E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	20MHz
Connectivity	-
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	17
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	128 x 8
Voltage - Supply (Vcc/Vdd)	1.8V ~ 3.6V
Data Converters	A/D 12x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	20-SSOP (0.209", 5.30mm Width)
Supplier Device Package	20-SSOP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16lf1507t-i-ss

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.2.1.2 Indirect Read with FSR

The program memory can be accessed as data by setting bit 7 of the FSRxH register and reading the matching INDFx register. The MOVIW instruction will place the lower eight bits of the addressed word in the W register. Writes to the program memory cannot be performed via the INDF registers. Instructions that access the program memory via the FSR require one extra instruction cycle to complete. Example 3-2 demonstrates accessing the program memory via an FSR.

The HIGH operator will set bit<7> if a label points to a location in program memory.

EXAMPLE 3-2: ACCESSING PROGRAM MEMORY VIA FSR

constants
DW DATAO ;First constant
DW DATA1 ;Second constant
DW DATA2
DW DATA3
my_function
; LOTS OF CODE
MOVLW DATA_INDEX
ADDLW LOW constants
MOVWF FSR1L
MOVLW HIGH constants;MSb sets
automatically
MOVWF FSR1H
BTFSC STATUS, C ;carry from ADDLW?
INCF FSR1h, f ;yes
MOVIW 0[FSR1]
;THE PROGRAM MEMORY IS IN W

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR, BOR	Value on all other Resets
Bank 2											
10Ch	LATA	—	—	LATA5	LATA4	_	LATA2	LATA1	LATA0	xx -xxx	uu -uuu
10Dh	LATB	LATB7	LATB6	LATB5	LATB4			_	—	xxxx	uuuu
10Eh	LATC	LATC7	LATC6	LATC5	LATC4	LATC3	LATC2	LATC1	LATC0	XXXX XXXX	uuuu uuuu
10Fh to 115h	_	Unimplemen	Jnimplemented							-	_
116h	BORCON	SBOREN	BORFS	—	_			—	BORRDY	10q	uuu
117h	FVRCON	FVREN	FVRRDY	TSEN	TSRNG			ADF∖	/R<1:0>	0q0000	0q0000
118h to 11Ch	_	Unimplemen	Unimplemented							-	_
11Dh	APFCON	_	_	_	_	—	—	CLC1SEL	NCO1SEL	00	00
11Eh	_	Unimplemen	Unimplemented							-	_
11Fh	-	Unimplemen	ted							—	—
Bank 3											
18Ch	ANSELA	—	—	-	ANSA4		ANSA2	ANSA1	ANSA0	1 -111	1 -111
18Dh	ANSELB	_	_	ANSB5	ANSB4	_	_	—	_	11	11
18Eh	ANSELC	ANSC7	ANSC6	—	—	ANSC3	ANSC2	ANSC1	ANSC0	11 1111	11 1111
18Fh	_	Unimplemen	ted							—	—
190h	_	Unimplemen	ted							—	—
191h	PMADRL	Flash Progra	m Memory A	ddress Regis	ter Low Byte					0000 0000	0000 0000
192h	PMADRH	(2)	Flash Progra	Im Memory A	ddress Regis	ster High Byte	9			1000 0000	1000 0000
193h	PMDATL	Flash Progra	m Memory R	ead Data Reg	gister Low By	te				xxxx xxxx	uuuu uuuu
194h	PMDATH	_	_	Flash Progra	am Memory F	Read Data Re	egister High I	Byte		xx xxxx	uu uuuu
195h	PMCON1	(2)	CFGS	LWLO	FREE	WRERR	WREN	WR	RD	1000 x000	1000 q000
196h	PMCON2	Flash Progra	m Memory C	ontrol Registe	er 2					0000 0000	0000 0000
197h	VREGCON ⁽¹⁾	_	_	_	_	_	_	VREGPM	Reserved	01	01
198h to 19Fh	—	Unimplemen	implemented								_

TABLE 3-5: S	SPECIAL FUNCTION REGISTER S	SUMMARY (CONTINUED)
--------------	-----------------------------	-----------	------------

 x = unknown, u = unchanged, q = value depends on condition, - = unimplemented, r = reserved. Shaded locations are unimplemented, read as '0'.
 PIC16F1507 only.
 Unimplemented, read as '1'. Legend: Note 1: 2:

3.5.2 OVERFLOW/UNDERFLOW RESET

If the STVREN bit in Configuration Words is programmed to '1', the device will be reset if the stack is PUSHed beyond the sixteenth level or POPed beyond the first level, setting the appropriate bits (STKOVF or STKUNF, respectively) in the PCON register.

3.6 Indirect Addressing

The INDFn registers are not physical registers. Any instruction that accesses an INDFn register actually accesses the register at the address specified by the File Select Registers (FSR). If the FSRn address specifies one of the two INDFn registers, the read will return '0' and the write will not occur (though Status bits may be affected). The FSRn register value is created by the pair FSRnH and FSRnL.

The FSR registers form a 16-bit address that allows an addressing space with 65536 locations. These locations are divided into three memory regions:

- Traditional Data Memory
- Linear Data Memory
- Program Flash Memory

7.6 Register Definitions: Interrupt Control

R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R/W-0/0 R-0/0 GIE⁽¹⁾ PEIE⁽²⁾ IOCIF⁽³⁾ INTF TMR0IE INTE IOCIE TMR0IF bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n/n = Value at POR and BOR/Value at all other Resets u = Bit is unchanged x = Bit is unknown '0' = Bit is cleared '1' = Bit is set GIE: Global Interrupt Enable bit⁽¹⁾ bit 7 1 = Enables all active interrupts 0 = Disables all interrupts bit 6 PEIE: Peripheral Interrupt Enable bit⁽²⁾ 1 = Enables all active peripheral interrupts 0 = Disables all peripheral interrupts TMR0IE: Timer0 Overflow Interrupt Enable bit bit 5 1 = Enables the Timer0 interrupt 0 = Disables the Timer0 interrupt **INTE:** INT External Interrupt Enable bit bit 4 1 = Enables the INT external interrupt 0 = Disables the INT external interrupt bit 3 IOCIE: Interrupt-on-Change Enable bit 1 = Enables the interrupt-on-change 0 = Disables the interrupt-on-change TMR0IF: Timer0 Overflow Interrupt Flag bit bit 2 1 = TMR0 register has overflowed 0 = TMR0 register did not overflow bit 1 INTF: INT External Interrupt Flag bit 1 = The INT external interrupt occurred 0 = The INT external interrupt did not occur IOCIF: Interrupt-on-Change Interrupt Flag bit⁽³⁾ bit 0 1 = When at least one of the interrupt-on-change pins changed state 0 = None of the interrupt-on-change pins have changed state Note 1: Interrupt flag bits are set when an interrupt condition occurs, regardless of the state of its corresponding enable bit or the Global Interrupt Enable bit, GIE of the INTCON register. User software should ensure the appropriate interrupt flag bits are clear prior to enabling an interrupt.

REGISTER 7-1: INTCON: INTERRUPT CONTROL REGISTER

- 2: Bit PEIE of the INTCON register must be set to enable any peripheral interrupt.
- **3:** The IOCIF Flag bit is read-only and cleared when all the interrupt-on-change flags in the IOCxF registers have been cleared by software.

10.6 Register Definitions: Flash Program Memory Control

REGISTER 10-1: PMDATL: PROGRAM MEMORY DATA LOW BYTE REGISTER

R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
			PMDA	AT<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bit		U = Unimpleme	nted bit, read as '0	,	
u = Bit is unchanged	d	x = Bit is unknown		-n/n = Value at F	POR and BOR/Valu	ue at all other Res	sets
'1' = Bit is set		'0' = Bit is cleared					

bit 7-0

PMDAT<7:0>: Read/write value for Least Significant bits of program memory

REGISTER 10-2: PMDATH: PROGRAM MEMORY DATA HIGH BYTE REGISTER

U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u	
—	—		PMDAT<13:8>					
bit 7							bit 0	

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

bit 5-0 PMDAT<13:8>: Read/write value for Most Significant bits of program memory

REGISTER 10-3: PMADRL: PROGRAM MEMORY ADDRESS LOW BYTE REGISTER

| R/W-0/0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | PMAD | R<7:0> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0

PMADR<7:0>: Specifies the Least Significant bits for program memory address

REGISTER 10-4: PMADRH: PROGRAM MEMORY ADDRESS HIGH BYTE REGISTER

U-1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
(1)				PMADR<14:8>	•		
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7 Unimplemented: Read as '1'

bit 6-0 PMADR<14:8>: Specifies the Most Significant bits for program memory address

Note 1: Unimplemented, read as '1'.

12.6 Register Definitions: Interrupt-on-Change Control

REGISTER 12-1: IOCAP: INTERRUPT-ON-CHANGE PORTA POSITIVE EDGE REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
		IOCAP5	IOCAP4	IOCAP3	IOCAP2	IOCAP1	IOCAP0
bit 7							bit 0
Legend:							
R = Readable bit		W = Writable bi	t	U = Unimplemented bit, read as '0'			
u = Bit is unchanged x = Bit is unknown			-n/n = Value at POR and BOR/Value at all other Resets				
'1' = Bit is set		'0' = Bit is cleare	ed				

bit 7-6 Unimplemented: Read as '0'

bit 5-0

bit 5-0

bit 5-0

IOCAP<5:0>: Interrupt-on-Change PORTA Positive Edge Enable bits

1 = Interrupt-on-Change enabled on the pin for a positive going edge. IOCAFx bit and IOCIF flag will be set upon detecting an edge.

0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 12-2: IOCAN: INTERRUPT-ON-CHANGE PORTA NEGATIVE EDGE REGISTER

U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
—	—	IOCAN5	IOCAN4	IOCAN3	IOCAN2	IOCAN1	IOCAN0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-6 Unimplemented: Read as '0'

IOCAN<5:0>: Interrupt-on-Change PORTA Negative Edge Enable bits

- 1 = Interrupt-on-Change enabled on the pin for a negative going edge. IOCAFx bit and IOCIF flag will be set upon detecting an edge.
- 0 = Interrupt-on-Change disabled for the associated pin.

REGISTER 12-3: IOCAF: INTERRUPT-ON-CHANGE PORTA FLAG REGISTER

U-0	U-0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0	R/W/HS-0/0
—	—	IOCAF5	IOCAF4	IOCAF3	IOCAF2	IOCAF1	IOCAF0
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	HS - Bit is set in hardware

bit 7-6 Unimplemented: Read as '0'

IOCAF<5:0>: Interrupt-on-Change PORTA Flag bits

1 = An enabled change was detected on the associated pin.

Set when IOCAPx = 1 and a rising edge was detected on RAx, or when IOCANx = 1 and a falling edge was detected on RAx.

0 = No change was detected, or the user cleared the detected change.

15.2 ADC Operation

15.2.1 STARTING A CONVERSION

To enable the ADC module, the ADON bit of the ADCON0 register must be set to a '1'. Setting the GO/ DONE bit of the ADCON0 register to a '1' will start the Analog-to-Digital conversion.

Note:	The GO/DONE bit should not be set in the					
	same instruction that turns on the ADC.					
	Refer to Section 15.2.6 "ADC Conver-					
	sion Procedure".					

15.2.2 COMPLETION OF A CONVERSION

When the conversion is complete, the ADC module will:

- Clear the GO/DONE bit
- Set the ADIF Interrupt Flag bit
- Update the ADRESH and ADRESL registers with new conversion result

15.2.3 TERMINATING A CONVERSION

If a conversion must be terminated before completion, the GO/DONE bit can be cleared in software. The ADRESH and ADRESL registers will be updated with the partially complete Analog-to-Digital conversion sample. Incomplete bits will match the last bit converted.

Note:	A device Reset forces all registers to their				
	Reset state. Thus, the ADC module is				
	turned off and any pending conversion is				
	terminated.				

15.2.4 ADC OPERATION DURING SLEEP

The ADC module can operate during Sleep. This requires the ADC clock source to be set to the FRC option. Performing the ADC conversion during Sleep can reduce system noise. If the ADC interrupt is enabled, the device will wake-up from Sleep when the conversion completes. If the ADC interrupt is disabled, the ADC module is turned off after the conversion completes, although the ADON bit remains set.

When the ADC clock source is something other than FRC, a SLEEP instruction causes the present conversion to be aborted and the ADC module is turned off, although the ADON bit remains set.

15.2.5 AUTO-CONVERSION TRIGGER

The auto-conversion trigger allows periodic ADC measurements without software intervention. When a rising edge of the selected source occurs, the GO/DONE bit is set by hardware.

The auto-conversion trigger source is selected with the TRIGSEL<3:0> bits of the ADCON2 register.

Using the auto-conversion trigger does not assure proper ADC timing. It is the user's responsibility to ensure that the ADC timing requirements are met.

See Table 15-2 for auto-conversion sources.

TABLE 15-2: AUTO-CONVERSION SOURCES

Source Peripheral	Signal Name
Timer0	T0_overflow
Timer1	T1_overflow
Timer2	T2_match
CLC1	LC1_out
CLC2	LC2_out

17.1 Timer1 Operation

The Timer1 module is a 16-bit incrementing counter which is accessed through the TMR1H:TMR1L register pair. Writes to TMR1H or TMR1L directly update the counter.

When used with an internal clock source, the module is a timer and increments on every instruction cycle. When used with an external clock source, the module can be used as either a timer or counter and increments on every selected edge of the external source.

Timer1 is enabled by configuring the TMR1ON and TMR1GE bits in the T1CON and T1GCON registers, respectively. Table 17-1 displays the Timer1 enable selections.

TABLE 17-1: TIMER1 ENABLE SELECTIONS

TMR10N	TMR1GE	Timer1 Operation
0	0	Off
0	1	Off
1	0	Always On
1	1	Count Enabled

17.2 Clock Source Selection

The TMR1CS<1:0> bits of the T1CON register are used to select the clock source for Timer1. Table 17-2 displays the clock source selections.

17.2.1 INTERNAL CLOCK SOURCE

When the internal clock source is selected, the TMR1H:TMR1L register pair will increment on multiples of Fosc as determined by the Timer1 prescaler.

When the Fosc internal clock source is selected, the Timer1 register value will increment by four counts every instruction clock cycle. Due to this condition, a 2 LSB error in resolution will occur when reading the Timer1 value. To utilize the full resolution of Timer1, an asynchronous input signal must be used to gate the Timer1 clock input.

The following asynchronous sources may be used:

- Asynchronous event on the T1G pin to Timer1
 gate
- C1 or C2 comparator input to Timer1 gate

17.2.2 EXTERNAL CLOCK SOURCE

When the external clock source is selected, the Timer1 module may work as a timer or a counter.

When enabled to count, Timer1 is incremented on the rising edge of the external clock input T1CKI. The external clock source can be synchronized to the microcontroller system clock or it can run asynchronously.

Note: In Counter mode, a falling edge must be registered by the counter prior to the first incrementing rising edge after any one or more of the following conditions:

- Timer1 enabled after POR
- Write to TMR1H or TMR1L
- Timer1 is disabled
- Timer1 is disabled (TMR1ON = 0) when T1CKI is high then Timer1 is enabled (TMR1ON=1) when T1CKI is low.

TABLE 17-2: CLOCK SOURCE SELECTIONS

TMR1CS<1:0>	Clock Source			
11	LFINTOSC			
10	External Clocking on T1CKI Pin			
01	System Clock (Fosc)			
00	Instruction Clock (Fosc/4)			

© 2011-2015 Microchip Technology Inc.

21.9 Register Definitions: NCOx Control Registers

REGISTER 21-1: NCOxCON: NCOx CONTROL REGISTER

R/W-0/0	R/W-0/0	R-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0
NxEN	NxOE	NxOUT	NxPOL	—	_	—	NxPFM
bit 7	•	-				•	bit 0
Legend:							
R = Readable b	bit	W = Writable b	it	U = Unimpleme	ented bit, read as	s 'O'	
u = Bit is uncha	nged	x = Bit is unkno	wn	-n/n = Value at	POR and BOR/\	/alue at all other	r Resets
'1' = Bit is set		'0' = Bit is clear	red				
bit 7	NxEN: NCOx E 1 = NCOx mod 0 = NCOx mod	Enable bit lule is enabled lule is disabled					
bit 6	NxOE: NCOx (1 = NCOx outp 0 = NCOx outp	Output Enable bi out pin is enabled out pin is disabled	t 1				
bit 5	bit 5 NxOUT: NCOx Output bit 1 = NCOx output is high 0 = NCOx output is low						
bit 4	<pre>bit 4 NxPOL: NCOx Polarity bit 1 = NCOx output signal is active low (inverted) 0 = NCOx output signal is active high (non-inverted)</pre>						
bit 3-1	1 Unimplemented: Read as '0'						
bit 0	NxPFM: NCOx Pulse Frequency Mode bit 1 = NCOx operates in Pulse Frequency mode 0 = NCOx operates in Fixed Duty Cycle mode						

REGISTER 21-2: NCOxCLK: NCOx INPUT CLOCK CONTROL REGISTER

R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	U-0	R/W-0/0	R/W-0/0
NxPWS<2:0>(1, 2)			—	—	—	NxCK	S<1:0>
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	

bit 7-5 NxPWS<2:0>: NCOx Output Pulse Width Select bits^(1, 2) 111 = 128 NCOx clock periods 110 = 64 NCOx clock periods

- 101 = 32 NCOx clock periods 100 = 16 NCOx clock periods 011 = 8 NCOx clock periods 010 = 4 NCOx clock periods 001 = 2 NCOx clock periods
- 000 = 1 NCOx clock periods
- bit 4-2 Unimplemented: Read as '0'
- bit 1-0 NxCKS<1:0>: NCOx Clock Source Select bits
 - 11 = NCO1CLK pin
 - 10 = LC1_out
 - 01 = Fosc
 - 00 = HFINTOSC (16 MHz)

Note 1: NxPWS applies only when operating in Pulse Frequency mode.

2: If NCOx pulse width is greater than NCO_overflow period, operation is indeterminate.

Γ.

23.0 IN-CIRCUIT SERIAL PROGRAMMING[™] (ICSP[™])

ICSP[™] programming allows customers to manufacture circuit boards with unprogrammed devices. Programming can be done after the assembly process allowing the device to be programmed with the most recent firmware or a custom firmware. Five pins are needed for ICSP[™] programming:

- ICSPCLK
- ICSPDAT
- MCLR/VPP
- VDD
- Vss

In Program/Verify mode the program memory, user IDs and the Configuration Words are programmed through serial communications. The ICSPDAT pin is a bidirectional I/O used for transferring the serial data and the ICSPCLK pin is the clock input. For more information on ICSPTM refer to the "*PIC12(L)F1501/PIC16(L)F150X Memory Programming Specification*" (DS41573).

23.1 High-Voltage Programming Entry Mode

The device is placed into High-Voltage Programming Entry mode by holding the ICSPCLK and ICSPDAT pins low then raising the voltage on MCLR/VPP to VIHH.

23.2 Low-Voltage Programming Entry Mode

The Low-Voltage Programming Entry mode allows the PIC[®] Flash MCUs to be programmed using VDD only, without high voltage. When the LVP bit of Configuration Words is set to '1', the ICSP Low-Voltage Programming Entry mode is enabled. To disable the Low-Voltage ICSP mode, the LVP bit must be programmed to '0'.

Entry into the Low-Voltage Programming Entry mode requires the following steps:

- 1. MCLR is brought to VIL.
- 2. A 32-bit key sequence is presented on ICSPDAT, while clocking ICSPCLK.

Once the key sequence is complete, $\overline{\text{MCLR}}$ must be held at VIL for as long as Program/Verify mode is to be maintained.

If low-voltage programming is enabled (LVP = 1), the $\overline{\text{MCLR}}$ Reset function is automatically enabled and cannot be disabled. See **Section 6.5 "MCLR**" for more information.

The LVP bit can only be reprogrammed to '0' by using the High-Voltage Programming mode.

23.3 Common Programming Interfaces

Connection to a target device is typically done through an ICSP[™] header. A commonly found connector on development tools is the RJ-11 in the 6P6C (6-pin, 6-connector) configuration. See Figure 23-1.

Another connector often found in use with the PICkit[™] programmers is a standard 6-pin header with 0.1 inch spacing. Refer to Figure 23-2.

RRF	Rotate Right f through Carry						
Syntax:	[<i>label</i>] RRF f,d						
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$						
Operation:	See description below						
Status Affected:	С						
Description:	The contents of register 'f' are rotated one bit to the right through the Carry flag. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.						
	C Register f						

SUBLW Subtract W from literal						
Syntax:	[label] SL	IBLW k				
Operands:	$0 \leq k \leq 255$					
Operation:	k - (W) → (W)				
Status Affected:	C, DC, Z					
Description:	er is subtracted (2's com- nod) from the 8-bit literal t is placed in the W regis-					
	C = 0	W > k				
	C = 1	W < k				

C = 0	W > k
C = 1	$W \leq k$
DC = 0	W<3:0> > k<3:0>
DC = 1	$W<3:0> \le k<3:0>$

 $W<3:0> \le f<3:0>$

SLEEP	Enter Sleep mode					
Syntax:	[label] SLEEP					
Operands:	None					
Operation:	$\begin{array}{l} 00h \rightarrow WDT, \\ 0 \rightarrow \underline{W}DT \text{ prescaler}, \\ 1 \rightarrow \underline{TO}, \\ 0 \rightarrow \overline{PD} \end{array}$					
Status Affected:	TO, PD					
Description:	The power-down Status bit, $\overline{\text{PD}}$ is cleared. Time-out Status bit, $\overline{\text{TO}}$ is set. Watchdog Timer and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped.					

SUBWF	Subtract W from f					
Syntax:	[label] SL	JBWF f,d				
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$					
Operation:	(f) - (W) → (d)	lestination)				
Status Affected:	C, DC, Z					
Description:	complement method) W register 'f'. If 'd' is '0', the ed in the W is '1', the result is stored ter 'f.					
	C = 0	W > f				
	C = 1	$W \leq f$				
	DC = 0 W<3:0> > f<3:0>					

SUBWFB	Subtract W from f with Borrow
Syntax:	SUBWFB f {,d}
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	$(f) - (W) - (\overline{B}) \rightarrow dest$
Status Affected:	C, DC, Z
Description:	Subtract W and the BORROW flag (CARRY) from register 'f' (2's comple- ment method). If 'd' is '0', the result is stored in W. If 'd' is '1', the result is stored back in register 'f'.

DC = 1

TABLE 25-5:	MEMORY PROGRAMMING SPECIFICATIONS	

Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions
		Program Memory Programming Specifications					
D110	Vінн	Voltage on MCLR/VPP pin	8.0	—	9.0	V	(Note 2)
D112	VPBE	VDD for Bulk Erase	2.7		VDDMAX	V	
D113	VPEW	VDD for Write or Row Erase	VDDMIN		VDDMAX	V	
D114	IPPPGM	Current on MCLR/VPP during Erase/Write	—	1.0	—	mA	
D115	IDDPGM	Current on VDD during Erase/Write	—	5.0	—	mA	
D121	Ер	Program Flash Memory Cell Endurance	10K	_	_	E/W	-40°C ≤ TA ≤ +85°C (Note 1)
D122	Vprw	VDD for Read/Write	VDDMIN	—	VDDMAX	V	
D123	Tiw	Self-timed Write Cycle Time	—	2	2.5	ms	
D124	TRETD	Characteristic Retention	—	40	—	Year	Provided no other specifications are violated
D125	EHEFC	High-Endurance Flash Cell	100K	—	_	E/W	$0^{\circ}C \le TA \le +60^{\circ}C$, lower byte last 128 addresses

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: Self-write and Block Erase.

2: Required only if single-supply programming is disabled.

TABLE 25-6: THERMAL CHARACTERISTICS

Standard Operating Conditions (unless otherwise stated)							
Param. No.	Sym.	Characteristic	Тур.	Units	Conditions		
TH01	θJA	Thermal Resistance Junction to Ambient	62.2	°C/W	20-pin DIP package		
			77.7	°C/W	20-pin SOIC package		
			87.3	°C/W	20-pin SSOP package		
			46.2	°C/W	20-pin QFN 4x4mm package		
			32.8	°C/W	20-pin UQFN 4x4mm package		
TH02	θJC	Thermal Resistance Junction to Case	27.5	°C/W	20-pin DIP package		
			23.1	°C/W	20-pin SOIC package		
			31.1	°C/W	20-pin SSOP package		
			13.2	°C/W	20-pin QFN 4x4mm package		
			27.4	°C/W	20-pin UQFN 4x4mm package		
TH03	TJMAX	Maximum Junction Temperature	150	°C			
TH04	PD	Power Dissipation	_	W	PD = PINTERNAL + PI/O		
TH05	PINTERNAL	Internal Power Dissipation	_	W	PINTERNAL = IDD x VDD ⁽¹⁾		
TH06	Pi/o	I/O Power Dissipation	_	W	$PI/O = \Sigma (IOL * VOL) + \Sigma (IOH * (VDD - VOH))$		
TH07	Pder	Derated Power	_	W	Pder = PDmax (Tj - Ta)/θja ⁽²⁾		

Standard Operating Conditions (unless otherwise stated)

Note 1: IDD is current to run the chip alone without driving any load on the output pins.

2: TA = Ambient Temperature; TJ = Junction Temperature

TABLE 25-9:	CLKOUT	AND I/O	TIMING	PARAMETERS
-------------	--------	---------	--------	------------

Standard Operating Conditions (unless otherwise stated)								
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
OS11	TosH2ckL	Fosc↑ to CLKOUT↓ ⁽¹⁾	_	—	70	ns	$3.3V \leq V\text{DD} \leq 5.0V$	
OS12	TosH2ckH	Fosc↑ to CLKOUT↑ ⁽¹⁾	—	—	72	ns	$3.3V \le V\text{DD} \le 5.0V$	
OS13	TckL2ioV	CLKOUT↓ to Port out valid ⁽¹⁾	—	—	20	ns		
OS14	TioV2ckH	Port input valid before CLKOUT ⁽¹⁾	Tosc + 200 ns	_	_	ns		
OS15	TosH2ioV	Fosc↑ (Q1 cycle) to Port out valid	—	50	70*	ns	$3.3V \le V\text{DD} \le 5.0V$	
OS16	TosH2iol	Fosc↑ (Q2 cycle) to Port input invalid (I/O in setup time)	50	—	—	ns	$3.3V \leq V\text{DD} \leq 5.0V$	
OS17	TioV2osH	Port input valid to Fosc↑ (Q2 cycle) (I/O in setup time)	20	—	—	ns		
OS18*	TioR	Port output rise time	—	40	72	ns	VDD = 1.8V	
			—	15	32		$3.3V \leq V\text{DD} \leq 5.0V$	
OS19*	TioF	Port output fall time	—	28	55	ns	VDD = 1.8V	
			—	15	30		$3.3V \le V\text{DD} \le 5.0V$	
OS20*	Tinp	INT pin input high or low time	25	_		ns		
OS21*	Tioc	Interrupt-on-change new input level time	25	_		ns		

* These parameters are characterized but not tested.

 \dagger Data in "Typ" column is at 3.0V, 25°C unless otherwise stated.

Note 1: Measurements are taken in EXTRC mode where CLKOUT output is 4 x Tosc.

TABLE 25-10: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER AND BROWN-OUT RESET PARAMETERS

Standard Operating Conditions (unless otherwise stated)								
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
30	ТмсL	MCLR Pulse Width (low)	2	_	—	μS		
31	TWDTLP	Low-Power Watchdog Timer Time-out Period	10	16	27	ms	VDD = 3.3V-5V, 1:512 Prescaler used	
33*	TPWRT	Power-up Timer Period	40	65	140	ms	PWRTE = 0	
34*	Tioz	I/O high-impedance from MCLR Low or Watchdog Timer Reset	—	—	2.0	μS		
35	VBOR	Brown-out Reset Voltage ⁽¹⁾	2.55	2.70	2.85	V	BORV = 0	
			2.35	2.45	2.58	V	BORV = 1 (PIC16F1507)	
			1.80	1.90	2.05	V	BORV = 1 (PIC16LF1507)	
36*	VHYST	Brown-out Reset Hysteresis	0	25	75	mV	$-40^{\circ}C \le TA \le +85^{\circ}C$	
37*	TBORDC	Brown-out Reset DC Response Time	1	16	35	μS	$VDD \leq VBOR$	
38	VLPBOR	Low-Power Brown-Out Reset Voltage	1.8	2.1	2.5	V	LPBOR = 1	
*	* These parameters are characterized but not tested							

These parameters are characterized but not tested.

t Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

FIGURE 25-9: BROWN-OUT RESET TIMING AND CHARACTERISTICS

Note 1: To ensure these voltage tolerances, VDD and Vss must be capacitively decoupled as close to the device as possible. 0.1 μ F and 0.01 μ F values in parallel are recommended.

TABLE 25-13: ANALOG-TO-DIGITAL CONVERTER (ADC) CHARACTERISTICS^(1,2,3)

Operating Conditions (unless otherwise stated)

VDD = 3.0V, TA = 25°C								
Param. No.	Sym.	Characteristic	Min.	Тур†	Max.	Units	Conditions	
AD01	NR	Resolution	—		10	bit		
AD02	EIL	Integral Error	_	±1	±1.7	LSb	VREF = 3.0V	
AD03	Edl	Differential Error	—	±1	±1	LSb	No missing codes VREF = 3.0V	
AD04	EOFF	Offset Error	_	±1	±2.5	LSb	VREF = 3.0V	
AD05	Egn	Gain Error	_	±1	±2.0	LSb	VREF = 3.0V	
AD06	VREF	Reference Voltage	1.8		Vdd	V	VREF = (VRPOS - VRNEG) (Note 4)	
AD07	VAIN	Full-Scale Range	Vss	_	VREF	V		
AD08	ZAIN	Recommended Impedance of Analog Voltage Source	—	—	10	kΩ	Can go higher if external $0.01\mu F$ capacitor is present on input pin.	

* These parameters are characterized but not tested.

† Data in "Typ" column is at 3.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1:Total Absolute Error includes integral, differential, offset and gain errors.

2: The ADC conversion result never decreases with an increase in the input voltage and has no missing codes.

3: See Section 26.0 "DC and AC Characteristics Graphs and Charts" for operating characterization.

4: ADC VREF is selected by ADPREF<0> bit.

27.11 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

27.12 Third-Party Development Tools

Microchip also offers a great collection of tools from third-party vendors. These tools are carefully selected to offer good value and unique functionality.

- Device Programmers and Gang Programmers from companies, such as SoftLog and CCS
- Software Tools from companies, such as Gimpel and Trace Systems
- Protocol Analyzers from companies, such as Saleae and Total Phase
- Demonstration Boards from companies, such as MikroElektronika, Digilent[®] and Olimex
- Embedded Ethernet Solutions from companies, such as EZ Web Lynx, WIZnet and IPLogika[®]

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
Dimension	MIN	NOM	MAX		
Contact Pitch	E	1.27 BSC			
Contact Pad Spacing	С		9.40		
Contact Pad Width (X20)	X			0.60	
Contact Pad Length (X20)	Y			1.95	
Distance Between Pads	Gx	0.67			
Distance Between Pads	G	7.45			

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2094A