	INTF	IOCIF	64
PIE1	TMR1GIE	ADIE	_	_	_	_	TMR2IE	TMR1IE	65
PIR1	TMR1GIF	ADIF	_	_	_	_	TMR2IF	TMR1IF	68
TMR1H	Holding Register for the Most Significant Byte of the 16-bit TMR1 Count								138*
TMR1L	Holding Regi	ster for the Le	ast Significar	nt Byte of the	16-bit TMR1	Count			138*
TRISA	_	_	TRISA5	TRISA4	(1)	TRISA2	TRISA1	TRISA0	98
T1CON	TMR1C	S<1:0>	T1CKP	S<1:0>	_	T1SYNC	—	TMR10N	142
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T1GGO/ DONE	T1GVAL	—	T1GSS0	143

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by the Timer1 module. * Page provides register information.

Note 1: Unimplemented, read as '1'.

18.1 Timer2 Operation

The clock input to the Timer2 module is the system instruction clock (Fosc/4).

TMR2 increments from 00h on each clock edge.

A 4-bit counter/prescaler on the clock input allows direct input, divide-by-4 and divide-by-16 prescale options. These options are selected by the prescaler control bits, T2CKPS<1:0> of the T2CON register. The value of TMR2 is compared to that of the Period register, PR2, on each clock cycle. When the two values match, the comparator generates a match signal as the timer output. This signal also resets the value of TMR2 to 00h on the next cycle and drives the output counter/ postscaler (see **Section 18.2 "Timer2 Interrupt**").

The TMR2 and PR2 registers are both directly readable and writable. The TMR2 register is cleared on any device Reset, whereas the PR2 register initializes to FFh. Both the prescaler and postscaler counters are cleared on the following events:

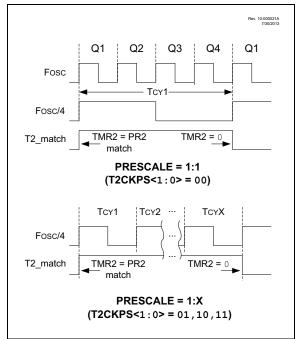
- · a write to the TMR2 register
- · a write to the T2CON register
- Power-on Reset (POR)
- Brown-out Reset (BOR)
- MCLR Reset
- Watchdog Timer (WDT) Reset
- Stack Overflow Reset
- Stack Underflow Reset
- RESET Instruction

Note:	TMR2	is	not	cleared	when	T2CON	is
	written.						

18.2 Timer2 Interrupt

Timer2 can also generate an optional device interrupt. The Timer2 output signal (T2_match) provides the input for the 4-bit counter/postscaler. This counter generates the TMR2 match interrupt flag which is latched in TMR2IF of the PIR1 register. The interrupt is enabled by setting the TMR2 Match Interrupt Enable bit, TMR2IE of the PIE1 register.

A range of 16 postscale options (from 1:1 through 1:16 inclusive) can be selected with the postscaler control bits, T2OUTPS<3:0>, of the T2CON register.


18.3 Timer2 Output

The output of TMR2 is T2_match. T2_match is available to the following peripherals:

- Configurable Logic Cell (CLC)
- Numerically Controlled Oscillator (NCO)
- Pulse Width Modulator (PWM)

The T2_match signal is synchronous with the system clock. Figure 18-3 shows two examples of the timing of the T2_match signal relative to Fosc and prescale value, T2CKPS<1:0>. The upper diagram illustrates 1:1 prescale timing and the lower diagram, 1:X prescale timing.

FIGURE 18-3: T2_MATCH TIMING DIAGRAM

18.4 Timer2 Operation During Sleep

Timer2 cannot be operated while the processor is in Sleep mode. The contents of the TMR2 and PR2 registers will remain unchanged while the processor is in Sleep mode.

20.1 CLCx Setup

Programming the CLCx module is performed by configuring the four stages in the logic signal flow. The four stages are:

- Data selection
- Data gating
- Logic function selection
- Output polarity

Each stage is setup at run time by writing to the corresponding CLCx Special Function Registers. This has the added advantage of permitting logic reconfiguration on-the-fly during program execution.

20.1.1 DATA SELECTION

There are 16 signals available as inputs to the configurable logic. Four 8-input multiplexers are used to select the inputs to pass on to the next stage. The 16 inputs to the multiplexers are arranged in groups of four. Each group is available to two of the four multiplexers, in each case, paired with a different group. This arrangement makes possible selection of up to two from a group without precluding a selection from another group.

Data selection is through four multiplexers as indicated on the left side of Figure 20-2. Data inputs in the figure are identified by a generic numbered input name.

Table 20-1 correlates the generic input name to the actual signal for each CLC module. The columns labeled lcxd1 through lcxd4 indicate the MUX output for the selected data input. D1S through D4S are abbreviations for the MUX select input codes: LCxD1S<2:0> through LCxD4S<2:0>, respectively. Selecting a data input in a column excludes all other inputs in that column.

Data inputs are selected with CLCxSEL0 and CLCxSEL1 registers (Register 20-3 and Register 20-5, respectively).

Note: Data selections are undefined at power-up.

Data Input	lcxd1 D1S	lcxd2 D2S	lcxd3 D3S	lcxd4 D4S	CLC 1	CLC 2	
LCx_in[0]	000	_	_	100	CLC1IN0	CLC2IN0	
LCx_in[1]	001	_	_	101	CLC1IN1	CLC2IN1	
LCx_in[2]	010	_	_	110	Reserved	Reserved	
LCx_in[3]	011	_	_	111	Reserved	Reserved	
LCx_in[4]	100	000	_	—	Fosc	Fosc	
LCx_in[5]	101	001	_	—	T0_overflow	T0_overflow	
LCx_in[6]	110	010	_	—	T1_overflow	T1_overflow	
LCx_in[7]	111	011	_	—	T2_match	T2_match	
LCx_in[8]	—	100	000	—	LC1_out	LC1_out	
LCx_in[9]	—	101	001	—	LC2_out	LC2_out	
LCx_in[10]	—	110	010	—	Reserved	Reserved	
LCx_in[11]	—	111	011	—	Reserved	Reserved	
LCx_in[12]	—	_	100	000	NCO1_out	LFINTOSC	
LCx_in[13]	_	_	101	001	HFINTOSC	FRC	
LCx_in[14]	_	_	110	010	PWM3_out	PWM1_out	
LCx_in[15]	_	_	111	011	PWM4_out	PWM2_out	

TABLE 20-1: CLCx DATA INPUT SELECTION

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxG2D4T	LCxG2D4N	LCxG2D3T	LCxG2D3N	LCxG2D2T	LCxG2D2N	LCxG2D1T	LCxG2D1N
bit 7							bit 0
Legend:							
R = Readable		W = Writable		•	mented bit, read		
u = Bit is unch	anged	x = Bit is unkr		-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7		Gate 2 Data 4 1 gated into Icxo	•	rted) bit			
		not gated into					
bit 6		Gate 2 Data 4 I	•	ted) bit			
		s gated into lcxo not gated into					
bit 5	LCxG2D3T: (Gate 2 Data 3 1	rue (non-inve	rted) bit			
		gated into lcxg not gated into					
bit 4	LCxG2D3N:	Gate 2 Data 3 I	Negated (inver	rted) bit			
		s gated into lcxg not gated into					
bit 3	LCxG2D2T: (Gate 2 Data 2 T	rue (non-invei	rted) bit			
		gated into lcxg not gated into					
bit 2	LCxG2D2N:	Gate 2 Data 2 I	Negated (inver	ted) bit			
		s gated into lcxg not gated into					
bit 1	LCxG2D1T: (Gate 2 Data 1 T	rue (non-invei	rted) bit			
	 1 = lcxd1T is gated into lcxg2 0 = lcxd1T is not gated into lcxg2 						
bit 0	LCxG2D1N:	Gate 2 Data 1 I	Negated (inver	ted) bit			
		s gated into lcx					

REGISTER 20-6: CLCxGLS1: GATE 2 LOGIC SELECT REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
LCxG3D4T	LCxG3D4N	LCxG3D3T	LCxG3D3N	LCxG3D2T	LCxG3D2N	LCxG3D1T	LCxG3D1N	
bit 7			•				bit	
• • • •								
Legend: R = Readable I	ait	W = Writable	hit	II – Unimplor	nented bit, read	L ac. 'O'		
				•			thar Depote	
u = Bit is uncha	angeo	x = Bit is unkr		-n/n = value a	at POR and BO	R/value at all c	iner Resets	
'1' = Bit is set		'0' = Bit is cle	ared					
bit 7	LCxG3D4T:	Gate 3 Data 4 1	Frue (non-invei	rted) bit				
		gated into lcxo		,				
	0 = Icxd4T is	not gated into	lcxg3					
bit 6	LCxG3D4N:	Gate 3 Data 4	Negated (inver	rted) bit				
	1 = Icxd4N is	gated into Icx	g3					
	0 = Icxd4N is	not gated into	lcxg3					
bit 5	LCxG3D3T: G	Gate 3 Data 3 1	Frue (non-invei	rted) bit				
		gated into lcxg						
	0 = Icxd3T is	not gated into	lcxg3					
bit 4		Gate 3 Data 3	•	rted) bit				
		gated into lcxg3						
		not gated into	•					
bit 3		Gate 3 Data 2 1		rted) bit				
		gated into lcxg						
1.11.0		not gated into	•					
bit 2		Gate 3 Data 2	•	rted) bit				
		2N is gated into lcxg3 2N is not gated into lcxg3						
hit 1		•	•	rtad) bit				
		Gate 3 Data 1 True (non-inverted) bit						
	1 = lcxd1T is gated into lcxg3 0 = lcxd1T is not gated into lcxg3							
bit 0		Gate 3 Data 1	•	rted) hit				
Situ		gated into lcx	•					
	0 = lcxd1N is							

REGISTER 20-7: CLCxGLS2: GATE 3 LOGIC SELECT REGISTER

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a 2-cycle instruction.

GOTO	Unconditional Branch			
Syntax:	[<i>label</i>] GOTO k			
Operands:	$0 \leq k \leq 2047$			
Operation:	$k \rightarrow PC<10:0>$ PCLATH<6:3> \rightarrow PC<14:11>			
Status Affected:	None			
Description:	GOTO is an unconditional branch. The 11-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a 2-cycle instruction.			

INCFSZ	Increment f, Skip if 0			
Syntax:	[<i>label</i>] INCFSZ f,d			
Operands:	$0 \le f \le 127$ $d \in [0,1]$			
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0			
Status Affected:	None			
Description:	The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', a NOP is executed instead, making it a 2-cycle instruction.			

IORLW	Inclusive OR literal with W				
Syntax:	[<i>label</i>] IORLW k				
Operands:	$0 \leq k \leq 255$				
Operation:	(W) .OR. $k \rightarrow$ (W)				
Status Affected:	Z				
Description:	The contents of the W register are OR'ed with the 8-bit literal 'k'. The result is placed in the W register.				

INCF	Increment f				
Syntax:	[<i>label</i>] INCF f,d				
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$				
Operation:	(f) + 1 \rightarrow (destination)				
Status Affected:	Z				
Description:	tion: The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.				

IORWF	Inclusive OR W with f					
Syntax:	[<i>label</i>] IORWF f,d					
Operands:	$0 \le f \le 127$ $d \in [0,1]$					
Operation:	(W) .OR. (f) \rightarrow (destination)					
Status Affected:	Z					
Description:	Inclusive OR the W register with regis- ter 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.					

25.3 DC Characteristics

TABLE 25-1: SUPPLY VOLTAGE

PIC16LF1507		Standard Operating Conditions (unless otherwise stated)						
PIC16F1507								
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
D001	Vdd	Supply Voltage						
			VDDMIN 1.8 2.5	_	VDDMAX 3.6 3.6	V V	Fosc ≤ 16 MHz Fosc ≤ 20 MHz	
D001			2.3 2.5	_	5.5 5.5	V V	Fosc ≤ 16 MHz Fosc ≤ 20 MHz	
D002*	Vdr	RAM Data Retention Voltage ⁽¹⁾						
			1.5		—	V	Device in Sleep mode	
D002*			1.7		_	V	Device in Sleep mode	
D002A*	VPOR	Power-on Reset Release Voltage ⁽²⁾						
			—	1.6	—	V		
D002A*				1.6	—	V		
D002B*	VPORR*	Power-on Reset Rearm Voltage ⁽²⁾						
				0.8	_	V		
D002B*				1.5	—	V		
D003	VFVR	Fixed Voltage Reference Voltage						
		1x gain (1.024V nominal) 2x gain (2.048V nominal) 4x gain (4.096V nominal)			+4 +7	% %	$ \begin{array}{l} V{\rm DD} \geq 2.5V, \ -40^{\circ}{\rm C} \leq {\rm TA} \leq +85^{\circ}{\rm C} \\ V{\rm DD} \geq 2.5V, \ -40^{\circ}{\rm C} \leq {\rm TA} \leq +85^{\circ}{\rm C} \\ V{\rm DD} \geq 4.75V, \ -40^{\circ}{\rm C} \leq {\rm TA} \leq +85^{\circ}{\rm C} \end{array} $	
D004*	SVDD	VDD Rise Rate ⁽²⁾	0.05	—	—	V/ms	Ensures that the Power-on Reset signal is released properly.	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

2: See Figure 25-3, POR and POR REARM with Slow Rising VDD.

FIGURE 26-3: IDD, EXTERNAL CLOCK (ECL), LOW-POWER MODE, Fosc = 500 kHz, PIC16LF1507 ONLY

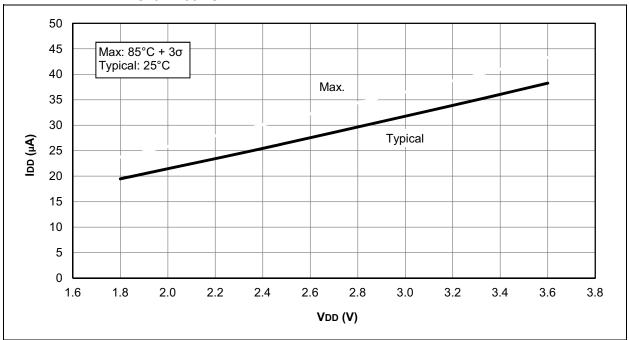
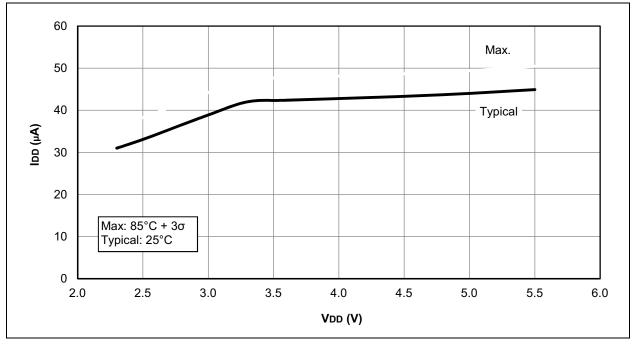




FIGURE 26-4: IDD, EXTERNAL CLOCK (ECL), LOW-POWER MODE, Fosc = 500 kHz, PIC16F1507 ONLY

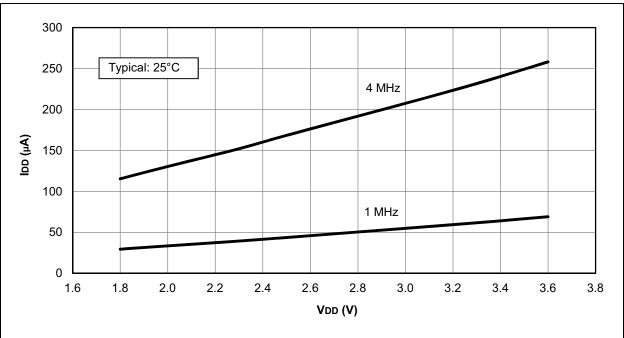
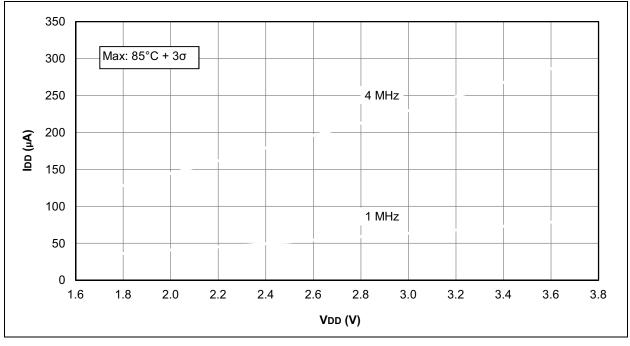



FIGURE 26-6: IDD MAXIMUM, EXTERNAL CLOCK (ECM), MEDIUM POWER MODE, PIC16LF1507 ONLY

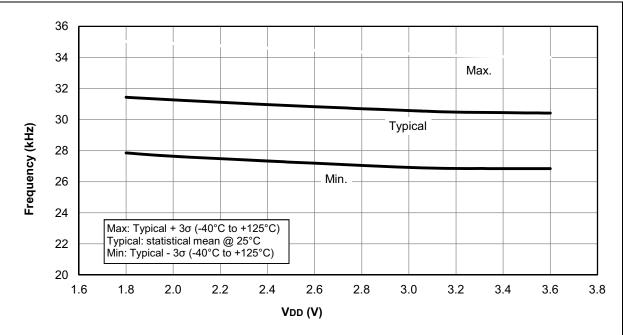
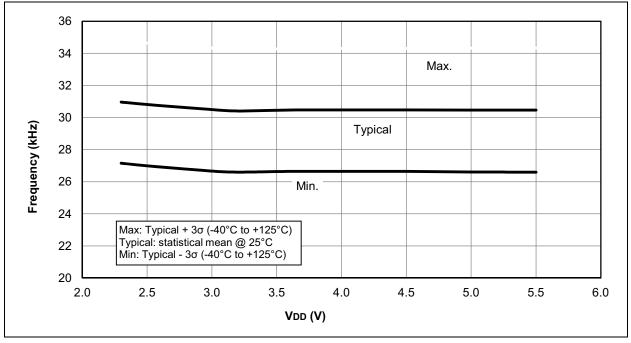



FIGURE 26-50: LFINTOSC FREQUENCY OVER VDD AND TEMPERATURE, PIC16F1507 ONLY

