

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

2010	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	3.5КВ (2К х 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1507-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE OF CONTENTS

1.0	Device Overview	7				
2.0	Enhanced Mid-Range CPU	11				
3.0	Memory Organization	13				
4.0	Device Configuration	37				
5.0	Oscillator Module					
6.0	Resets	51				
7.0	Interrupts	59				
8.0	Power-Down Mode (Sleep)	72				
9.0	Watchdog Timer (WDT)	75				
10.0	Flash Program Memory Control	79				
11.0	I/O Ports	95				
12.0	Interrupt-On-Change	108				
13.0	Fixed Voltage Reference (FVR)	113				
14.0	Temperature Indicator Module	115				
15.0	Analog-to-Digital Converter (ADC) Module	117				
16.0	Timer0 Module	131				
17.0	Timer1 Module with Gate Control	134				
18.0	Timer2 Module	145				
19.0	Pulse-Width Modulation (PWM) Module	148				
20.0	Configurable Logic Cell (CLC)	154				
21.0	Numerically Controlled Oscillator (NCO) Module	170				
22.0	Complementary Waveform Generator (CWG) Module	177				
23.0	In-Circuit Serial Programming™ (ICSP™)	189				
24.0	Instruction Set Summary	191				
25.0	Electrical Specifications	205				
26.0	DC and AC Characteristics Graphs and Charts	227				
27.0	Development Support	257				
28.0	Packaging Information	261				
	ndix A: Data Sheet Revision History					
The M	Aicrochip Website	275				
Custo	ustomer Change Notification Service					
Custo	omer Support	275				
Produ	oduct Identification System					

IADLL								020)			
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 3	Bank 31										
F8Ch	—	Unimplemen	ted							_	—
— FE3h											
FE4h	STATUS_ SHAD	_	—	-	_	—	Z_SHAD	DC_SHAD	C_SHAD	xxx	uuu
FE5h	WREG_ SHAD	Working Reg	gister Shadow							XXXX XXXX	uuuu uuuu
FE6h	BSR_ SHAD	_	_	-	Bank Select	Register Sh	adow			x xxxx	u uuuu
FE7h	PCLATH_ SHAD	_	Program Counter Latch High Register Shadow						-xxx xxxx	uuuu uuuu	
FE8h	FSR0L_ SHAD	Indirect Data	Indirect Data Memory Address 0 Low Pointer Shadow							XXXX XXXX	uuuu uuuu
FE9h	FSR0H_ SHAD	Indirect Data	Indirect Data Memory Address 0 High Pointer Shadow						xxxx xxxx	uuuu uuuu	
FEAh	FSR1L_ SHAD	Indirect Data	Indirect Data Memory Address 1 Low Pointer Shadow						XXXX XXXX	uuuu uuuu	
FEBh	FSR1H_ SHAD	Indirect Data Memory Address 1 High Pointer Shadow						XXXX XXXX	uuuu uuuu		
FECh	—	Unimplemen	Unimplemented						_	_	
FEDh	STKPTR	_		_	Current Sta	ck Pointer				1 1111	1 1111
FEEh	TOSL	Top-of-Stack	Top-of-Stack Low byte							XXXX XXXX	uuuu uuuu
FEFh	TOSH	_	Top-of-Stack	High byte						-xxx xxxx	-uuu uuuu

TABLE 3-5: SPECIAL FUNCTION REGISTER SUMMARY (CONTINUED)

 x = unknown, u = unchanged, g = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.
 PIC16F1507 only.
 Unimplemented, read as '1'. Legend: : Note 1:

2:

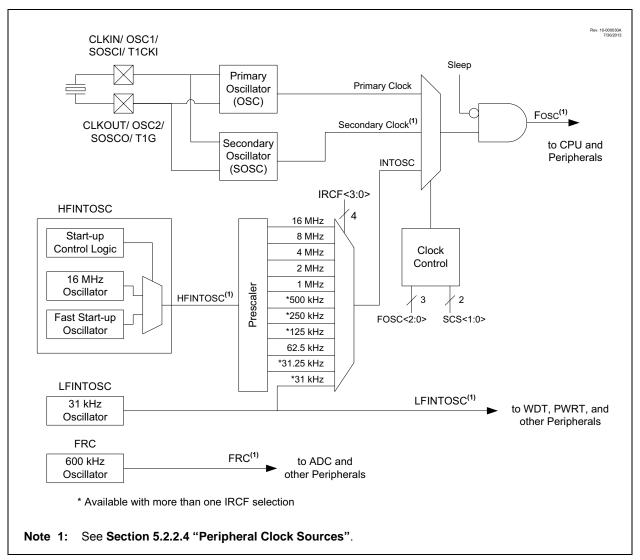
4.3 Code Protection

Code protection allows the device to be protected from unauthorized access. Internal access to the program memory is unaffected by any code protection setting.

4.3.1 PROGRAM MEMORY PROTECTION

The entire program memory space is protected from external reads and writes by the \overline{CP} bit in Configuration Words. When $\overline{CP} = 0$, external reads and writes of program memory are inhibited and a read will return all '0's. The CPU can continue to read program memory, regardless of the protection bit settings. Writing the program memory is dependent upon the write protection setting. See **Section 4.4 "Write Protection"** for more information.

4.4 Write Protection


Write protection allows the device to be protected from unintended self-writes. Applications, such as bootloader software, can be protected while allowing other regions of the program memory to be modified.

The WRT<1:0> bits in Configuration Words define the size of the program memory block that is protected.

4.5 User ID

Four memory locations (8000h-8003h) are designated as ID locations where the user can store checksum or other code identification numbers. These locations are readable and writable during normal execution. See **Section 10.4 "User ID, Device ID and Configuration Word Access"** for more information on accessing these memory locations. For more information on checksum calculation, see the "*PIC12(L)F1501/PIC16(L)F150X Memory Programming Specification*" (DS41573).

R/W-0/0	0 R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
TMR1GI	E ADIE	—	_	_	—	TMR2IE	TMR1IE
bit 7							bit 0
Legend:							
R = Reada	able bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is u	nchanged	x = Bit is unkn	iown	-n/n = Value	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is :	set	'0' = Bit is clea	ared				
bit 7	TMR1GIE: Ti	mer1 Gate Inte	rrupt Enable I	oit			
		the Timer1 gate					
	0 = Disables	the Timer1 gate	e acquisition i	nterrupt			
bit 6	-	g-to-Digital Con	. ,	Interrupt Enab	le bit		
		the ADC interru					
		the ADC interru	•				
bit 5-2	•	ited: Read as '					
bit 1		TMR2IE: TMR2 to PR2 Match Interrupt Enable bit					
	1 = Enables the Timer2 to PR2 match interrupt						
h :+ 0	0 = Disables the Timer2 to PR2 match interrupt						
bit 0 TMR1IE: Timer1 Overflow Interrupt Enable bit 1 = Enables the Timer1 overflow interrupt							
0 = Disables the Timer1 overflow interrupt							
Note:			must be				
Note:	Bit PEIE of the IN set to enable any	0					
	set to chable any		up (.				

REGISTER 7-2: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

10.2.4 WRITING TO FLASH PROGRAM MEMORY

Program memory is programmed using the following steps:

- 1. Load the address in PMADRH:PMADRL of the row to be programmed.
- 2. Load each write latch with data.
- 3. Initiate a programming operation.
- 4. Repeat steps 1 through 3 until all data is written.

Before writing to program memory, the word(s) to be written must be erased or previously unwritten. Program memory can only be erased one row at a time. No automatic erase occurs upon the initiation of the write.

Program memory can be written one or more words at a time. The maximum number of words written at one time is equal to the number of write latches. See Figure 10-5 (row writes to program memory with 16 write latches) for more details.

The write latches are aligned to the Flash row address boundary defined by the upper 10-bits of PMADRH:PMADRL, (PMADRH<6:0>:PMADRL<7:5>) with the lower five bits of PMADRL, (PMADRL<7:0>) determining the write latch being loaded. Write operations do not cross these boundaries. At the completion of a program memory write operation, the data in the write latches is reset to contain 0x3FFF. The following steps should be completed to load the write latches and program a row of program memory. These steps are divided into two parts. First, each write latch is loaded with data from the PMDATH:PMDATL using the unlock sequence with LWLO = 1. When the last word to be loaded into the write latch is ready, the LWLO bit is cleared and the unlock sequence executed. This initiates the programming operation, writing all the latches into Flash program memory.

Note:	The special unlock sequence is required to load a write latch with data or initiate a Flash programming operation. If the
	unlock sequence is interrupted, writing to the latches or program memory will not be initiated.

- 1. Set the WREN bit of the PMCON1 register.
- 2. Clear the CFGS bit of the PMCON1 register.
- 3. Set the LWLO bit of the PMCON1 register. When the LWLO bit of the PMCON1 register is '1', the write sequence will only load the write latches and will not initiate the write to Flash program memory.
- 4. Load the PMADRH:PMADRL register pair with the address of the location to be written.
- 5. Load the PMDATH:PMDATL register pair with the program memory data to be written.
- Execute the unlock sequence (Section 10.2.2 "Flash Memory Unlock Sequence"). The write latch is now loaded.
- 7. Increment the PMADRH:PMADRL register pair to point to the next location.
- 8. Repeat steps 5 through 7 until all but the last write latch has been loaded.
- Clear the LWLO bit of the PMCON1 register. When the LWLO bit of the PMCON1 register is '0', the write sequence will initiate the write to Flash program memory.
- 10. Load the PMDATH:PMDATL register pair with the program memory data to be written.
- Execute the unlock sequence (Section 10.2.2 "Flash Memory Unlock Sequence"). The entire program memory latch content is now written to Flash program memory.
- Note: The program memory write latches are reset to the blank state (0x3FFF) at the completion of every write or erase operation. As a result, it is not necessary to load all the program memory write latches. Unloaded latches will remain in the blank state.

An example of the complete write sequence is shown in Example 10-3. The initial address is loaded into the PMADRH:PMADRL register pair; the data is loaded using indirect addressing.

11.5 PORTB Registers

11.5.1 DATA REGISTER

PORTB is a 4-bit wide, bidirectional port. The corresponding data direction register is TRISB (Register 11-8). Setting a TRISB bit (= 1) will make the corresponding PORTB pin an input (i.e., disable the output driver). Clearing a TRISB bit (= 0) will make the corresponding PORTB pin an output (i.e., enables output driver and puts the contents of the output latch on the selected pin). Example 11-1 shows how to initialize an I/O port.

Reading the PORTB register (Register 11-7) reads the status of the pins, whereas writing to it will write to the PORT latch. All write operations are read-modify-write operations. Therefore, a write to a port implies that the port pins are read, this value is modified and then written to the PORT data latch (LATB).

11.5.2 DIRECTION CONTROL

The TRISB register (Register 11-8) controls the PORTB pin output drivers, even when they are being used as analog inputs. The user should ensure the bits in the TRISB register are maintained set when using them as analog inputs. I/O pins configured as analog input always read '0'.

11.5.3 ANALOG CONTROL

The ANSELB register (Register 11-10) is used to configure the Input mode of an I/O pin to analog. Setting the appropriate ANSELB bit high will cause all digital reads on the pin to be read as '0' and allow analog functions on the pin to operate correctly.

The state of the ANSELB bits has no effect on digital output functions. A pin with TRIS clear and ANSEL set will still operate as a digital output, but the Input mode will be analog. This can cause unexpected behavior when executing read-modify-write instructions on the affected port.

Note:	The ANSELB bits default to the Analog
	mode after Reset. To use any pins as
	digital general purpose or peripheral
	inputs, the corresponding ANSEL bits
	must be initialized to '0' by user software.

11.5.4 PORTB FUNCTIONS AND OUTPUT PRIORITIES

Each PORTB pin is multiplexed with other functions. The pins, their combined functions and their output priorities are shown in Table 11-5.

When multiple outputs are enabled, the actual pin control goes to the peripheral with the highest priority.

Analog input functions, such as ADC and comparator inputs, are not shown in the priority lists. These inputs are active when the I/O pin is set for Analog mode using the ANSELx registers. Digital output functions may control the pin when it is in Analog mode with the priority shown below in Table 11-5.

TABLE 11-5: PORTB OUTPUT PRIORITY

Pin Name	Function Priority ⁽¹⁾
RB4	RB4
RB5	RB5
RB6	RB6
RB7	RB7

Note 1: Priority listed from highest to lowest.2: Default pin (see APFCON register).

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG			ADFVF	२<1:0>	114

Legend: Shaded cells are unused by the temperature indicator module.

REGISTER 15-4: ADRESH: ADC RESULT REGISTER HIGH (ADRESH) ADFM = 0

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			ADRE	S<9:2>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimpler	nented bit, read	d as '0'	
u = Bit is unch	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BC	R/Value at all	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				

bit 7-0 **ADRES<9:2>**: ADC Result Register bits Upper eight bits of 10-bit conversion result

REGISTER 15-5: ADRESL: ADC RESULT REGISTER LOW (ADRESL) ADFM = 0

| R/W-x/u |
|---------|---------|---------|---------|---------|---------|---------|---------|
| ADRES | 6<1:0> | — | — | — | — | — | — |
| bit 7 | | | | | | | bit 0 |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 **ADRES<1:0>**: ADC Result Register bits Lower two bits of 10-bit conversion result

bit 5-0 **Reserved**: Do not use.

DECFSZ	Decrement f, Skip if 0
Syntax:	[label] DECFSZ f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(f) - 1 \rightarrow (destination); skip if result = 0
Status Affected:	None
Description:	The contents of register 'f' are decre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', then a NOP is executed instead, making it a 2-cycle instruction.

GOTO	Unconditional Branch							
Syntax:	[<i>label</i>] GOTO k							
Operands:	$0 \leq k \leq 2047$							
Operation:	$k \rightarrow PC<10:0>$ PCLATH<6:3> \rightarrow PC<14:11>							
Status Affected:	None							
Description:	GOTO is an unconditional branch. The 11-bit immediate value is loaded into PC bits <10:0>. The upper bits of PC are loaded from PCLATH<4:3>. GOTO is a 2-cycle instruction.							

INCFSZ	Increment f, Skip if 0				
Syntax:	[label] INCFSZ f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$				
Operation:	(f) + 1 \rightarrow (destination), skip if result = 0				
Status Affected:	None				
Description:	The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '1', the next instruction is executed. If the result is '0', a NOP is executed instead, making it a 2-cycle instruction.				

IORLW	Inclusive OR literal with W							
Syntax:	[<i>label</i>] IORLW k							
Operands:	$0 \le k \le 255$							
Operation:	(W) .OR. $k \rightarrow$ (W)							
Status Affected:	Z							
Description:	The contents of the W register are OR'ed with the 8-bit literal 'k'. The result is placed in the W register.							

INCF	Increment f					
Syntax:	[label] INCF f,d					
Operands:	$\begin{array}{l} 0\leq f\leq 127\\ d\in [0,1] \end{array}$					
Operation:	(f) + 1 \rightarrow (destination)					
Status Affected:	Z					
Description:	The contents of register 'f' are incre- mented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.					

IORWF	Inclusive OR W with f						
Syntax:	[<i>label</i>] IORWF f,d						
Operands:	$0 \le f \le 127$ $d \in [0,1]$						
Operation:	(W) .OR. (f) \rightarrow (destination)						
Status Affected:	Z						
Description:	Inclusive OR the W register with regis- ter 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.						

25.0 ELECTRICAL SPECIFICATIONS

25.1 Absolute Maximum Ratings^(†)

Ambient temperature under bias40°C to +125°C Storage temperature65°C to +150°C	
Voltage on pins with respect to Vss	
on Vod pin	
PIC16F15070.3V to +6.5V	
PIC16LF15070.3V to +4.0V	
on MCLR pin0.3V to +9.0V	
on all other pins0.3V to (VDD + 0.3V)	
Maximum current	
on Vss pin ⁽¹⁾	
$-40^\circ C \leq T_A \leq +85^\circ C$	
+85°C \leq Ta \leq +125°C \ldots 85 mA	
on VDD pin ⁽¹⁾	
$-40^\circ C \leq T_A \leq +85^\circ C$	
+85°C \leq Ta \leq +125°C \ldots 85 mA	
Sunk by any standard I/O pin 50 mA	
Sourced by any standard I/O pin 50 mA	
Clamp current, Ικ (VPIN < 0 or VPIN > VDD)	
Total power dissipation ⁽²⁾	

Note 1: Maximum current rating requires even load distribution across I/O pins. Maximum current rating may be limited by the device package power dissipation characterizations, see Table 25-6 to calculate device specifications.

2: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\sum$ IOH} + \sum {(VDD - VOH) x IOH} + \sum (VOI x IOL).

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

TABLE 25-2: SUPPLY CURRENT (IDD)^(1,2)

PIC16LF	1507	Stand	Standard Operating Conditions (unless otherwise stated)							
PIC16F1	507									
Param.	Device	Min.	Тур†	Max.	Units		Conditions			
No.	Characteristics		<i>.</i>			Vdd	Note			
D013			30	65	μA	1.8	Fosc = 1 MHz,			
		—	55	100	μA	3.0	External Clock (ECM), Medium-Power mode			
D013			65	110	μA	2.3	Fosc = 1 MHz,			
			85	140	μA	3.0	External Clock (ECM), Medium-Power mode			
			115	190	μA	5.0	Medium-Power mode			
D014			115	190	μA	1.8	Fosc = 4 MHz,			
		_	210	310	μA	3.0	External Clock (ECM), Medium-Power mode			
D014		—	180	270	μA	2.3	Fosc = 4 MHz,			
		_	240	365	μA	3.0	External Clock (ECM),			
			295	460	μA	5.0	Medium-Power mode			
D015		—	3.2	12	μA	1.8	Fosc = 31 kHz,			
		— 5.4 20	μA	3.0	LFINTOSC, -40°C \leq TA \leq +85°C					
D015		—	13	28	μA	2.3	Fosc = 31 kHz,			
			15	30	μA	3.0				
			17	36	μA	5.0	$-40^{\circ}C \le TA \le +85^{\circ}C$			
D016		—	215	360	μA	1.8	Fosc = 500 kHz,			
		—	275	480	μA	3.0	HFINTOSC			
D016			270	450	μA	2.3	Fosc = 500 kHz,			
		_	300	500	μA	3.0	HFINTOSC			
		_	350	620	μA	5.0				
D017*			410	660	μA	1.8	Fosc = 8 MHz,			
			630	970	μA	3.0	HFINTOSC			
D017*		_	530	750	μA	2.3	Fosc = 8 MHz,			
		_	660	1100	μA	3.0	HFINTOSC			
		_	730	1200	μA	5.0				
D018		_	600	940	μA	1.8	Fosc = 16 MHz,			
			970	1400	μA	3.0	HFINTOSC			
D018		—	780	1200	μA	2.3	Fosc = 16 MHz,			
		—	1000	1550	μA	3.0	HFINTOSC			
			1090	1700	μA	5.0				

Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance t only and are not tested.

Note 1: The test conditions for all IDD measurements in active operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss; MCLR = VDD; WDT disabled.

2: The supply current is mainly a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption.

TABLE 25-4: I/O PORTS

Standard O	perating Condit	ions (unless oth	erwise stated)

Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
	VIL	Input Low Voltage	· · ·				·
		I/O PORT:					
D030		with TTL buffer	—	_	0.8	V	$4.5V \le V\text{DD} \le 5.5V$
D030A			—	_	0.15 VDD	V	$1.8V \le V\text{DD} \le 4.5V$
D032		MCLR	—	_	0.2 Vdd	V	
	Vih	Input High Voltage					
		I/O PORT:					
D040		with TTL buffer	2.0		_	V	$4.5V \le V\text{DD} \le 5.5V$
D040A			0.25 VDD +			V	$1.8V \leq V\text{DD} \leq 4.5V$
D0.40		MOLE	0.8				
D042		MCLR	0.8 VDD		—	V	
	lı∟	Input Leakage Current ⁽¹⁾			1		
D060		I/O Ports	—	± 5	± 125	nA	VSS \leq VPIN \leq VDD, Pin at high-impedance, 85°C
			—	± 5	± 1000	nA	Vss \leq VPIN \leq VDD, Pin at high-impedance, 125°C
D061		MCLR ⁽²⁾		± 50	± 200	nA	Vss \leq VPIN \leq VDD,
DUUT		MOLK	_	± 50	± 200	114	Pin at high-impedance, 85°C
	IPUR	Weak Pull-up Current					
D070*			25	100	200	μΑ	VDD = 3.3V, VPIN = VSS
			25	140	300	μA	VDD = 5.0V, VPIN = VSS
	Vol	Output Low Voltage			•		
D080		I/O Ports	_	_	0.6	V	IOL = 8 mA, VDD = 5V IOL = 6 mA, VDD = 3.3V IOL = 1.8 mA, VDD = 1.8V
	Voн	Output High Voltage					
D090		I/O Ports	Vdd - 0.7	_	_	V	ІОН = 3.5 mA, VDD = 5V ІОН = 3 mA, VDD = 3.3V ІОН = 1 mA, VDD = 1.8V
		Capacitive Loading Specifi	cations on Outr	out Dinc			10n - 1 IIIA, VUU - 1.0V
D101A*	CIO	All I/O pins			50	pF	
DIVIA	00		_		50	μг	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

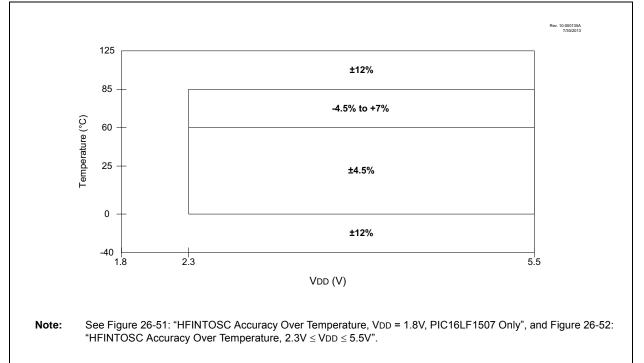
Note 1: Negative current is defined as current sourced by the pin.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

TABLE 25-8: OSCILLATOR PARAMETERS

Standar	Standard Operating Conditions (unless otherwise stated)							
Param. No.	Sym.	Characteristic	Freq. Tolerance	Min.	Тур†	Max.	Units	Conditions
OS08	HFosc	Internal Calibrated HFINTOSC Frequency ⁽¹⁾	±2%		16.0		MHz	VDD = 3.0V, TA = 25°C, (Note 2)
OS09	LFosc	Internal LFINTOSC Frequency	—	_	31	_	kHz	(Note 3)
OS10*	TIOSC ST	HFINTOSC Wake-up from Sleep Start-up Time	-	_	5	15	μS	
OS10A*	TLFOSC ST	LFINTOSC Wake-up from Sleep Start-up Time	—		0.5		ms	$-40^{\circ}C \leq TA \leq +125^{\circ}C$

These parameters are characterized but not tested.

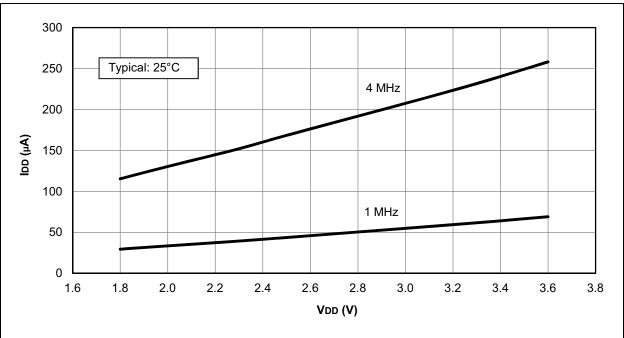
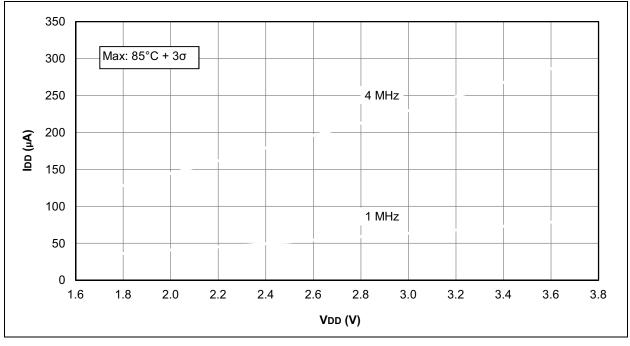
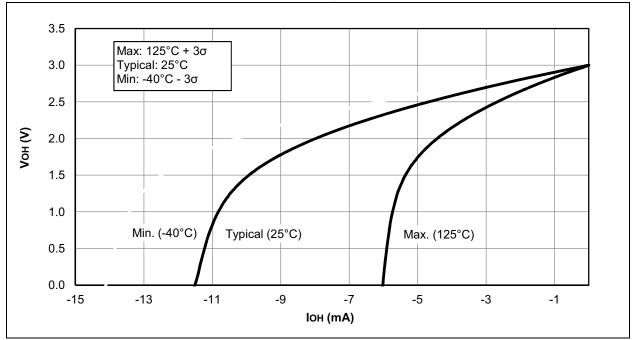

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

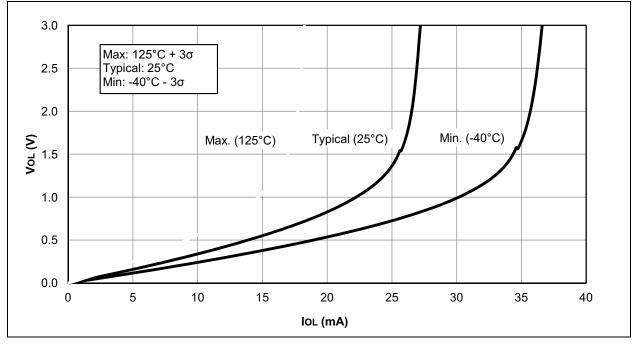

Note 1: To ensure these oscillator frequency tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μF and 0.01 μF values in parallel are recommended.

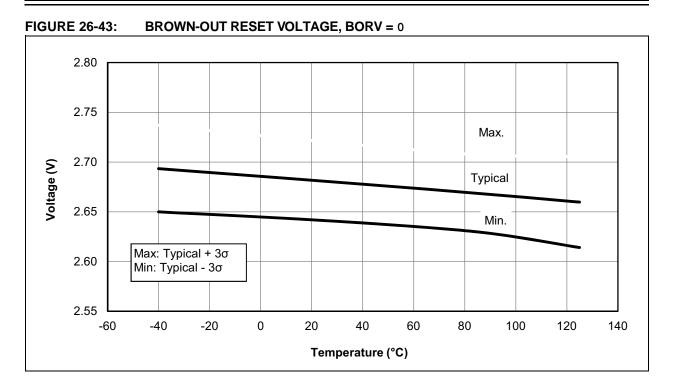
2: See Figure 25-6: "HFINTOSC Frequency Accuracy over Device VDD and Temperature", Figure 26-51: "HFINTOSC Accuracy Over Temperature, VDD = 1.8V, PIC16LF1507 Only", and Figure 26-52: "HFINTOSC Accuracy Over Temperature, 2.3V ≤ VDD ≤ 5.5V".

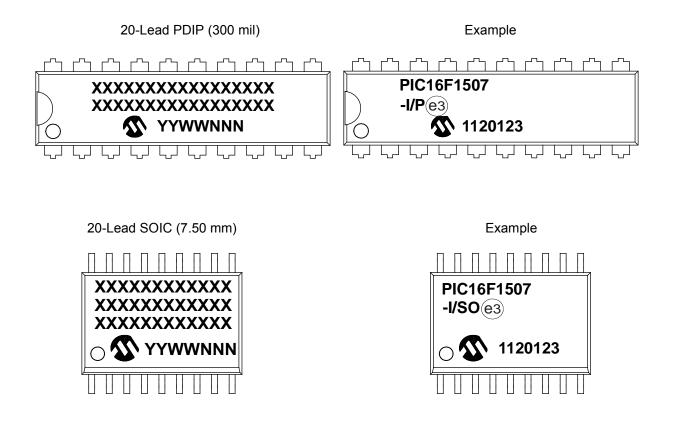
3: See Figure 26-49: "LFINTOSC Frequency over VDD and Temperature, PIC16LF1507 Only", and Figure 26-50: "LFINTOSC Frequency over VDD and Temperature, PIC16F1507".

FIGURE 25-6: HFINTOSC FREQUENCY ACCURACY OVER VDD AND TEMPERATURE

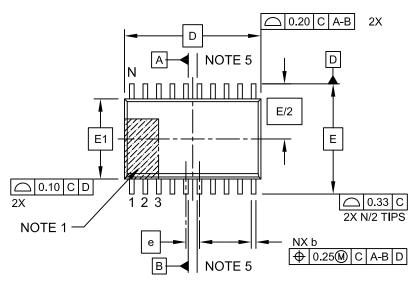

FIGURE 26-6: IDD MAXIMUM, EXTERNAL CLOCK (ECM), MEDIUM POWER MODE, PIC16LF1507 ONLY



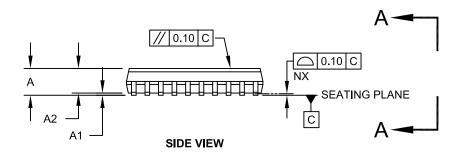


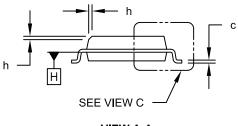
28.0 PACKAGING INFORMATION

28.1 Package Marking Information

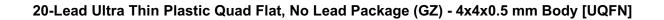


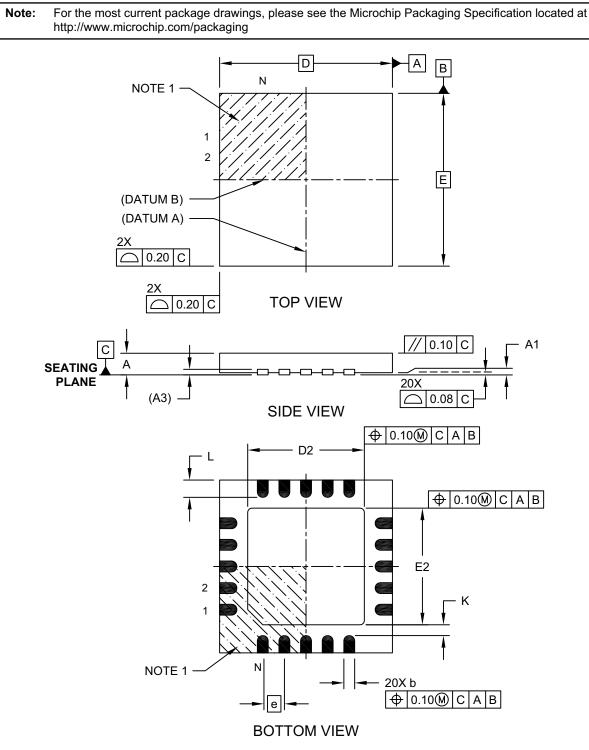
Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC [®] designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator ((e3)) can be found on the outer packaging for this package.
	be carried	nt the full Microchip part number cannot be marked on one line, it will d over to the next line, thus limiting the number of available s for customer-specific information.


* Standard PICmicro[®] device marking consists of Microchip part number, year code, week code and traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.


20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging





Microchip Technology Drawing C04-094C Sheet 1 of 2

Microchip Technology Drawing C04-255A Sheet 1 of 2