

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SOIC (0.295", 7.50mm Width)
Supplier Device Package	20-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1507t-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

4.6 Device ID and Revision ID

The memory location 8006h is where the Device ID and Revision ID are stored. The upper nine bits hold the Device ID. The lower five bits hold the Revision ID. See **Section 10.4 "User ID, Device ID and Configuration Word Access**" for more information on accessing these memory locations.

Development tools, such as device programmers and debuggers, may be used to read the Device ID and Revision ID.

4.7 Register Definitions: Device ID

REGISTER 4-3: DEVID: DEVICE ID REGISTER

		R	R	R	R	R	R
				DEV	<8:3>		
		bit 13					bit 8
R	R	R	R	R	R	R	R
	DEV<2:0>				REV<4:0>		
bit 7							bit 0

Legend:

R = Readable bit

'1' = Bit is set

bit 13-5 **DEV<8:0>:** Device ID bits

Davias	DEVID<13:0> Values						
Device	DEV<8:0>	REV<4:0>					
PIC16LF1507	10 1101 110	x xxxx					
PIC16F1507	10 1101 000	x xxxx					

'0' = Bit is cleared

bit 4-0 **REV<4:0>:** Revision ID bits

These bits are used to identify the revision (see Table under DEV<8:0> above).

7.3 Interrupts During Sleep

Some interrupts can be used to wake from Sleep. To wake from Sleep, the peripheral must be able to operate without the system clock. The interrupt source must have the appropriate Interrupt Enable bit(s) set prior to entering Sleep.

On waking from Sleep, if the GIE bit is also set, the processor will branch to the interrupt vector. Otherwise, the processor will continue executing instructions after the SLEEP instruction. The instruction directly after the SLEEP instruction will always be executed before branching to the ISR. Refer to **Section 8.0 "Power-Down Mode (Sleep)"** for more details.

7.4 INT Pin

The INT pin can be used to generate an asynchronous edge-triggered interrupt. This interrupt is enabled by setting the INTE bit of the INTCON register. The INTEDG bit of the OPTION_REG register determines on which edge the interrupt will occur. When the INTEDG bit is set, the rising edge will cause the interrupt. When the INTEDG bit is clear, the falling edge will cause the interrupt. The INTF bit of the INTCON register will be set when a valid edge appears on the INT pin. If the GIE and INTE bits are also set, the processor will redirect program execution to the interrupt vector.

7.5 Automatic Context Saving

Upon entering an interrupt, the return PC address is saved on the stack. Additionally, the following registers are automatically saved in the shadow registers:

- W register
- STATUS register (except for TO and PD)
- BSR register
- FSR registers
- PCLATH register

Upon exiting the Interrupt Service Routine, these registers are automatically restored. Any modifications to these registers during the ISR will be lost. If modifications to any of these registers are desired, the corresponding shadow register should be modified and the value will be restored when exiting the ISR. The shadow registers are available in Bank 31 and are readable and writable. Depending on the user's application, other registers may also need to be saved.

R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
TMR1GIE	ADIE	_		_	—	TMR2IE	TMR1IE
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is uncha	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	TMR1GIE: Tir	mer1 Gate Inte	rrupt Enable b	oit			
	1 = Enables t	he Timer1 gate	acquisition in	nterrupt			
	0 = Disables t	the Timer1 gate	e acquisition in	nterrupt			
bit 6	ADIE: Analog	-to-Digital Con	verter (ADC)	Interrupt Enabl	le bit		
	1 = Enables t	he ADC interru	pt				
bit 5-2	Unimplemen	ted: Read as ')´				
bit 1	TMR2IE: TMF	R2 to PR2 Mate	ch Interrupt Er	nable bit			
1 = Enables the Timer2 to PR2 match interrupt							
				errupt			
bit 0 IMR11E: Timer1 Overflow Interrupt Enable bit							
	1 = Enables till 0 = Disables till 1 = Enables till 1 =	he limer1 over	flow interrupt				
			mow interrupt				
r							
Note: Bit	Note: Bit PEIE of the INTCON register must be						
set	to enable any p	peripheral inter	rupt.				

REGISTER 7-2: PIE1: PERIPHERAL INTERRUPT ENABLE REGISTER 1

9.6 Register Definitions: Watchdog Timer Control

U-0	U-0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-1/1	R/W-0/0
	_			WDTPS<4:0	>		SWDTEN
bit 7	•						bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all	other Resets
'1' = Bit is set	·	'0' = Bit is clea	ared				
L							
bit 7-6	Unimpleme	nted: Read as '	0'				
bit 5-1	WDTPS<4:0	>: Watchdog Tir	mer Period S	elect bits ⁽¹⁾			
	Bit Value =	Prescale Rate					
	11111 = Re	eserved. Results	s in minimum	interval (1:32)			
	•						
	•						
	•	anamiad Deput		inton (a) (1.22)			
	10011 - Re	eserved. Results		intervar (1.52)			
	10010 = 1 :	8388608 (2 ²³) (I	Interval 256s	nominal)			
	10001 = 1:	4194304 (2 ²²) (I	Interval 128s	nominal)			
	10000 = 1:	2097152 (2 ²¹) (I	Interval 64s n	ominal)			
	01111 = 1 :	1048576 (2 ²⁰) (I	Interval 32s n	ominal)			
	01110 = 1:	524288 (2 ¹⁹) (In	iterval 16s no	minal)			
	01101 = 1:	262144 (2 ¹⁰) (In	iterval 8s non	ninal)			
	01100 = 1:	131072 (211) (IN 65536 (Interval	iterval 4s non	inal) 'Deast value)			
	01011 = 13	22769 (Interval	2s nominal) (Reset value)			
	01010 = 1.	32700 (Interval	TS NOMINAI) 512 ma nami				
	01001 - 1.	10304 (IIItel Val 3 9102 (Intorivol 2)	512 ms nomin	idi)			
	01000 - 1.000	0192 (Interval 2:	28 ms nomin	al)			
	00111 - 1.0	2048 (Interval 6)	20 ms nominal)			
	00110 = 1	1024 (Interval 3)	2 ms nominal)			
	00101 = 1	512 (Interval 16	ms nominal))			
	00100 = 1	256 (Interval 8 n	ns nominal)				
	00011 = 1	128 (Interval 4 n	ns nominal)				
	000010 = 1	64 (Interval 2 m	s nominal)				
	00000 = 1	32 (Interval 1 m	s nominal)				
bit 0	SWDTEN: S	oftware Enable/	Disable for W	atchdog Timer	bit		
	<u>If WDTE<1:0</u>)> = 1x:		U U			
	This bit is igr	nored.					
	If WDTE<1.0)> = 01:					
	1 = WDT is	turned on					
	0 = WDT is	turned off					
	<u>If WDTE<1:0</u>)> = <u>00</u> :					
	This bit is igr	nored.					

REGISTER 9-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER

EXAMPLE 10-2: ERASING ONE ROW OF PROGRAM MEMORY

; This	row erase	routine assumes	the following:
; 1. A	valid addre	ess within the o	erase row is loaded in ADDRH:ADDRL
; 2. A	DDRH and ADI	DRL are located	in shared data memory 0x70 - 0x7F (common RAM)
	BCF BANKSEL MOVF MOVWF MOVF BCF BSF BSF	INTCON, GIE PMADRL ADDRL, W PMADRL ADDRH, W PMADRH PMCON1, CFGS PMCON1, FREE PMCON1, WREN	<pre>; Disable ints so required sequences will execute properly ; Load lower 8 bits of erase address boundary ; Load upper 6 bits of erase address boundary ; Not configuration space ; Specify an erase operation ; Enable writes</pre>
Required Sequence	MOVLW MOVWF MOVLW MOVWF BSF NOP NOP	55h PMCON2 0AAh PMCON2 PMCON1,WR	<pre>; Start of required sequence to initiate erase ; Write 55h ; ; Write AAh ; Set WR bit to begin erase ; NOP instructions are forced as processor starts ; row erase of program memory. ; ; ; The processor stalls until the erase process is complete ; after erase processor continues with 3rd instruction</pre>
	BCF	PMCON1,WREN	; Disable writes
	BSF	INTCON,GIE	; Enable interrupts

	U-1	R/W-0/0	R/W-0/0	R/W/HC-0/0	R/W/HC-x/q ⁽²⁾	R/W-0/0	R/S/HC-0/0	R/S/HC-0/0
	_(1)	CFGS	LWLO	FREE	WRERR	WREN	WR	RD
bit 7								bit 0
Legei	nd:							
R = R	eada	ble bit	W = Writable b	it	U = Unimpleme	nted bit, read as	ʻ0'	
S = B	it can	only be set	x = Bit is unkno	own	-n/n = Value at I	POR and BOR/V	alue at all other F	Resets
'1' = E	Bit is s	set	'0' = Bit is clear	red	HC = Bit is clea	red by hardware		
bit 7		Unimplement	ed: Read as '1'					
bit 6		CFGS: Config	uration Select bit	r ID and Davias				
		1 = Access C 0 = Access F	lash program me	morv	ID Registers			
bit 5		LWLO: Load V	Vrite Latches Onl	v bit ⁽³⁾				
		1 = Only the	addressed progra	am memory write	e latch is loaded/u	updated on the r	ext WR comman	d
		0 = The addr	essed program m	emory write latc	h is loaded/update	ed and a write of	all program memo	ory write latches
			tiated on the next	WR command				
bit 4		FREE: Progra 1 = Performs	m Flash Erase Er	hable bit	NP command (ba	urdware cleared		
		0 = Performs	a write operation	on the next WF	R command			
bit 3		WRERR: Prog	ram/Erase Error	Flag bit				
		1 = Condition	indicates an imp	proper program	or erase sequend	ce attempt or ter	mination (bit is s	et automatically
		on any se	et attempt (write 'i	1') of the WR bit	t). d. pormolly			
hit 2		WPEN: Progr	ani or erase ope	hit	u normaliy.			
		1 = Allows pr	ogram/erase cvcl	es				
		0 = Inhibits p	rogramming/erasi	ing of program F	Flash			
bit 1		WR: Write Cor	ntrol bit					
		1 = Initiates a	a program Flash p	orogram/erase o	peration.			
		The oper The WR	ation is self-timed bit can only be se	l and the bit is c t (not cleared) ii	leared by hardwa	re once operatio	in is complete.	
		0 = Program/	erase operation t	o the Flash is co	omplete and inact	tive.		
bit 0		RD: Read Cor	ntrol bit					
		1 = Initiates a	a program Flash r	ead. Read takes	s one cycle. RD is	s cleared in hard	ware. The RD bit	can only be set
		(not clear	ed) in software.	n Elash road				
Note	1.	U = DUES HUL	read as '1'	i i lasii icau.				
Note	2:	The WRERR bit is a	utomatically set b	y hardware whe	en a program mer	nory write or era	se operation is st	arted (WR = 1).
	3:	The LWLO bit is ign	ored during a pro	gram memory e	rase operation (F	REE = 1).		

REGISTER 10-5: PMCON1: PROGRAM MEMORY CONTROL 1 REGISTER

15.2 ADC Operation

15.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCON0 register must be set to a '1'. Setting the GO/ DONE bit of the ADCON0 register to a '1' will start the Analog-to-Digital conversion.

Note:	The GO/DONE bit should not be set in the
	same instruction that turns on the ADC.
	Refer to Section 15.2.6 "ADC Conver-
	sion Procedure".

15.2.2 COMPLETION OF A CONVERSION

When the conversion is complete, the ADC module will:

- Clear the GO/DONE bit
- Set the ADIF Interrupt Flag bit
- Update the ADRESH and ADRESL registers with new conversion result

15.2.3 TERMINATING A CONVERSION

If a conversion must be terminated before completion, the GO/DONE bit can be cleared in software. The ADRESH and ADRESL registers will be updated with the partially complete Analog-to-Digital conversion sample. Incomplete bits will match the last bit converted.

Note:	A device Reset forces all registers to their
	Reset state. Thus, the ADC module is
	turned off and any pending conversion is
	terminated.

15.2.4 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. Performing the ADC conversion during Sleep can reduce system noise. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.

When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set.

15.2.5 AUTO-CONVERSION TRIGGER

The auto-conversion trigger allows periodic ADC measurements without software intervention. When a rising edge of the selected source occurs, the GO/DONE bit is set by hardware.

The auto-conversion trigger source is selected with the TRIGSEL<3:0> bits of the ADCON2 register.

Using the auto-conversion trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met.

See Table 15-2 for auto-conversion sources.

TABLE 15-2: AUTO-CONVERSION SOURCES

Source Peripheral	Signal Name
Timer0	T0_overflow
Timer1	T1_overflow
Timer2	T2_match
CLC1	LC1_out
CLC2	LC2_out

16.1.3 SOFTWARE PROGRAMMABLE PRESCALER

A software programmable prescaler is available for exclusive use with Timer0. The prescaler is enabled by clearing the PSA bit of the OPTION_REG register.

Note:	The Watchdog Timer (WDT) uses its own
	independent prescaler.

There are eight prescaler options for the Timer0 module ranging from 1:2 to 1:256. The prescale values are selectable via the PS<2:0> bits of the OPTION_REG register. In order to have a 1:1 prescaler value for the Timer0 module, the prescaler must be disabled by setting the PSA bit of the OPTION_REG register.

The prescaler is not readable or writable. All instructions writing to the TMR0 register will clear the prescaler.

16.1.4 TIMER0 INTERRUPT

Timer0 will generate an interrupt when the TMR0 register overflows from FFh to 00h. The TMR0IF interrupt flag bit of the INTCON register is set every time the TMR0 register overflows, regardless of whether or not the Timer0 interrupt is enabled. The TMR0IF bit can only be cleared in software. The Timer0 interrupt enable is the TMR0IE bit of the INTCON register.

Note:	The Timer0 interrupt cannot wake the
	processor from Sleep since the timer is
	frozen during Sleep.

16.1.5 8-BIT COUNTER MODE SYNCHRONIZATION

When in 8-Bit Counter mode, the incrementing edge on the T0CKI pin must be synchronized to the instruction clock. Synchronization can be accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the instruction clock. The high and low periods of the external clocking source must meet the timing requirements as shown in **Section 25.0 "Electrical Specifications"**.

16.1.6 OPERATION DURING SLEEP

Timer0 cannot operate while the processor is in Sleep mode. The contents of the TMR0 register will remain unchanged while the processor is in Sleep mode.

FIGURE 17-6:	TIMER1 GATE SINGLE	E-PULSE AND TOGGLE COMBI	NED MODE
TMR1GE			
T1GPOL			
T1GSPM			
T1GTM			
T1GG <u>O/</u> DONE	✓ Set by software Counting enabled	on	Cleared by hardware on falling edge of T1GVAL
t1g_in			
т1СКІ			
T1GVAL			
Timer1	Ν	N + 1 N + 2 N + 3 N + 4	4
TMR1GIF	- Cleared by software	Set by hardware on falling edge of T1GVAL —●	Cleared by software

19.1.5 PWM RESOLUTION

The resolution determines the number of available duty cycles for a given period. For example, a 10-bit resolution will result in 1024 discrete duty cycles, whereas an 8-bit resolution will result in 256 discrete duty cycles.

The maximum PWM resolution is ten bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 19-4.

EQUATION 19-4: PWM RESOLUTION

Resolution =
$$\frac{\log[4(PR2 + I)]}{\log(2)}$$
 bits

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

TABLE 19-1:	EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 20 MHz)
-------------	---

PWM Frequency	0.31 kHz	4.88 kHz	19.53 kHz	78.12 kHz	156.3 kHz	208.3 kHz
Timer Prescale	64	4	1	1	1	1
PR2 Value	0xFF	0xFF	0xFF	0x3F	0x1F	0x17
Maximum Resolution (bits)	10	10	10	8	7	6.6

TABLE 19-2: EXAMPLE PWM FREQUENCIES AND RESOLUTIONS (Fosc = 8 MHz)

PWM Frequency	0.31 kHz	4.90 kHz	19.61 kHz	76.92 kHz	153.85 kHz	200.0 kHz
Timer Prescale	64	4	1	1	1	1
PR2 Value	0x65	0x65	0x65	0x19	0x0C	0x09
Maximum Resolution (bits)	8	8	8	6	5	5

19.1.6 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the PWMx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

19.1.7 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency (Fosc). Any changes in the system clock frequency will result in changes to the PWM frequency. Refer to for additional details.

19.1.8 EFFECTS OF RESET

Any Reset will force all ports to Input mode and the PWM registers to their Reset states.

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
LCxG3D4T	LCxG3D4N	LCxG3D3T	LCxG3D3N	LCxG3D2T	LCxG3D2N	LCxG3D1T	LCxG3D1N
bit 7							bit 0
							
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value a	at POR and BO	R/Value at all c	other Resets
'1' = Bit is set		'0' = Bit is clea	ared				
bit 7	LCxG3D4T: (Gate 3 Data 4 1	rue (non-inve	rted) bit			
	1 = 1 CX d 4 I is	gated into loxe	j3 Jeva3				
bit 6		Gate 3 Data 4 I	Negated (inve	rted) hit			
bit o	1 = lcxd4N is	ated into Icx	13	icu) bit			
	0 = lcxd4N is	not gated into	lcxg3				
bit 5	LCxG3D3T: (Gate 3 Data 3 1	rue (non-inve	rted) bit			
	1 = Icxd3T is	gated into lcxg	j 3				
	0 = Icxd3T is	not gated into	lcxg3				
bit 4	LCxG3D3N:	Gate 3 Data 3	Negated (inver	rted) bit			
	1 = lcxd3N is	gated into lcx	j3 Java2				
hit 2	0 = 10000000000000000000000000000000000	not gated into	icxg3 True (nen inve	rtad) bit			
DIL 3	$1 = \log d2T$ is	actod into lovo		ned) bit			
	0 = lcxd2T is	not gated into	lcxg3				
bit 2	LCxG3D2N:	Gate 3 Data 2 I	Negated (inve	rted) bit			
	1 = Icxd2N is	gated into lcx	g3				
	0 = Icxd2N is	not gated into	lcxg3				
bit 1	LCxG3D1T: (Gate 3 Data 1 1	rue (non-inve	rted) bit			
	1 = lcxd1T is	gated into loxo	13				
	0 = Icxd1T is	not gated into	Icxg3				
bit 0	LCxG3D1N: (Gate 3 Data 1	Negated (inve	rted) bit			
	1 = ICX01N IS 0 = ICX01N IS	s gated into loxe	J3 Joxa3				
			longo				

REGISTER 20-7: CLCxGLS2: GATE 3 LOGIC SELECT REGISTER

REGISTER 20-9: CLCDATA: CLC DATA OUTPUT

U-0	U-0	U-0	U-0	U-0	U-0	R-0	R-0	
_	—	—	—	—	—	MLC2OUT	MLC1OUT	
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'					
u = Bit is und	hanged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is se	t	'0' = Bit is clea	ared					
bit 7-2	Unimplement	ed: Read as '0'						
bit 1	MLC2OUT: Mirror copy of LC2OUT bit							

bit 0 MLC1OUT: Mirror copy of LC1OUT bit

R/W-0/0	R/W-0/0	U-0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
GxASE	GxARSEN	_	_	—	—	GxASDSFLT	GxASDSCLC2
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	e bit	U = Unimpler	mented bit, read	as '0'	
u = Bit is unch	anged	x = Bit is unk	nown	-n/n = Value	at POR and BOI	R/Value at all o	ther Resets
'1' = Bit is set		'0' = Bit is cle	eared	q = Value de	pends on conditi	ion	
bit 7	GxASE: Auto	-Shutdown Ev	ent Status bit				
	1 = An auto-s	shutdown eve	nt has occurre	ed			
	0 = No auto-s	shutdown eve	nt has occurre	ed			
bit 6	GxARSEN: A	uto-Restart E	nable bit				
	1 = Auto-rest	art is enabled					
	0 = Auto-rest	art is disabled	1				
bit 5-2	Unimplemen	ted: Read as	'0'				
bit 1	GxASDSFLT:	CWG Auto-s	hutdown on F	LT Enable bit			
	1 = Shutdow	n when CWG	1FLT input is I	ow			
	0 = CWG1FL	I input has no	o effect on shu	utaown			
bit 0	GxASDSCLC	2: CWG Auto	-shutdown on	CLC2 Enable	bit		
	1 = Shutdowi	n when CLC2	output (LC2_	out) is high			
	0 = OLOZOU	ipul nas no ei	iect on Shutuc				

REGISTER 22-3: CWGxCON2: CWG CONTROL REGISTER 2

24.0 INSTRUCTION SET SUMMARY

Each instruction is a 14-bit word containing the operation code (opcode) and all required operands. The opcodes are broken into three broad categories.

- · Byte Oriented
- · Bit Oriented
- Literal and Control

The literal and control category contains the most varied instruction word format.

Table 24-3 lists the instructions recognized by the MPASM[™] assembler.

All instructions are executed within a single instruction cycle, with the following exceptions, which may take two or three cycles:

- Subroutine takes two cycles (CALL, CALLW)
- · Returns from interrupts or subroutines take two cycles (RETURN, RETLW, RETFIE)
- Program branching takes two cycles (GOTO, BRA, BRW, BTFSS, BTFSC, DECFSZ, INCSFZ)
- One additional instruction cycle will be used when any instruction references an indirect file register and the file select register is pointing to program memory.

One instruction cycle consists of 4 oscillator cycles; for an oscillator frequency of 4 MHz, this gives a nominal instruction execution rate of 1 MHz.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

24.1 **Read-Modify-Write Operations**

Any instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the instruction, or the destination designator 'd'. A read operation is performed on a register even if the instruction writes to that register.

	DESCRIPTIONS
Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)

TABLE 24-1: OPCODE FIELD

W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f. Default is d = 1.
n	FSR or INDF number. (0-1)
mm	Pre-post increment-decrement mode selection

TABLE 24-2: ABBREVIATION DESCRIPTIONS

Field	Description
PC	Program Counter
TO	Time-Out bit
С	Carry bit
DC	Digit Carry bit
Z	Zero bit
PD	Power-Down bit

25.0 ELECTRICAL SPECIFICATIONS

25.1 Absolute Maximum Ratings^(†)

Ambient temperature under bias40)°C to +125°C
Storage temperature	5°C to +150°C
Voltage on pins with respect to Vss	
on VDD pin	
PIC16F1507	0.3V to +6.5V
PIC16LF1507	0.3V to +4.0V
on MCLR pin	0.3V to +9.0V
on all other pins0.3V to	(VDD + 0.3V)
Maximum current	
on Vss pin ⁽¹⁾	
-40°C \leq TA \leq +85°C	250 mA
+85°C \leq Ta \leq +125°C \ldots	85 mA
on VDD pin ⁽¹⁾	
-40°C \leq TA \leq +85°C	250 mA
+85°C \leq Ta \leq +125°C \ldots	85 mA
Sunk by any standard I/O pin	50 mA
Sourced by any standard I/O pin	50 mA
Clamp current, IK (VPIN < 0 or VPIN > VDD)	±20 mA
Total power dissipation ⁽²⁾	800 mW

Note 1: Maximum current rating requires even load distribution across I/O pins. Maximum current rating may be limited by the device package power dissipation characterizations, see Table 25-6 to calculate device specifications.

2: Power dissipation is calculated as follows: PDIS = VDD x {IDD $-\sum$ IOH} + \sum {(VDD - VOH) x IOH} + \sum (VOI x IOL).

† NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability.

FIGURE 26-26: IPD, FIXED VOLTAGE REFERENCE (FVR), PIC16F1507 ONLY